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Abstract 
This investigation was conducting to explain that four barley genotypes va-
ried in their drought tolerance according to their genotype and their tested 
organs. It can be recorded that growth parameters (fresh, dry matter and 
length, water content, leaf area and pigment contents) were decreased as de-
creasing M. C. in the soil. This indicated that Giza 123 was the superior in its 
drought tolerance and Giza 129 was the interior and both cv. Giza 2000 and 
cv. Giza 124 were the intermediated between them. This concomitant with 
increase in soluble sugar and soluble protein content of both organs in Giza 
123 and shoot Ca++, this related with lower value of OP other than genotypes, 
in Giza 2000 this was related with a huge accumulation in soluble protein of 
shoot and root, shoot amino acids and root proline reach 3-folds than control 
plants as decreasing M. C. Whereas drought stress increased soluble protein 
only in Giza 124 while in Giza 129 decreasing M. C. increased soluble protein, 
amino acids and proline contents in shoot and root and shoot Ca++. The val-
ues of OP increased as decreasing M. C. in four barley cultivars concomitant 
with their drought tolerance. Also, SA application was markedly enhanced 
the production of growth parameters in shoot and root with varied degree 
according to each tested barley genotypes. SA application was significantly 
increased OP in shoot, root and spike of barley pants. Spraying vegetative 
parts with 0.5 mM SA was markedly increased the soluble sugar, soluble pro-
tein and amino acids in shoot, root and spike of four barley cultivars. On the 
other side, SA application lowered the accumulation of proline in shoot and 
root of barley genotypes. SA treatment induced no significant change in K+, 
Ca++, and Mg++ in shoot, root and spike of Giza 123, it significantly increased 
K+, Ca++, and Mg++ in shoot and root of Giza 2000. SA application enhanced 
accumulation of K+, Ca++ in shoot and root of Giza 124 and K+, Ca++ and 
Mg++in three organs of Giza 129. 
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1. Introduction 

Recent scientific advances make exploration of genotypic selection to drought 
stress was feasible and could result in large gains in productivity. Drought stress 
is one of the most adverse factors on plant growth and productivity, it induced 
morphological, physiological and biochemical changes, reduced CO2 assimila-
tion, leaf area, pigment content, stem expansion, root proliferations disturbs 
water use efficiency. The role of chemical constituent’s accumulation in drought 
plants has been researched to understand plant tolerance to dehydration. Also 
drought increase active oxygen ROS species generation and can be controlled by 
increased antioxidant enzmes [1] [2] [3] [4]. SA is involved in the regulation of 
important plant physiological processes such as photosynthesis, nitrogen meta-
bolism, proline (Pro) metabolism, production of glycinebetaine (GB), antioxi-
dant defense system, and plant-water relations under stress conditions and the-
reby provides protection in plants against abiotic stresses [5]. A common effect 
of abiotic stresses, including drought, is oxidative damage due to a loss of bal-
ance between the production and elimination of reactive oxygen species (ROS) 
[6]. If not effectively and rapidly removed from plants, excessive ROS may dam-
age a wide range of cellular macromolecules such as lipid, protein and DNA and 
ultimately cause cell damage. Salicylic acid (SA) is a naturally occurring phenolic 
compound. SA plays an important role in the regulation of plant growth, devel-
opment, ripening, and defense [7] [8]. In general, low concentrations of SA may 
enhance the antioxidant capacity in plants, but high concentrations of SA may 
cause cell death or susceptibility to abiotic stresses [8] [9]. In addition to being 
an important component of biotic stress tolerance mechanism, SA also regulates 
various aspects of plant responses to abiotic stresses through extensive signaling 
cross-talk with other growth hormones [5] [10] [11] [12]. Many studies have so 
far been conducting to identify its role in abiotic stress tolerance in different 
crops. Results of these studies suggest that exogenously applied SA can induce 
drought resistance in wheat [13] [14] [15]. The present work was to study the 
mechanisms of drought tolerance strategy of four barley cultivars and their re-
sponse to the exogenous addition of salicylic acids. 

2. Materials and Methods 
2.1. Experimental Sites and Drought Stress Treatments 

Barley grain cultivars were obtained from the breeding program of seeds station, 
Beni-Suef, Egypt. Barley grains were surface sterilized by immersion in a mixture 
of ethanol 96% and H2O2 (1:1) for 3 minutes, followed by several washings with 
sterile distilled water, seeds were grown in 1 kg pots in Botany and Microbiology 
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Department garden. Barley plant was considered as one of the most important 
crop plants in Egypt because of its contribution as nutrient foods for people. 
Barley is a major cereal grain commonly found in bread, beverages and various 
cuisines of every culture. It remains one of the most widely consumed grains, 
globally, source of dietary. Fiber, vitamins and minerals are not found in refined 
and enriched grains. Five seeds were sown in each pot and soil was brought to 
field capacity. The seedlings were left to grow under the desired soil moisture 
content levels (90%, 70%, 50% and 30%). Soil moisture content was measured by 
calculate the soil field capacity, this consider as 100% moisture content and so 
could be determine the other lower soil moisture content. The clay soil comprise 
four components minerals and soil organic matter make up the solid fraction, 
whereas air and water comprise the pore space fraction. A typical agricultural 
soil is usually around 50% solid particles and 50% pores (Adapted from Brady 
and Weil, 2002) [16]. Soil particle of clay is <0.002 invisible to naked eye. Con-
siderations of working in controlled environments were followed by Tibbitts & 
Langhans [17]. 

2.2. Drought Stress and Treatments with Salicylic Acid 

The previous treatments were repeated for treatment with spraying vegetative 
parts with 0.5 mM SA as second groups. Three replicate was made for each 
treatment and plants were grown in natural conditions for crop yield production 
at 120-days. 

2.3. Laboratory Analysis for Metabolities 

At the end of the experimental period (120 days) plant height, dry matter yield 
of the different organs (shoot, root and spike) were determined. Plant height was 
determined by direct measurement from soil surface to the tip of the flag leaf. 
Determination of the dry matter involved harvesting and careful separation of 
fresh organs. Fresh organs were then dried in an oven at 80˚C. Successive 
weighing was carried out until a constant dry weight was recorded. The plants 
were uprooted, roots carefully separated from the soil, washed and the length of 
roots were measured. From determining the shoot and root weight, was calcu-
lated. Leaf area was determined by measuring leaf length and maximum width 
and applying the formula; Leaf area = k (leaf length * leaf maximum width) Cm2 
plant−1. This formula provided a simple way for determination of leaf area par-
ticularly in the field where large leaves had to be measured. The coefficient k was 
calculated and assigned different values for different grasses [18] [19], and re-
cently reviewed and given a value of 0.75 for maize [20]. Dry matter was deter-
mined after drying plants in an aerated oven at 70˚C to constant mass. Pigment 
content was measured by Metzner [21]. Saccharides were determined by the 
anthrone-sulfuric acids method [22]. Soluble protein was measured according to 
Lowry et al. (1951) [23]. Amino acids and proline were measured by Moore and 
Stein (1948) and Bates et al. (1973) [24] [25]. Sodium and potassium were de-
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termined by flam photometric method [26], and calcium and magnesium by the 
versene titration method [27]. 

2.4. Statistical Analysis 

The experimental data were subjected to the one way analysis of variances 
(ANOVA test) using the SPSS version 11.0 to quantify and evaluate the source of 
variation and the means were separated by the least significant differences, L. S. 
D. at P level of 0.05% [28]. Experimental data were subjected to one way analysis 
of variance and the means were separated by the least significant differences, L. 
S. D. [28]. Correlation coefficients were calculated using statgraphics 5.0 soft-
ware. 

3. Results 
3.1. Growth Parameters 

In cv. Giza 123 decreasing moisture content induced three position the firstly 
was more or less have the same value of control 100% in shoot fresh matter, se-
condly a marked increase in shoot dry matter was detected up to 50% M. C., 
thirdly in root there is a slight decreasing effect in fresh and dry matter up to 
70% (Table 1(a)). After that level, a significant reduction in fresh and dry matter 
was induced reach a low level at 30% M. C., the percent of reduction was 84% 
and 72.4%. Length of both organs showed a decreasing effect reach a 20% at 30% 
M. C. compared with control plants (Table 1(a)). Fresh and dry matter of shoot 
and root of Giza 2000 generally become more or less unchanged up to 70%, after 
that a marked reduction was recorded (Table 1(b)). The percent of reduction at 
30% M. C. was 69.3%, 81.7%, 70.5%, 67.2% in fresh and dry matter of shoot and 
root respectively. Length in both organs was decreased with decreasing moisture 
content. The percent of reduction was 58.8% and 75% in shoot and root com-
pared with control plants (Table 1(b)). A lowering effect was recorded with de-
creasing moisture content in fresh and dry matter of shoot, root and length of 
cv. Giza 124, this effect was more obvious in root than in shoot (Table 1(c)). 
The percent of reduction in fresh, dry matter and length at 30% M. C. was 
63.9%, 63.4%, 43.7%, 66.6%, 65.4% and 72%. Also decreasing soil moisture con-
tent induced a significant reduction in fresh, dry matter and length of Giza 129 
from 70% to 30% M. C. The percent of reduction was 53.2%, 51.4%, 39%, 34.7%, 
51.9% and 48.4% in fresh, dry and length of shoot and root at 30% M. C. (Table 
1(d)). Leaf area smoothly decreased at all M. C. levels in cv. Giza 123 moreover a 
marked reduction was recorded at 50% and 30% in both Giza 2000 and Giza 124, 
however a significant reduction was recorded in cv. Giza 129. The percent of 
reduction at 30% M. C. was 81.8%, 60.7%, 54.9%, 53.3% as compared with con-
trol plants (Figure 1). Chlorophyll a, b and carotenoids were significantly de-
creased as decreasing drought stress in four barley genotypes compared with 
reference control plants (Figure 2(a) & Figure 2(b)). The percent of reduction 
in Chl. a, b and c at 30% M. C. level was 80.3%, 98.9%, 67.4%, in Giza 132 plant,  
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Table 1. The response of Giza 123 (a), Giza 2000 (b), Giza 124 (c) and Giza 129 (d) barley genotypes to drought stress and inter-
active with SA treatments on fresh, dry matter (g plant−1) and length (Cm) of shoot, root and spike at the final fruiting stage. 

(a) 

Treat. 
M. C. 

Shoot Root Length Spike 

M. C. % D. m. % F. m. % D. m. % Sh. % Ro. % D. m. % Length % 

90% 7.7 100 2.8 100 4.2 100 0.83 100 90 100 3 100 2.2 100 17 100 

70% 8.0 100 3.6 130 3.9 93.3 0.74 89 85** 94 27 90 1.9 89.3 17.5 102.9 

50% 7.5 104 3.1 114 3.7 87.8 0.67 80.4 75.9** 84 24 983 1.7 75.6 15** 88.2 

30% 7.4 96.9 2.6 96 3.5 84 0.60 72.4 72.3 80 24 80 1.1 52.0 13.5** 79.4 

90% + SA 9.7 126 4.6 166 5.2** 124 1.1 132.5 96.3 107 33 110 2.4 109.0 18.5** 108.8 

70% + SA 9.4 123 3.9 143 6.5** 156 1.2 144.7 88.2 98 30 99 2.5 114.3 17.5 102.9 

50% + SA 7.4 96 3.3 121 5.9** 1421 0.96 115.7 83.7 93 292 95 2.2 100 19.5 * * 1 15 

30% + SA 7.2 93 2.7 99 4.1 97.6 0.74 88.9 37.9 87 26 85 1.4 89.3 17.5 100.8 

L. S. D. 0.05% 0.05 0.19 0.25 0.09 0.98 0.94 0.16 0.51 

(b) 

M. C. 
Shoot Root Length Spike 

M. C. % D. m. % F. m. % D. m. % Sh. % Ro. % D. m. % Length % 

90% 4.9 100 1.3 100 3.0 100 2.2 100 0.86 100 85 100 1.8 100 18 100 

70% 4.6 93.9 1.4 06.9 2.9 96.7 1.9 89.3 0.76 88.2 79 92.2 1.5** 81.2 17.5 97.2 

50% 4.3 87.8 1.2 93.1 2.5 83.3 1.7 75.6 0.66 76.2 66 77.7 1.3** 70.9 17 ** 94.4 

30% 3.4 69.4 1.0 81.7 2.0 66.7 1.1 52.0 0.52 67.2 58 68.2 0.74** 41.3 11.5** 63.9 

90% + SA 9.4 191 2.2 171 3.3 109 2.4 109 0.94 109.3 94 110.6 2.1** 119.1 19** 105.6 

70% + SA 6.9 140.2 2.0 155.7 3.9 129 2.5 114.3 1.1 127.6 83 97.7 1.8 100 18 100 

50% + SA 6.7 136.4 1.7 129.8 3.8 126 2.2 100 1.0 124.1 59 69.4 1.5 ** 83.1 16** 88.9 

30% + SA 5.0    102.4 1.2 90.1 2.4 78.7 1.4 89.3 0.85 98.9 55 64.7 0.93 52.1 16** 88.9 

L. S. D. 0.05% 0.19 0.158 0.19 0.16 0.1 1.3 0.22 0.13 

(c) 

M. C. 
Shoot Root Length Spike Length 

M. C. % D. m. % F. m. % D. m % Sh. % Ro. % D. m. % Spike % 

90% 5.3 100 2.2 100 4.0 1 00 0.77 100 78 100 25 100 1.9 100 15.5 100 

70% 5.6 104.4 1.9 98.6 3.6 78.9 0.65 85.4 75 96.1 23.5 94 1.6** 84.3 15 96.8 

50% 4.8 90.2 1.8 89.6 3.1 75.6 0.56 72.9 74 94.9 23 92 1.1** 58.9 12** 77.4 

30% 3.4 63.9 1.4 63.4 1.3 43.7 0.57 66.6 51 65.4 17 68 0.6** 31.6 9.5** 61.2 

90% + SA 5.3 100 2.2 100.9 4.3 105.7 0.80 104.8 81 03.9 28 112 1.9 100.7 16.5 106.5 

70% + SA 5.8 109 2.3 105.4 4.1 100.7 0.78 101.6 75 96.2 29 116 1.9 98.7 16.5 106.5 

50% + SA 5.7 106.6 2.3 104.1 5.2 129 0.91 119.2 74 94.2 25 100 1.8 97.1 16.5 106.5 

30% + SA 4.8 90.8 2.0 90.9 2.9 74 0.57 73.8 65 83.3 23.5 94 0.923** 49 14.5** 93.5 

L. S. D. 0.05% 0.17 0.14 0.13 0.02 1.1 0.73 0.72 0.49 
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(d) 

M. C. 
Shoot Root Length Spike 

F. m. % D. m. % F. m. % D. m. % Sh. % Ro. % D. m. % Length % 

90% 7.9 100 2.8 100 3.6 100 0.80 100 64.8 100 24.8 100 2.0 100 18.5 100 

70% 7.7 98.1 2.3 82.9 3.1 87.2 0.64 79.7 58.4 90.2 21.6 87.1 1.1** 53.1 15** 81.0 

50% 5.6 70.6 1.9 68.1 2.4 66.9 0.52 64.7 52.4 80.8 22.8 91.9 0.38** 18.4 13** 70.2 

30% 4.2 53.2 1.5 51.4 1.4 39 0.28 34.7 33.6 51.9 12 48.4 0.24** 11.7 9** 48.7 

90% + SA 7.7 103.5 2.8 100 3.8 105.3 0.82 101.5 84 129.3 30 120.9 2.1 102.8 19 102.7 

70% + SA 6.0 106.8 2.9 105.3 4.3 119.5 0.69 85.7 81 125 28 112.9 1.6** 77.6 16** 86.5 

50% + SA 6.1 101 2.1 74.5 3.7 103.9 0.56 69.4 82 126.5 29 116.9 1.1** 53.1 15** 81.1 

30% + SA 5.9 85.3 2.0 71.6 2.9 80.2 0.53 65.3 67 103.4 27 108.9 0.75** 36.7 12.5** 67.6 

L. S. D. 0.05% 0.17 0.15 0.15 0.02 1.0 0.87 0.13 0.75 

 

 
Figure 1. The response of Giza 124 (a), Giza 2000 (b), Giza 124 (c) and Giza 129 (d) barley genotypes to 
drought stress and interactive with SA treatments on leaf area at the final fruiting stage. 

 
87.6%, 58.3%, 98.1 in Giza 2000 plant, 54.3%, 50%, 88.6%, in Giza 124 plant, 
54.1%, 38.9%, 74.1% in Giza 129 plant. Water content was reduced in shoot 
and root as decreasing M. C. levels in four tested genotypes, and the low values 
were recorded at 30% M. C. level (Table 2). The highest value in water content 
was recorded in Giza 123 while the lower one was observed in Giza 129. The 
percent of reduction at 30% M. C. level was 97.9%, 85.3%, 66.7%, 71.4%, 
85.8%, 75%, 39.2% and 39.3% in Giza 124, Giza 2000, Giza 124 and Giza 129 
respectively (Table 2). 

3.2. Metabolities in Shoot and Root 

Soluble sugar and soluble protein significantly accumulated as decreasing mois-
ture content in both shoot and root of Giza 123 (Table 3(a)). This more obvious 
in case of soluble sugar in root than in shoot and in case of soluble protein in 
shoot than in root. The high value was recorded at 30% M. C. in both contents, 
the percent of increase at that level was 114%, 160%, 150%, and 200% compared 
with control pants. However amino acids become around the value of control in  

https://doi.org/10.4236/ajps.2019.104037


H. M. A. El-Samad et al. 
 

 

DOI: 10.4236/ajps.2019.104037 518 American Journal of Plant Sciences 
 

 
Figure 2. The response of Giza 123 (a), Giza 2000 (a), Giza 124 (b) and Giza 129 (b) barley genotypes to drought 
stress and interactive with SA treatments on pigment contents (mg g−1 d. m.). 

 
Table 2. The response of Giza 123, Giiza 2000, Giza 124 and Giza 129 barley genotypes to drought stress and interactive with SA 
treatments on water content in shoot and root at the final fruiting stage. 

Treat. 
M. C. 

Giza 123 Giza 2000 Giza 124 Giza 129 

Sh. % Ro. % Sh. % Ro. % Sh. % Ro. % Sh. % Ro. % 

90% 4.9 100 3.4 100 3.6 100 2.1 100 3.4 100 3.2 100 5.1 100 2.8 100 

70% 4.5 91 3.2 94.2 3.5 97.2 2.2 104 3.0 88.2 2.9 90.6 3.2 62.7 2.5 89.3 

50% 4.8 97.9 3.0 88.2 3.1 86.1 1.8 85.7 3.0 88.2 2.5 78.1 3.7 72.5 1.9 67.9 

30% 4.8 97.9 2.9 85.3 2.4 66.7 1.5 71.4 2.0 85.8 2.4 75 2.0 39.2 1.1 39.3 

90% + SA 5.1 104.8 4.4 120.9 7.2 200 2.4 114.3 3.1 91.2 3.8 118.8 4.9 96.1 2.9 103.6 

70% + SA 5.5 112.2 5.3 155.9 4.7 130.6 2.8 133.3 2.5 73.5 2.0 62.5 3.1 60.8 3.6 128.6 

50% + SA 4.4 89.8 4.9 144.1 5.0 138.9 2.8 133.3 3.4 100 4.3 134.4 4.0 78.4 2.5 89.3 

30% + SA 4.5 89.8 3.4 100 3.0 83.3 1.6 76.2 2.8 82.4 2.3 71.9 3.9 76.5 2.7 96.4 

L. S. D. 0.05% 2.1 1.1 1.0 1.9 1.5 1.8 1.6 1.1 

 
shoot at all moisture content levels, in root this effect was observed at 70% M. C. 
level, afterthat a smooth reduction was recorded in Giza 123 (Table 3(a)). There is 
a significant reduction in proline content in shoot, whereas a huge accumulation  
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Table 3. The response of Giza 123 (a), Giza 2000 (b), Giza 124 (c) and Giza 129 (d) barley genotypes drought stress and interactive 
with SA treatments on soluble sugar (mg g−1 d. m.), soluble protein (mg g−1 d. m.), amino acids (mg g−1 d. m.) and proline content 
(mg g−1 d. m.) of shoot and root at the final fruiting stage. 

(a) 

Treat. 
M. C. 

Soluble sugar Soluble protein Amino acids Proline 

Sh. % Ro. % Sh. % Ro. % Sh. % Ro. % Sh. % Ro. % 

90% 14.7 100 4.1 100 80 100 16.4 100 48.9 100 50.2 100 3.7 100 0.2 100 

70% 15.8 107 4.8 118 100 125 16.8 102 52.2 106 54.1 108 3.6 98 0.8 100 

50% 17.5 119 5.4 132 119 149 18.4 112 58.2 119 47.2 94 3.1 85 1.3 650 

30% 16.7 114 6.5 160 120 150 32.8 200 53.3 109 44.7 89 6.3 173 1.1 550 

90% + SA 16.1 109 5.9 144 100 125 208 127 54.1 111 52.6 105 3.4 93 0.7 350 

70% + SA 19.3 131 7.1 173 113 141 24.4 149 58.7 120 56 111 2.1 75 0.3 150 

50% + SA 22.1 150 6.6 161 129 161 28.3 172 63.8 131 57.9 115 2.8 76 0.4 200 

30% + SA 28.8 196 6.9 171 127 159 29.5 180 67.3 138 65.2 130 3.4 93 0.3 150 

L. S. D. 0.05% 0.91 0.77 0.79 0.64 0.18 0.18 0.15 0.05 

(b) 

Treat. 
M. C. 

Soluble sugar Soluble protein Amino acid Proline 

Sh. % Ro. % Sh. % Ro. % Sh. % Ro. % Sh. % Ro. % 

90% 18.5 100 7.6 100 83.2 100 18.8 100 47.2 100 51.4 100 3.9 100 0.19 100 

70% 19.1 103 7.6 102 92 110 23.6 126 42.8 90.5 48 93 1.9 49 0.35 148 

50% 20 107 7.8 103 118 142 34.4 183 52.0 110 50 97 2.2 56 0.58 284 

30% 22 117 8.4 111 125 150 38.8 206 66 140 49 95 2.9 74 0.54 305 

90% + SA 20 107 8.0 102 84 101 21.6 115 53.5 113 55 107 5.5 141 0.36 189 

70% + SA 23 123 9.0 114 99 119 24.4 130 57 120 58 112 5.0 129 0.43 226 

50% + SA 27 147 10 128 119 144 31.6 168 60 127 58.3 114 1.0 26 0.28 147 

30% + SA 31.4 170 8.4 112 128 154 30 158 67 142 61 118 1.4 37 0.45 237 

L. S. D. 0.05% 0.78 0.78 1.1 0.79 0.43 0.29 0.17 0.075 

(c) 

M. C. 
Soluble sugar Soluble  Protein Amino  acids Proline 

Sh. % Ro. % Sh. % Ro. % Sh. % Ro. % Sh. % Ro. % 

90% 23.1 100 9.9 100 64 100 13.6 100 40 100 36 100 1.9 100 2.5 100 

70% 16.1 70 8.3 84 94 147 15.2 112 40 100 39 108 1.0 53 2.2 87 

50% 16.1 70 7.7 78 98 153 19.6 144 40 100 36 100 1.3 68 2.0 81 

30% 14 60 8.5 86 119 186 36.0 265 46.3 117 29 80 1.6 84 2.3 92 

90% + SA 25 107 12 116 121 189 18 133 41 103 39 109 1.4 72 2.5 100 

70% + SA 22 94 11.4 115 148 232 18 129 43 109 39 108 0.82 43 2.2 88 

50% + SA 19 81 13.4 136 139 217 26 192 46 119 43 120 1.4 72 2.1 83 

30% + SA 18 78 13 130 137 214 34 253 49 124 43 121 1.5 77 3.7 151 

L. S. D. 0.05% 0.67 0.67 1.3 0.69 0.52 084 0.14 0.13 
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(d) 

M. C. 
Soluble sugar Soluble Protein Amino acid Proline 

Sh. % Ro. % Sh. % Ro. % Sh. % Ro. % Sh. % Ro. % 

90% 18 100 9 100 43 100 16 100 32 100 37 100 2.2 100 1.4 100 

70% 16 89 8.1 91 60 141 19 122 49 153 36 98 2.5 115 2.6 186 

50% 14 81 3.7 42 64 150 19 118 51 140 46 125 3.6 165 2.8 199 

30% 13 71 2.7 31 69 162 22 139 45 159 46 125 3.6 166 2.8 199 

90% + SA 17 99 9.2 102 62 146 18 114 37 117 45 121 2.7 123 0.47 33 

70% + SA 23 131 9.0 98 79 184 28 173 44 139 45 123 1.8 84 0.93 66 

50% + SA 20 111 4.3 48 81 190 24 150 48 150 46 125 4.0 175 0.62 44 

30% + SA 21 120 3.7 42 104 244 27 170 53 167 52 140 3.1 144 0.63 45 

L. S. D. 0.05% 0.49 0.45 0.73 0.60 0.51 0.57 0.13 0.11 

 
was induced in root Giza 123 plant reach 3-folds at 30% M. C. levels (Table 
3(a)). Decreasing moisture content induced no significant change in soluble 
sugar in Giza 2000 till 50% M. C. level and then a slight increase was recorded in 
both shoot and root (Table 3(b)). However a significant accumulation in soluble 
protein was detected in shoot and root. The maximum percent value was rec-
orded at 30% M. C. level reach a 150% and 206% compared with control plants. 
While decreasing moisture content induced an increasing effect in amino acids 
content in shoot while a slight decreasing effect was induced in root (Table 
3(b)). There is a two situation in case of proline content, a decreasing effect in 
shoot was induced and in root an increasing effect was exhibited (Table 3(b)). 
While a marked decreasing effect was occurred in soluble sugar in shoot and 
root of cv. Giza 124, an increasing effect was induced in soluble protein of both 
organs reach a high percent value at 30% M. C. level 186% and 265% (Table 
3(c)). Amino acids give the value of control up to 50% M. C. level, then a 
smooth increasing effect in shoot and a reduction in root was recorded (Table 
3(c)). A surprise position was detected in proline content decreasing effect was 
observed in shoot and root of Giza 124 plant (Table 3(c)). The data in Table 
3(d) revealed that soluble sugar in shoot and root of Giza 129 was significantly 
decreased as decreasing moisture content reach a low value at 30% M. C. level. 
This reduction was more pronounced in root than shoot organ. Soluble protein 
and amino acids were markedly elevated with decreasing moisture content. The 
percent of increase at 30% M. C. level was 162%, 139%, 159% and 125% of both 
content in shoot and root compared with control plants control. Proline content 
was markedly accumulated as decreasing soil moisture content in shoot and root 
of Giza 129, reach a high value at 30% M. C. level 2-folds compared with con-
trol plants (Table 3(d)). K+, Ca++, and Mg++ were generally remain unchanged 
in shoot and root of both barley Giza 123 and Giza 2000 (Figure 3(a)). Except 
of this trend root K++ and Ca++ in root of Giza 2000 and Ca++ in both organs of 
Giza 123 tended to increase as decreasing M. C. level. K+ content tended to 
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decrease in both shoot and root of Giza 124 (Figure 3(b)). While Ca++ content 
decreased in shoot, increase in root of Giza 124, moreover Mg++ do not change 
with increasing drought stress in shoot while tended to increase in root 
(Figure 3(b)). In Giza 129 K+ content was lowered as decreasing M. C. level 
while Ca++ was increased in shoot, in root this content remain unchanged 
(Figure 3(b)). Mg++ content tended to decreased in shoot while tended to in-
crease in root. 

3.3. Metabolities in Spikes 

Soluble sugar, soluble protein, amino acids and proline tended to smoothly in-
crease especially at 50% and 70% M. C. in spikes of Giza 123 (Table 4(a)). In 
spikes of Giza 2000 drought stress increased soluble sugar and soluble protein 
while amino acids tended to exhibit an irregular pattern and a reduction in pro-
line content was recorded (Table 4(a)). A slight accumulation in soluble sugar, 
soluble protein and amino acids in spikes of Giza 124 (Table 4(b)) was induced. 
Moreover a hug increases in soluble sugar and proline content was recorded in 
spikes of Giza 129 (Table 4(b)). The activation was reached 2.5-folds in soluble 
sugar and 8-folds in proline content in spikes of Giza 129 (Table 4(b)). On the 
other side a small increase in soluble protein and amino acids in spikes of Giza 
124 was induced. In spikes of Giza 123 both K+ and Mg++ were markedly in-
creased as increasing drought stress, reached 2-folds at 50% M. C. level in case of 
K+ and at 30% M. C. level in case of Mg++ (Table 5(a)). While Ca++ increased at 
70% M. C., decreased at 50% and 30% M. C. levels compared with control plants 
(Table 5(a)). Ca++ and Mg++ were significantly increased in Giza 2000 especially 
at 70% and 50% M. C. and gave the same values, however K+ was smoothly de-
creased at 70% and 50% M. C. levels and dramatically reduced at 30% M. C. level 
(Table 4(a)). Drought stress induced reduction in K+, Ca++ in both Giza 124 and 
Giza 129 and Mg++ in Giza 124 especially at lower moisture content (50% and 
30% M. C.) (Table 5(b)). Except of this trend Mg++ in Giza 129 significantly 
increased compared with control plant (Table 5(b)). Osmotic pressure was 
increased in shoot, root and spike of four barley tested genotypes with varied 
degree, moreover root organ was the lowest values than shoot and spike organs 
(Figures 4(a)-(d)). The percent of increase at 30% M. C. was 132.6%, 117.7% 
and 115.5% in shoot, root and spike of Giza 123, in Giza 2000 it was 136.4%, 
126.3%, 127.8%, in Giza 124 it was 134.5%, 105.5%, 106.3% and finally in Giza 
129 this percent was 135.2%, 113.0% and 139.9% compared with control 
plants. 

3.4. SA Application 

SA application was markedly enhanced the production of fresh, dry mater, 
length of shoot and root with varied degree according to each tested barley ge-
notype (Tables 1(a)-(d)). The medium percent of different moisture content le-
vels in fresh, dry matter and length of shoot and root after spraying with 0.5 mM 
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Figure 3. The response of Giza 123 (a), Giza 2000 (b), Giza 124 (c) and Giza 129 (d) 

barley genotypes to drought stress and interactive with SA treatments on K+, Ca++ and 

Mg++ contents (mg g−1 d. m.) of shoot and root at the final fruiting stage. 
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Table 4. The response of Giza 123 (a), Giza 2000 (a), Giza 124 (b) and Giza 129 (b) barley genotypes to drought stress and interac-
tive with SA treatments on soluble sugar (mg g−1 d. m.), soluble protein (mg g−1 d. m.), amino acids (mg g−1 d. m.) and proline 
content (mg g−1 d. m.), in spikes at the final fruiting stage. 

(a) 
 Giza 123 Giza. 2000 

Treat. M. C. 
Sol. 
sug. 

% 
Sol. 
prot. 

% Am. acid % Prol. % 
Sol. 
sug.  

% 
Sol. 
prot. 

% 
Am. 
acid 

% Prol. % 

Control 

90% 52.5 100 119 100 42.9 100 0.7 100 48 100 107 100 48.2 100 0.69 100 

70% 63* 119.1 125** 104 40.2** 93.2 0.65 93 99.5** 207 114** 107 46.9** 97 0.25** 36 

50% 80** 152 134** 112 50** 115 1.4** 200 61** 127 127** 119 41.4** 86 0.25 36 

30% 60** 115 139** 116 50** 115 0.9** 129 85.5** 178 127** 119 49.2** 102 0.57** 83 

 

90% + 
SA 

62.5** 119 103** 86.2 46.9** 109 0.3** 43 55 115 108 101 50.1** 104 0.53** 77 

70% + 
SA 

82** 156 128** 107 47.1** 110 0.4** 57 62** 129 102** 95 52** 108 0.34** 49 

50% + 
SA 

46.5 89 130** 109 51.1** 119 0.7 100 85** 177 102** 95 50.3** 104 0.2** 29 

30% + 
SA 

47.5 91 157** 132 42.3** 99 0.5** 71 105** 219 117** 109 75** 155 0.54** 78 

L. S. D.  0.05 1.0 1.1 0.24 0.08 0.76 1.6 0.58 0.08 

 (c) 

  Giza 124 Giza 129 

Treat. M. C. 
Sol. 
sug. 

% Sol. prot. % 
Am. 
acid 

% Prol. % Sol. sug. % 
Sol. 
prot. 

% 
Am. 
acid 

% Prol. % 

Control 

90% 35 100 119 100 33.9 100 1.25 100 22.5 100 101 100 43 100 0.62 100 

70% 57** 163 121 102 31** 91 0.56** 45 28.5** 127 107** 106 43 100 0.99** 160 

50% 40** 114 134** 112 36** 106 0.91** 73 56.5** 251 115** 114 46** 108 3.5** 564 

30% 31 89 135** 113 39** 115 0.83** 66 63.5** 282 117** 116 51** 120 5.4** 871 

 

90% + 
SA 

38 109 124** 104 38** 111 0.44** 35 49.5** 220 109** 108 49** 115 0.68** 110 

70% + 
SA 

59** 167 101** 85 42** 124 0.84** 67 67.5** 330 137** 137 45** 106 1.9** 306 

50% + 
SA 

66** 168 116** 97 39** 114 0.57** 46 68.5** 304 112** 111 36** 84 1.7** 274 

30% + 
SA 

77** 220 106** 89 37** 108 0.84** 67 71** 315 140** 140 58** 131 2.4** 435 

L. S. D. 
0.05% 

 0.35 1.5 0.71 0.09 0.36 1.5 0.47 0.08 

 
SA was 109.5%, 132.3%, 129.9%, 120.3%, 96.3%, 97.3%, in Giza 123. In Giza 
2000 this percent of increase was 142.5, 136.7, 112.9%, 103.9%, 90.3%, 85.6%. 
However in Giza 124 it was 101.6%, 100.7%, 102.4%, 99.9%, 94.4%, 105.5%, and 
in Giza 129 this increasing percent was 99.2%, 87.9%, 102.2%, 80.5%, 121.1%,  
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Table 5. The response of cv. Giza 123 (a), cv. 2000 (a), cv. Giza 124 (b) and cv. Giza 129 (b) barley genotypes to drought stress and 
interactive with SA treatments on K+, Ca++ and Mg++ (mg g−1 d. m.), in spikes at the final fruiting stage. 

(a) 

M. C. 
Giza 123 Giza 2000 

K+. % Ca++ % Mg++ % K++. % Ca++ % Mg ++ % 

90% 0.8 100 3.8 100 1.4 100 1.33 100 1.5 100 2.7 100 

70% 1.1** 141 6** 160 1.8 133 1.3 98 3** 200 3.6** 133 

50% 1.8** 221 3** 80 1.8 133 1.3 96 3** 200 3.6** 133 

30% 0.73 91 3** 80 2.7** 200 1** 75 1.5 100 2.7 100 

90% + SA 1.8** 229 6** 160 4.5** 333 1.7** 127 2.3** 150 2.7 100 

70% + SA 1.9** 246 4.5** 120 2.7** 290 1.4 108 1.5 100 2.7 100 

50% + SA 2.7** 334 4.5** 120 1.8 133 1.3 98 3** 200 2.7 100 

30% + SA 0.8 100 2.3** 60 1.3 132 1.1 85 4.5** 300 2.7 100 

L.S.D. 0.05% 0.22 0.41 0.41 0.24 0.38 0.55 

(b) 

M. C. 
Giza 124 Giza 129 

K+. % Ca++ % Mg++ % K++ % Ca++ % Mg++ % 

90% 1.6 100 4.5 100 2.7 100 2.0 100 3.8 100 1.4 100 

70% 2** 125 4..5 100 2.7 100 1.2** 74 3** 80 1.8** 133 

50% 1.3 83 3** 67 1.8** 67 1.1** 56 3** 80 3.6** 267 

30% 1.2** 72 1.5** 33 0.9** 33 0.53** 26 2.3** 60 3.2** 233 

90% + SA 1.7 104 1.5** 33 1.8** 67 0.67** 33 1.5** 40 2.7** 200 

70% + SA 2** 125 1.5** 17 0.9** 33 0.6** 29 4.5** 120 2.7** 200 

50% + SA 1.3 79 0.75** 17 1..8** 67 0.57** 28 3** 80 1.8 133 

30% + SA 1.1** 67 0.75** 17 0.9** 33 0.47** 23 1.5** 40 0.9** 67 

L. S. D. 0.05% 0.26 0.29 0.27 0.32 0.29 0.27 

 
114.9% compared with unsprayed barley plants. SA increased water content and 
leaf area at all tested barley cultivars, this effect was more pronounced in Giza 
129, Giza 2000, and Giza 124 than Giza 123 especially in leaf area parameter 
(Table 2 and Figure 1). SA application enhanced the synthesis of photosynthetic 
pigments in four barley genotypes (Figure 2(a) & Figure 2(b)). This activation 
effect was more obvious in case of Chl. a in Giza 123 and Giza 2000 (Figure 
2(a)) and in case of production Chl. a and Chl.b in both Giza 124 and Giza 129 
(Figure 2(b)). Spraying vegetative parts with SA was markedly increased the so-
luble sugar, soluble protein and amino acids of both shoot and root of four bar-
ley cultivars. The medium percent of increase of the previous parameters in 
plants spraying with SA in Giza 123 was 146.5%, 162.3%, 146.5%, 157%, 125%, 
115.3%, was in shoot and root (Table 3(a)). This value in Giza 2000 was 136.8%, 
114%, 129.5%, 142.8%, 125.5%, 112.8%, (Table 3(b)). In Giza124 it was 90%, 
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124.5%, 213%, 176.8%, 113.8%, 114.5% (Table 3(c)). In Giza 129 it was 115.3%, 
72.5%, 191%, 151.8%, 143.3%, 127.3% compared with control plants (Table 
3(d)). On the other side SA application lowered the accumulation of proline in 
shoot and root of four barley genotypes (Tables 3(a)-(d)). SA application in-
duced unchanged in soluble sugar, a slight accumulation in soluble protein and 
amino acids, while a reduction in proline in spikes of Giza 123 was recorded 
(Table 4(a)). Activation in the accumulation of soluble sugar and amino acids 
especially at 30% M. C. and a reduction in proline was recorded in spikes of Giza 
2000 (Table 4(a)). SA treatment increased soluble sugar, unchanged in amino 
acids content while a reduction was induced in proline in spikes of Giza 124 
(Table 4(b)). SA activated the accumulation of following contents, soluble sugar 
reached 3-folds, protein and proline this with unchanged effet in amino acids as 
compared with 90% M. C. (Table 4(b)). While spraying vegetative parts with SA 
induced no significant change in K+, Ca++, and Mg++ in shoot and root of Giza 
123. While significantly increased K+, Ca++ and Mg++ in shoot and root of Giza 
2000 was reorded (Table 5(a) & Table 5(b)). SA application enhanced accumu-
lation of K+, Ca++ in both shoot and root of Giza 124 and K+, Ca++ and Mg++ in 
Giza 129. SA increased K+ reached 3-folds at 50% M. C. level. Ca++ reached 
2-folds at 30% M. C. and Mg++ in spikes of Giza 123 (Table 5(a)). SA application 
resulted unchanged in K+, Ca++ and Mg++ in both Giza 124 and Giza 129 (Table 
5(b)). Except of this position Mg++ increased as decreasing M. C. in spikes of 
Giza 129, the high value was recorded at 30% M. C. (Table 5(b)). SA treatment 
was activated the value of OP in four tested barley genotypes, this effect was 
more pronounced in shoot and spike of Giza 129 than other organs of other ge-
notypes (Figures 4(a)-(d)). The percent of activation at lowest value of moisture 
content (30% M. C.) was 144.2%, 137.9%, 119.4% in shoot, root and spike of Gi-
za 123. In Giza 2000, it was 144.7%, 170.6%, 146.3%, in Giza 124 it was 151.4%, 
131.2%, 113.4 and finally in Giza 129 this percent was 177.9%, 125.3% and 
156.9% as compared with control plants. 

4. Discussion 

Previous data can be demonstrated that four barley genotypes varied in their 
drought tolerance according to their efficiency and tested organs. It can be ob-
served that fresh, dry matter and length of shoot and root decreased as decreas-
ing M. C., the percent of reduction at 30% M. C. level as follows 96.9%, 96%, 
84%, 72.4%, 80%, 80%, in Giza 123. In Giza 2000, it was 69.4%, 81.7%, 66.7%, 
52.0%, 67.2%, 68.2%, in Giza 124 it was 63.9%, 63.4%,43.7%, 66.6%, 65.4%, 68% 
and finally in Giza 129 this percent of reduction was 53.2%, 51.4%, 39%, 34.7, 
51.9%, 48.4% compared with control plants. This supported by spike production 
the net result of cultivation, the percent of dry matter and length of spike was 
52%, 79.4%, 41.3%, 63.9%, 31.6%, 61.2%, 11.7%, 48.7% in Giza 123, Giza 2000, 
Giza 124 and Giza 129 respectively. Also, leaf area and pigment production were 
markedly decreased according to genotype tolerance, it run parallel with fresh  
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Figure 4. The response of Giza 123 (a), Giza 2000 (b), Giza 123 (c) and Giza 129 (d) bar-
ley genotypes to drought stress and interactive with SA treatments on osmotic pressure 
(mOsmo/H2O) in shoot, root and spike of at the final fruiting stage. 

 
and dry matter of shoot, root and spike. The percent of reduction in leaf area at 
30% M. C. level was 81.8%, 60.7%, 54.9% and 53.3% in four tested barley geno-
types respectively. The differences in the growth criteria among species and cul-
tivars might be used as a suitable selection criterion for the drought tolerance 
of these species and genotype. The inhibitory effect of drought on growth para-
meters could be attributed to the osmotic effect of water stress [29]. Also, the 
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reduction of yield may be ascribed to the harmful effect of soil moisture stress 
and nutrient balance disorder in root media [30], or reduced rate of new cell 
production may be make additional contribution to the inhibition of growth 
[31]. The reduction in growth criteria due to drought stress might be related to 
disturbance of water flow from root to shoot [32], decrease in water potential of 
cell sap [33], or inhibition of cell division [34]. Moreover, the percent of reduc-
tion in Chl. a, Chl. b and carotenoids was 80.3%, 98.9%, 67.4%, 87.6%, 58.3%, 
97.1%, 54.3%, 50%, 88.6%, 54.1%, 38.9% and 74.1% in four ranking barley geno-
types. So lowering in green area of tested genotypes served in reduction in the 
efficiency of photosynthetic system which directly effected on carbohydrate 
production [35]. Actually, this indicated that Giza 123 was the superior in its 
drought tolerance and Giza 129 was the interior and both Giza 2000 and Giza 
124 were the intermediated between them. This coincided with increasing in so-
luble sugar and soluble protein content of shoot, root and spike, shoot Ca++, K+ 
and Mg++ in spike of Giza 123. In Giza 2000, this was related with a huge accu-
mulation of soluble sugar in spike, soluble protein of three tested organs, shoot 
amino acids, Ca++ and Mg++ in spike. Whereas drought stress increased soluble 
sugar of spike, soluble protein in shoot, root and spike, Ca++ and Mg++ in root 
organ of Giza 124 while in Giza 129 the highest sensitive genotype decreasing M. 
C. increased soluble sugar of spike, soluble protein and amino acids in three 
tested organs, shoot Ca++, root Mg++was recorded i.e. each genotype try to over-
come and facing drought stress. The previous observation was induced as a re-
sult of increasing OP in shoot, root and spike of four barley genotypes, the per-
cent of increasing in osmotic pressure at 30% moisture content was 132.6%, 
117.5%, and 115.4% in Giza 123, in Giza 2000 it was 135.8%, 126.3% and 
127.8%, in Giza 124 was 134.4%, 117.6% and 129.3%, finally in Giza 129 it was 
135.2%, 113.0% and 135.1% compared with undroughted plants respectively. 
This mean that the medium percent of increasing in OP value was more or less 
similar in shoot of four barley genotypes was about 34.5% over the control plants 
100% and also in root organ was about 18.6%. However in spike this situation 
was different the most barley drought tolerant Giza 123 was the lower in percent 
of increasing OP value was 15.4% over the control value 100% and the most 
drought sensitive was the higher increasing percent value was 35.1% in Giza 129 
genotype. It is interesting to note that the percent of increasing value in OP of 
Giza 2000 and Giza 124 was respectively intermediated 27.8% and 29.3% over 
the control plants [36]. Osakabe et al. (2017) [37] showed that cell growth caused 
by cell expansion is regulated primarily by turgor pressure, which is the physical 
force against the cell wall, and is maintained by osmotic regulation via osmoti-
cally active substances, such as potassium ions (K+) as in Giza 123, sugars as in 
spike of four tested genotypes, protein as in Giza 123, Giza 2000 and Giza 129 
and amino acids as in shoot of Giza 2000 and Giza 129 genotype. K+ is an essen-
tial element in plant growth, and K+ uptake and efflux affect plant productivity 
and control cell water potential and turgor in osmotic regulation. K+ affects os-
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motic pressure in the root xylem (root pressure), which drives long-distance sap 
flow from roots to shoots [38]. During water deficit stress, osmotic stress sensing 
and signaling are pivotal to plant water status and lead to rapid changes in gene 
expression [39] [40]. Osmotic adjustment helps to maintain cell turgor, which 
can allow cell enlargement and plant growth during water stress; and it can allow 
stomata to remain at least partially open and CO2 assimilation to continue at 
water potentials that would be otherwise inhibitory [41] (Alves and Setter, 2004). 
Supported the previous view that drought stress is among the factors most li-
miting to plant productivity [35] [42] [43] [44] [45] [46]. Plants exposed to 
drought stress adapt their metabolism in order to cope with the changed envi-
ronment. Survival under these stressful conditions depends on the plant’s ability 
to perceive the stimulus, generate and transmit signals and instigate biochemical 
changes that adjust the metabolism accordingly [47] [48] [49] [50] [51]. One 
distinctive feature of most plants growing in stress environments is the accumu-
lation of proline [52] [53] and it has been inferred that there may be a relation-
ship between cellular proline level and cell turgidity via osmotic adjustment [54] 
[55] [56] [57] [58]. From our results it can be confirmed that root is more sensi-
tive than shoot organ in four tested barley genotypes. This related with the high-
er accumulation of different metabolites as soluble sugar and proline content 
which the later reached 5-folds than shoot in Giza 123. In root of Giza 2000 so-
luble protein and proline which later also reached 3-folds compared with con-
trol. Whereas in root of Giza 124 a higher accumulation of soluble protein espe-
cially at higher drought stress (30% M. C.) was recorded. In Giza 129 a higher 
accumulation of proline in root than in shoot, these observation was coincided 
with lower values in water content and OP in root compared with shoot in four 
tested cultivars. This position throw attention that root sensitivity was induced 
as a resulted of increase the previous chemical constituents to give chance in in-
creasing OP and gain the requirement of water content and translocation from 
root to aerial portion for metabolism. Also root sensitivity may be due to, it was 
considered as the first site of plant in facing water deficit injury than other plant 
parts [56] [57] [58]. The strategies that plants use to defense drought position 
involve several mechanisms of stress tolerance, which vary according to the ge-
notype [59] [60] [61]. Many genes involved in stress reactions reveal a complex 
network of responses required from the perception and recognition of the sig-
nals during stress to the final activation of certain genes [62] [63] [64]. Exogen-
ously applications of SA helped to increase plant growth significantly in drought 
conditions [10] [47] [65] [66] [67] [68] [69]. Exogenously applications of SA 
strongly inhibited Na+, K+ and Cl−and organic solute accumulations (GB and 
TSC) but stimulated N and RWC [69]. Najafian et al. (2009) [70] showed that SA 
treated plants had a higher shoot and root dry matter, electrolyte leakage, pho-
tosynthetic rates, mesophyll efficiency and water use efficiency in compared to 
control plants when exposed to salt stress. Transpiration rates and stomatal 
conductance were also significantly iesser in SA treated plants under saline stress 
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conditions. Foliar application of SA (1.0 μM) strengthened antioxidant defense 
system in drought-tolerant Z. mays cultivar to a great extent [71] [72]. Potential 
involvement of SA in the 76 identified proteins was reported in drought-exposed 
T. aestivum [14]. Theses identified proteins were advocated to perform major 
physiological processes such as photosynthesis, carbohydrate and protein meta-
bolism, defense energy production, signal transduction, and toxin metabolism. 
Some of the recent studies have shown that SA played an important role by re-
gulating many metabolic mechanisms. Marcińska et al. (2013) and Nazarli et al., 
(2014) [73] [74] showed that treatments plants with SA, MeJA and ABA were 
also effective in enhancing the antioxidant concentrations of proline and soluble 
sugars. The production of these antioxidants could have been part of a defense 
system against drought injury, reducing MDA and ELI and maintaining mem-
brane stability. Therefore, this work try to throw attentions on mechanisms of 
drought tolerance of four barley genotypes and the potential role of SA on this 
strategy. 
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