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Abstract 

In this paper, we establish the existence of multiple solutions to a class of 
Kirchhoff type equations involving critical exponent, concave term and criti-
cal growth. Our main tools are the Nehari manifold and mountain pass theo-
rem. 
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1. Introduction 

In this paper, we consider the multiplicity results of nontrivial solutions of the 
following Kirchhoff problem 

2 2
, in ,

0 on

bp p q
a pL u x u u k u u

u

λ
∗ ∗− − − = + Ω


= ∂Ω

             (1.1) 

where ( ) ( )2
, : dap p ap p

a pL v M x v x div x v v− − −

Ω
= − ∇ ∇ ∇∫ , Ω  is a smooth 

bounded domain of N , 1 p N< < , 0 N pa
p
−

< ≤ , Npp
N dp

∗ =
−

 with 

1d a b= + − , 1a b a≤ < + , 1 2q< < , λ  is a real parameter,  

( ) ( )11, p
ak C

−
∈ Ω  with ( ) 11, p

a

−
  is the topological dual of ( )1, p

a Ω  
satisfying suitable conditions and { }: 0M + +→   continuous function. 

The original one-dimensional Kirchhoff equation was introduced by 
Kirchhoff [1] in 1883 as an generalization of the well-known d’Alembert’s wave 
equation: 
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22 2

0
2 20

d ; .
2
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h L xt x

 ∂ ∂ ∂
− + =  ∂∂ ∂ 

∫             (1.1) 

His model takes into account the changes in length of the strings produced by 
transverse vibrations. Here, L is the length of the string; h is the area of the cross 
section; E is the Young modulus of the material;   is the mass density and 0P  
is the initial tension. 

In recent years, the existence and multiplicity of solutions to the nonlocal 
problem 

( ) ( )2 d ; in ,

0 on

a b u x u g x u

u
Ω

− + ∇ ∆ = Ω

 = ∂Ω

∫              (1.2) 

has been studied by various researchers and many interesting and important 
results can be found. In [1], it was pointed out that the problem (1.2) models 
several physical systems, where u describes a process which depends on the 
average of it self. Nonlocal effect also finds its applications in biological systems. 
The movement, modeled by the integral term, is assumed to be dependent on 
the energy of the entire system with u being its population density. Alternatively, 
the movement of a particular species may be subject to the total population 
density within the domain (for instance, the spreading of bacteria) which gives 
rise to equations of the type  

( )d .tu m u x u h
Ω

− ∆ =∫                     (1.2) 

For the multiplicity, certain chemical reactions in tubular reactors can be 
mathematically described by a nonlinear two-point boundary-value problem and 
one is interested if multiple steady-states exist, for a recent treatment of chemical 
reactor theory and multiple solutions and the references therein. Bonanno in [2] 
established the existence of two intervals of positive real parameters for which 
the functional has three critical points whose norms are uniformly bounded in 
respect to belonging to one of the two intervals and he obtained multiplicity 
results for a two point boundary-value problem. 

For instance, positive solutions could be obtained in [3] [4] [5]. Especially, 
Chen et al. [6] discussed a Kirchhoff type problem when  

( ) ( ) ( ) 22; qpg x u f x u u g x u uλ −−= +  

where ( )1 2 2 2 2q p N N∗< < < < = −  if 3N ≥ , 2∗ = ∞  if 1,2N = , ( )f x  
and ( )g x  with some proper conditions are sign-changing weight functions. 
And they have obtained the existence of two positive solutions if  

( )04,0p aλ λ> < < . 
Researchers, such as Mao and Zhang [7], Mao and Luan [8], found 

sign-changing solutions. As for in nitely many solutions, we refer readers to [8] 
[9]. He and Zou [9] considered the class of Kirchhoff type problem when 
( ) ( ); ;g x u f x uλ=  with some conditions and proved a sequence of i.e. positive 

weak solutions tending to zero in ( )L∞ Ω . 
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In the case of a bounded domain of N  with 3N ≥ , Tarantello [10] proved, 
under a suitable condition on f, the existence of at least two solutions to (1.2) for  

0, 1a b= =  and ( )
4

2; Ng x u u u f−= + . 

Before formulating our results, we give some definitions and notation. 
The space ( )1, p

a Ω  is equiped with the norm 

( )1d
pap pu x v x−

Ω
= ∇∫  

wich equivalent to the norm 

( )1, d ,
rr

ru x u xα

α

−

Ω
= ∫  

Let ,a pS  be the best constant of the weighted Caffarelli-Kohn-Nirenberg 
type, 

( )
,

d

d

ap p

a p p p
bp p

x v x
S

x u x
∗

∗ ∗

−

Ω

−

Ω

∇
≤ ∫

∫
                (2.1) 

Since our approach is variational, we define the functional I on ( )1, p
a Ω  by 

( ) ( ) ( ) ( ) ( )ˆ1 1 d d ,p bp p qI u p M u p x u x q k u xλ
∗ ∗−∗

Ω Ω
= − −∫ ∫    (2.2) 

A point ( )1, p
au∈ Ω  is a weak solution of the Equation (1.1) if it is the 

critical point of the functional I. Generally speaking, a function u is called a 
solution of (1.1) if ( )1, p

au∈ Ω  and for all ( )1, p
av∈ Ω  it holds 

( ) 2 2 1d d d 0.p ap p bp p qM u x u u v x x u uv x k u uv xλ
∗ ∗− − − − −

Ω Ω Ω
∇ ∇ ∇ − − =∫ ∫ ∫ (1.3) 

with M is incresing and verifying  

( )
( )
( )

0
0

0 0

if 0
0

if

M t t t
M t

M t t t

≤ ≤< = 
≥

 

Throughout this work, we consider the following assumption: 
(K) There exist 0 0ν >  and 0 0δ >  such that ( ) 0k x ν≥ , for all x in 
( )00, 2B δ . 
Here, ( ),B a r  denotes the ball centered at a with radius r. 
In our work, we research the critical points as the minimizers of the energy 

functional associated to the problem (1.1) on the constraint defined by the 
Nehari manifold, which are solutions of our system. 

Let 0Λ  be positive number such thatwhere  

( )
( )

( )
1

1
0 0 , .

p q
p p q

p q p q p p pa p
p p p q M k S
p q p q

∗
∗

∗

 −  −∗  −  −− −
∗ ∗ ∞

  − −
Λ =   − −  

       (1.4) 

Now we can state our main results. 
Theorem 1. Assume that 1 2q< < , and (K) satisfied and λ  verifying 

00 λ< < Λ , then the problem (1.1) has at least one positive solution.  
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Theorem 2. In addition to the assumptions of the Theorem 1, if (K) hold and 

0
pM
p∗>  then there exists 1 0Λ >  such that for all λ  verifying  

( )0 10 min ,λ< < Λ Λ  the problem (1.1) has at least two positive solutions.  

Theorem 3. In addition to the assumptions of the Theorem 2, there exists 

2 0Λ >  such that for all λ  verifying ( )1 20 min ,λ< < Λ Λ , then the problem 
(1.1) has at least two positive solution and two opposite solutions.  

This paper is organized as follows. In Section 2, we give some preliminaries. 
Section 3 and 4 are devoted to the proofs of Theorems 1 and 2. In the last section, 
we prove the Theorem 3. 

2. Preliminaries 

Definition 1. Let c∈ , E a Banach space and ( )1 ,I C E∈  . 
1) ( )n n

u  is a Palais-Smale sequence at level c ( in short ( )cPS ) in E for I if 

( ) ( ) ( ) ( )1 and 1 ,n n n nI u c o I u o′= + =  

where ( )1no  tends to 0 as n goes at infinity. 
2) We say that I satisfies the ( )cPS  condition if any ( )cPS  sequence in E 

for I has a convergent subsequence.  
Lemma 1. [11] Let X Banach space, and ( )1 ,I C X∈   verifying the 

Palais-Smale condition. Suppose that ( )0 0I =  and that: 
1) there exist 0R > , 0r >  such that if u R= , then ( )J u r≥ ; 
2) there exist ( )0u X∈  such that 0u R>  and ( )0 0I u ≤ ; 
Let 

[ ]
( )( )( )

0,1
inf max

t
c I t

γ
γ

∈Γ ∈
=  

where 

[ ]( ) ( ) ( ){ }00,1 ; such that 0 0 et 1 ,C X uγ γ γΓ = ∈ = =  

then c is critical value of I such that c r≥ .  

Nehari Manifold [12] 

It is well known that the functional I is of class 1C  in ( )1, p
a Ω  and the 

solutions of (1.1) are the critical points of I which is not bounded below on 
( )1, p

a Ω . Consider the lowing Nehari manifold 

( ) { } ( ){ }1, \ 0 : , 0 ,p
au I u u′= ∈ Ω =   

Thus, u∈  if and only if 

( ) d d d 0p ap p bp p qM u x u x x u x k u xλ
∗ ∗− −

Ω Ω Ω
∇ − − =∫ ∫ ∫      (2.3) 

Define 

( ) ( ) , .u I u uφ ′=  
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Then, for u∈  

( ) ( )

( )( ) ( )
( )( ) ( )

, d d

d

d .

p bp p q

p bp p

p q

u u p M u p x u x q k u x

p q M u p q x u x

p p M u p q k u x

φ λ

λ

∗ ∗

∗ ∗

−∗

Ω Ω

−∗

Ω

∗ ∗

Ω

′ = − −

= − − −

= − + −

∫ ∫

∫
∫

      (2.4) 

Now, we split   in three parts: 

( ){ }: , 0u u uφ+ ′= ∈ >   

( ){ }0 : , 0u u uφ′= ∈ =   

( ){ }: , 0 .u u uφ− ′= ∈ <   

Note that   contains every nontrivial solution of the problem (1.1). 
Moreover, we have the following results. 

Lemma 2. I is coercive and bounded from below on  .  
Proof. If u∈ , then by (2.3) and the Hölder inequality, we deduce that 

( ) ( ) ( ) ( ) ( )

( )
1 1 d d

1 1 1 1 .

p bp p q

p q

I u p M u p x u x q k u x

M u u k
p qp p

λ

λ

∗ ∗−∗

Ω Ω

∗ ∗ ∞

= − −

   
≥ − − −   
   

∫ ∫
   (2.1) 

Thus, I is coercive and bounded from below on  .  
We have the following results. 
Lemma 3. Suppose that 0u  is a local minimizer for I on  . Then, if 

0
0u ∉ , 0u  is a critical point of I.  
Proof. If 0u  is a local minimizer for I on  , then 0u  is a solution of the 

optimization problem  

( ){ }
( )

/ 0
min .

u u
I u

φ =
 

Hence, there exists a Lagrange multipliers θ ∈  such that 

( ) ( ) 1
0 0 inI u uθφ −′ ′=   

Thus, 

( ) ( )0 0 0 0, , .I u u u uθ φ′ ′=  

But ( )0 0, 0u uφ′ ≠ , since 0
0u ∉ . Hence 0θ = . This completes the 

proof.  
Lemma 4. There exists a positive number 0Λ  such that, for all ( )00,λ ∈ Λ  

we have 0 = ∅ .  
Proof. Let us reason by contradiction. 
Suppose 0 ≠ ∅  such that 00 λ< < Λ . Moreover, by the Hölder inequality 

and the Sobolev embedding theorem, we obtain 

( ) ( )
1

,

pp p
p p pa p

p qu S
p q

∗
∗

∗
−

−
∗

 −
≥  − 

                (2.5) 
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and 
1

1 1

0 ,
p q

p q p qp qu M k
p p

λ
−∗ −
− −

∗ ∞

 −
≤  − 

               (2.6) 

From (2.5) and (2.6), we obtain 0λ ≥ Λ , which contradicts an hypothesis.  
Thus + −=    . Define 

( ) ( ) ( ): inf , : inf and : inf .
u u u

c I u c I u c I u
+ −

+ −

∈ ∈ ∈
= = =

  
 

For the sequel, we need the following Lemma. 

Lemma 5. If 0
pM
p∗>  then, 

1) For all λ  such that 00 λ< < Λ , one has 0c c+≤ < . 
2) There exists 1 0Λ >  such that for all 10 λ< < Λ , one has 0 .c C− >  
Proof.  
1) Let u +∈ . By (2.4), we have 

dp bp pp q u x u x
p q

∗ ∗−

∗ Ω

 −
> − 
∫  

and so 

( ) 0

0

1 1 1 1

1 .

p bp p

p

I u M u x u
p q q p

Mp q u
q pp

∗ ∗−

∗

∗

  
= − + −  
   

  −
< −  
   

          (2.2) 

If 0
pM
p∗> , we conclude that 0c c+≤ < . 

2) Let u −∈ . By (2.4) and the Hölder inequality we get  

( ) ( )
( )

( )0 ,
1 1 1 1 .

p qp p p q
p p q

p pa p
p qI u M S k u

p qp p q p
λ

∗
∗

∗

 −  − − 
−

∗ ∗ ∗ ∞

 
     − 

≥ − − −      −      
 

 

Thus, for all λ  such that  

( )
( )

( ) 1
1 0 ,0 ,

p qp p p q
p p

p p pa p
q p p p qM S k
p p q p q

λ
∗

∗
∗

 −  −∗  −  −
−

∗ ∗ ∞

  − −
< < Λ =   − −  

 

we have ( ) 0I u C≥ .  
For each ( ) { }1, \ 0p

au∈ Ω , we write 

( )

( )1

0

max

1
: 0.

1 d

p p
p

m
bp p

p M u
q

t t u
p x u x
q

∗

∗ ∗

−

∗
−

Ω

  
−  

  = = >  
−  

   
∫

 

Lemma 6. Let λ  real parameters such that 00 λ< < Λ . For each 
( )1, p

au∈ Ω , there exist unique t+  and t−  such that 0 mt t t+ −< < < , 
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( )t u+ +∈ , ( )t u− −∈ , 

( ) ( ) ( ) ( )
0 0
inf and sup .

mt t t
I t u I tu I t u I tu+ −

≤ ≤ ≥
= =  

Proof. With minor modifications, we refer to [13].  
Proposition 1. (see [13]) 
1) For all λ  such that 00 λ< < Λ , there exists a ( )cPS +  sequence in + . 
2) For all λ  such that 10 λ< < Λ , there exists a a ( )cPS −  sequence in 
− .  

3. Proof of Theorem 1 

Now, taking as a starting point the work of Tarantello [10], we establish the 
existence of a local minimum for I on + . 

Proposition 2. For all λ  such that 00 λ< < Λ , the functional I has a 
minimizer 0u+ +∈  and it satisfies: 

1) ( )0I u c c+ += = , 
2) ( )0u+  is a nontrivial solution of (1.1).  
Proof. If 00 λ< < Λ , then by Proposition 1 (1) there exists a ( )n n

u  ( )cPS +  
sequence in + , thus it bounded by Lemma 2. Then, there exists 

( )1,
0

p
au+ ∈ Ω  and we can extract a subsequence which will denoted by ( )n n

u  
such that 

( )
( )
( )

1,
0

0

0

0

weakly in

weakly in

strongly in

a.e in

p
n a

p
n

q
n

n

u u

u u L

u u L

u u

∗

+

+

+

+

Ω

Ω

→ Ω

→ Ω





                (3.1) 

Thus, by (3.1), 0u+  is a weak nontrivial solution of (1.1). Now, we show that 

nu  converges to 0u+  strongly in ( )1
0 Ω . Suppose otherwise. By the lower 

semi-continuity of the norm, then either 0 liminf nn
u u+

→∞
<  and we obtain  

( ) ( ) ( ) ( ) ( )

( )
0 0 0 01 1 d d

liminf .

p p qbp

nn

c I u p M u p x u x q k u x

I u c

λ
∗∗−+ + ∗ + +

Ω Ω

→∞

≤ = − −

< =

∫ ∫
 

We get a contradiction. Therefore, nu  converge to 0u+  strongly in ( )1
0 Ω . 

Moreover, we have 0u+ +∈ . If not, then by Lemma 6, there are two numbers 

0t
+  and 0t

− , uniquely defined so that ( )0 0t u+ + +∈  and ( )0t u− + −∈ . In 
particular, we have 0 0 1t t+ −< = . Since 

( ) ( )
0 0

2

0 02

d d0 and 0,
d dt t t t

I tu I tu
t t+ +

+ +

= =

= >  

there exists 0 0t t t+ − −< ≤  such that ( ) ( )0 0 0I t u I t u+ + − +< . By Lemma 6, we get 

( ) ( ) ( ) ( )0 0 0 0 0 0 ,I t u I t u I t u I u+ + − + − + +< < =  

which contradicts the fact that ( )0I u c+ += . Since ( ) ( )0 0I u I u+ +=  and 

0u+ +∈ , then by Lemma 3, we may assume that 0u+  is a nontrivial 
nonnegative solution of (1.1). By the Harnack inequality, we conclude that 
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0 0u+ >  and 0 0v+ > , see for exanmple [12].  

4. Proof of Theorem 2 

Next, we establish the existence of a local minimum for I on − . For this, we 
require the following Lemma. 

Lemma 7. Assume that 0
pM
p∗>  then for all λ  such that 10 λ< < Λ , the 

functional I has a minimizer 0u−  in −  and it satisfies: 

1) ( )0 0I u c− −= > , 
2) 0u−  is a nontrivial solution of (1.1) in ( )1, p

a Ω .  
Proof. If 10 λ< < Λ , then by Proposition 1 (2) there exists a ( )n n

u , ( )cPS −  
sequence in − , thus it bounded by Lemma 2. Then, there exists 

( )1,
0

p
au− ∈ Ω  and we can extract a subsequence which will denoted by ( )n n

u  
such that  

( )
( )
( )

1,
0

0

0

0

weakly in

weakly in

strongly in

a.e in

p
n a

p
n

q
n

n

u u

u u L

u u L

u u

∗

−

−

−

−

Ω

Ω

→ Ω

→ Ω





 

This implies that 

0d d , as goes to .
ppbp bp

nx u x x u x n
∗∗∗ ∗− − −

Ω Ω
→ ∞∫ ∫  

Moreover, by (K) and (2.4) we obtain 

( )
( ) ( )

( )( )

0

0 , 1

dp pbp
n n

p
pp p

p pa p

p q
x u x M u

p q

p qM S C
p q

∗∗

∗
∗

∗
∗

−

∗Ω

 
 
 − 

−
∗

 −
 >
 − 

 −
> = − 

∫
 

if 0
pM
p∗>  we get  

1d 0.pbp
nx u x C

∗∗−

Ω
> >∫                    (4.1) 

This implies that  

0 1d .
pbpx u x C
∗∗− −

Ω
≥∫  

Now, we prove that ( )n n
u  converges to 0u−  strongly in ( )1, p

a Ω . Suppose 
otherwise. Then, either 0 liminf nn

u u−

→∞
< . By Lemma 6 there is a unique 0t

−  
such that ( )0 0t u− − −∈ . Since  

( ) ( ), , for all 0,n n nu I u I tu t−∈ ≥ ≥  

we have 

( ) ( ) ( )0 0 0lim lim ,n nn n
I t u I t u I u c− − − −

→∞ →∞
< ≤ =  
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and this is a contradiction. Hence, 

( ) ( )1,
0 strongly in .p

n an
u u−→ Ω  

Thus,  

( ) ( )0converges to as tends to .nI u I u c n− −= +∞  

Since ( ) ( )0 0I u I u− −=  and 0u− −∈ , then by (4.1) and Lemma 3, we may 
assume that 0u−  is a nontrivial nonnegative solution of (1.1). By the maximum 
principle, we conclude that 0 0u− > .  

Now, we complete the proof of Theorem 2. By Propositions 2 and Lemma 7, 
we obtain that (1.1) has two positive solutions 0u+ +∈  and 0u− −∈ . Since 

+ − = ∅  , this implies that 0u+  and 0u−  are distinct. 

5. Proof of Theorem 3 

In this section, we consider the following Nehari submanifold of   

( ) { } ( ){ }1, \ 0 : , 0 and 0 .p
au I u u u ρ′= ∈ Ω = ≥ >   

Thus, u∈   if and only if 

( ) d d d 0 and 0.p ap p bp p qM u x u x x u x k u x uλ ρ
∗ ∗− −

Ω Ω Ω
∇ − − = ≥ >∫ ∫ ∫  

(5.1) 

Firsly, we need the following Lemmas 
Lemma 8. Under the hypothesis of Theorem 3, there exist 0  such that   

is nonempty for any 0λ <  and ( )00,∈  .  
Proof. Fix ( ) { }1,

0 \ 0p
au ∈ Ω  and let  

( ) ( )0 0

0 0 0 0

,

d d .p p qbpp p q

g t I tu tu

t M u t x u x t k u xλ
∗∗∗ −

Ω Ω

′=

= − −∫ ∫
 

Clearly ( )0 0g =  and ( )g t → −∞  as n → +∞ . Moreover, we have 

( )

( )

0 0 0 0

0 0 , 0 0 0

1 d d

.

p p qbp

p
p p p qp

a p

g M u x u x k u x

u M S h u u k

λ

λ

∗∗

∗
∗

−

Ω Ω

−

∞

= − −

 
≥ − − 

  

∫ ∫
 

If 0 0u ≥ >  for ( ) ( )
1

0 0 ,0
p

p p p p pa pM Sρ ρ
∗

∗
∗− −< < = , then there exist 

( ) 1
2 0 ,

p
p q p qp

a pM S k
∗

∗
−

−− −
∞

 
 Λ = −
 
 

   and 0 0t >  such that ( )0 0g t = . Thus, 

( )0 0t u ∈   and   is nonempty for any 2λ < Λ .  

Lemma 9. There exist 3 0Λ >  and M positive real such that 

( ) , 0,u u Mφ′ < − <  

for u∈   and any 3λ < Λ .  
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Proof. Let u∈   then by (2.3), (2.4) and the Holder inequality, allows us to 
write 

( ) ( ) ( ) 0, .q p qu u u p q k p p Mφ λ ∗ ∗ −
∞

 ′ ≤ − − −   

Thus, if ( )3 2 4min ,λ < Λ = Λ Λ  with 
( )
( )

0
4

p qp p M

p q k

∗ −

∗
∞

−
Λ =

−


, then we obtain 

that 

( ) , 0, for any .u u uφ′ < ∈                   (5.1) 

Lemma 10. There exist r and η  positive constants such that if 0
pM
p∗> , 

1) We have 

( ) 0 for .aI u u rη≥ > =  

2) There exists σ ∈   when rσ > , with r u= , such that ( ) 0I σ ≤ .  
Proof. We can suppose that the minima of I are realized by ( )0u+  and 0u− . 

The geometric conditions of the mountain pass theorem are satisfied. Indeed, we 
have 

a) By (2.4), (5.1), the Holder inequality, we get 

( ) 0
1 1 .pp qI u M u
p q p q∗

    −
≥ − +   

    
 

Thus, for 0
pM
p∗>  there exist , 0rη >  such that 

( ) 0 when small.I u r uη≥ > =  

b) Let 0t > , then we have for all ρθ ∈  

( ) ( ) d d .
p p q

p bp p qt t tI t M x x k x
p qp

θ θ θ λ θ
∗

∗ ∗−

∗ Ω Ω
= − −∫ ∫  

Letting tσ θ=  for t large enough, we obtain ( ) 0I σ ≤ . For t large enough 
we can ensure rσ > .  

Let Γ  and c defined by 

[ ] ( ) ( ){ }0 0: : 0,1 : 0 and 1u uγ γ γ− +Γ = → = =  

and 

[ ]
( )( )( )

0,1
: inf max .

t
c I t

γ
γ

∈Π ∈
=  

Proof of Theorem 3. 
If ( )1 20 min ,λ< < Λ Λ  then, by the Lemmas 2 and Proposition 1 (2), I 

verifying the Palais-Smale condition in  . Moreover, from the Lemmas 3, 9 
and 10, there exists cu  such that 

( ) and .c cI u c u= ∈   

Thus cu  is the third solution of our system such that 0cu u+≠  and 0cu u−≠ . 
Since (1.1) is odd with respect u, we obtain that cu−  is also a solution of (1.1). 
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Conclusion 1. In our work, we have searched the critical points as the 
minimizers of the energy functional associated to the problem on the constraint 
defined by the Nehari manifold  , which are solutions of our problem. Under 
some sufficient conditions on coefficients of equation of (1.1), we split   in 
two disjoint subsets +  and −  thus we consider the minimization 
problems on +  and −  respectively. In the Sections 3 and 4 we have 
proved the existence of at least two nontrivial solutions on   for all 

( )1 20 min ,λ< < Λ Λ . 
In the perspectives we will try to find more nontrivil solutions by splliting 

again the sub varieties of Nehari. 
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