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Abstract 
The box-constrained weighted maximin dispersion problem is to find a point 
in an n-dimensional box such that the minimum of the weighted Euclidean 
distance from given m points is maximized. In this paper, we first reformu-
late the maximin dispersion problem as a non-convex quadratically con-
strained quadratic programming (QCQP) problem. We adopt the successive 
convex approximation (SCA) algorithm to solve the problem. Numerical re-
sults show that the proposed algorithm is efficient. 
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1. Introduction 

The weighted maximin problem model with box constraints is as follows: 

( ){ }2

1, ,: im x na m i
x i m if x x xχ ω∈ == −



                 (1) 

where ( ){ }T2 2
1 , , ,1n

ny R y yχ κ= ∈ ∈ , κ  is a convex cone; 1, , n
mx x R∈  

are m given points; these m points are equivalent to m locations; 0iω >  for 
1, ,i m=   and ⋅  denotes the Euclidean norm. In our numerical calculation,

iω  is equal to 1. The goal is to find a point in a closed set [ ]1,1 nχ = −  such that 
the minimum of the weighted Euclidean distance from given set of points 

1, , mx x  in nR  is maximized. The weighted maximin problem has been wide-
ly used in spatial management, facility location, and pattern recognition. 

The weighted maximin dispersion problem with box constraints is known to 
be NP-hard in general [1]. For the low-dimensional cases ( 3n ≤  and χ  being 
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a polyhedral set), it is solvable in polynomial time [2] [3]. For 4n > , a heuristic 
algorithm [2] [4] is used to solve this problem. 

In paper [5], they look for approximate solution through convex relaxation,  

and prove that the approximation bound is 
( )( )1 ln

2

O m γ ∗−
, where γ ∗  de-

pends on χ , when { }1,1 nχ = −  or [ ]1,1 nχ = − , * 1O
n

γ  =  
 

. In paper [1], they  

use the linear programming relaxation method to give the approximate bounds 

of the ball problem, which is 
( )( )1 ln

2

O m n−
. In paper [5], they consider the 

problem of finding a point in a unit n-dimensional - ballp  (p ≥ 2) such that 
the minimum of the weighted Euclidean distance from given m points is max-
imized. They show in paper [6] that the SDP-relaxation-based approximation 
algorithm provides the first theoretical approximation bound of  

( )( )1 ln

2

O m n−
. 

In this paper, firstly, we model the maximin dispersion problem as a Qua-
dratically constrained quadratic programming (QCQP), noting that (1) is a 
non-smooth, non-convex optimization problem, because the point-wise mini-
mum of convex quadratics is non-differentiable and non-concave. We solve this 
problem with a general approximation framework, which is successive convex 
approximation (SCA), which can be summarized as follows: each quadratic 
component of (1) is locally linearized at the current iteration to construct its 
convex approximation function, so we obtain a convex subproblem. The solution of 
each subproblem is then used as the point about which we construct a convex sur-
rogate function in the next iteration, repeat the steps, and then adopt the random 
block coordinate descent method (RBCDM) to obtain the solution of subproblem. 

The remainder of the paper is organized as follows. In Section 2, we give tech-
nical preliminaries. In Section 3, we first reformulate maximin dispersion prob-
lem as a QCQP problem. Then, we describe the overall SCA approach and use 
the proposed methods (RBCDM) for solving each subproblem. In Section 4, we 
present some numerical results. Conclusions are made in Section 5. 

2. Technical Preliminaries 
The following concepts or definitions are adopted in our paper. 
 We use nR  to denote the space of n dimensional real valued vectors, and

nx R∈ , we denote the ith component of x by ix . Thus, each nx R∈  is a 
column vector 

1

2

n
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x
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 Let ny R∈  and [ ]1,1 nχ = −  be a set, then the distance of the point y from 
the set χ  is defined as 

( ) 2, inf
x

d y x y
χ

χ
∈

= −  

3. Algorithm of Generation 

We now reformulation (1) into the following equivalent form, 
2 2

1, , 1, ,
max min min max ,i i

i ii m xx i m
x x x x

χχ
ω ω

= ∈∈ =
− ⇔ − − −

 

            (2) 

and we finally obtain 
2

1, ,
min max ,i

ix i m
x x

χ
ω

∈ =
− −



                       (3) 

and we will work with this formulation, note that the problem still remains 
non-convex. 

Our Algorithm 

We first introduce our algorithm ideas. First, we construct a convex optimiza-
tion function of the non-convex objective function (3) by locally linearizing each 
quadratic component of (3) about the iterate point ( )rx , we obtain a 
n-dimensional convex subproblem. Second, we adopt random block coordinate 
descent method (RBCDM) to transform the n-dimensional convex subproblem 
into one-dimensional convex subproblem to reduce the computational complex-
ity, here, the optimization variables be decomposed into n independent blocks. 
At each iteration of this method, random one of the components of variable is 
optimized, while the remaining variables are held fixed, until all components of 
a variable are updated, remember as a round, repeat the above steps until we 
achieve the effect we want. Such block structure can lead to low-complexity al-
gorithms. Finally, to solve the one-dimensional subproblem. 

Defining ( ) ( )
1, ,

: max ii m
f x u x

=
=



, where ( )
2

: 1, ,,ω= − − = 

i
i iu x x x i m . Since 

( )iu x  is concave for 1, ,= i m , on locally linearizing ( )iu x  about the cur-
rent iterate point ( )= rx x , we can obtain a global upper-bound of original ob-
jective ( )f x . At the point ( )= rx x , we construct a convex approximation func-
tion of ( )f x  at ( )= rx x  as follows: 

( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( ) ( )

( )( ) ( )
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T T T
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where ( ) ( )( ) ( ) ( )( ) ( ) ( )T T
2 ,  r r r r ri i i

i i i ic x x d x x x xω ω  
 


= − −


= , for 1, ,i m=  . 
Define ( )( ) ( )( ) ( )T

1, ,
, : maxr r r

i ii m
v x x c x d

=
= +



, the piecewise linear function 
( )( ), rv x x  is an upper bound of the original function ( )f x  at ( )= rx x , which 

is tight at ( )= rx x  [7]. We replace ( )f x  with its piecewise linear approxima-
tion about ( )rx  to obtain the non-smooth, convex subproblem. 
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( )( ) ( )T

1, ,
min max r r

i ix i m
c x d

χ∈ =
+
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                     (4) 

This subproblem is computationally expensive, so we transform the 
high-dimensional problem into one-dimensional problem to reduce the com-
plexity. 

The concrete steps are as follows: We random update the jth component jx  
of x at the current iterate point ( )rx  and keep the other components un-
changed，it must be noted that the jx  is a component of random selection, let

( ) ( ) ( ) ( )( )T

1 -1 1, , , , ,,r r r r
j j j nx x x x x x+=   , so we have 

( )( )
( )( ) ( )( ) ( ) ( )
( )( ) ( )( ) ( )( )( ) ( ) ( ) ( ) ( )( )

( )( ) ( ) ( )

T T T

1, ,

T

1 1 1 1 11, ,

T T

,

max 2

max 2 , , , , , , , , ,

   

,

=

− +=

 = − + − 
 

= − − −

 + − 
 





   

r
j j

r r ri i i

i m

r r r r r r ri i i
j j n n j j j ni m

r r i i

v x x

x x x x x x x

x x x x x x x x x x x

x x x x

 

( )( ) ( )( ) ( ) ( )
( )( ) ( ) ( )( ) ( )

( ) ( )

T T

1, ,

1

1, ,

max 2

   2 2

max

=

=

=

 = − + − 
 

+ − − −

= +

∑





r r ri i i
j j ji m

n
r r r ri i

l l l j j j
l

r r
i j ii m

x x x x x x x

x x x x x x

a x b

 

where ( ) ( ) ( )( )( )2r ri
i j j

a x x= −  

( ) ( )( ) ( ) ( ) ( ) ( )( )( ) ( )( ) ( ) ( )( )( ) ( )( )T T

1
2

n
r r r r r r ri i i i

i l jl l j ji
b x x x x x x x x x x

=

 = − + − − − 
  ∑ . 

obtain the one-dimensional convex subproblem 
( ) ( )

* 1, ,
min max ,

j

r r
i j ii mx

a x b
χ =∈

+


                      (5) 

In order to solve the solution of one-dimensional piecewise linear function 
(5), we first arrange the ( )r

ia  of the m lines from small to large, i.e. 
( ) ( ) ( )
1 2

r r r
ma a a≤ ≤ ≤ . For the convenience of description, we remember these m 

lines as ( )1, 2, ,i i iy a x b i m= + =  , where [ ]1,1x = − . The following is the algo-
rithmic frameworks for solving one-dimensional subproblem. 

4. Numerical Results 
In order to benchmark the performance of our proposed algorithms, we do some 
simple numerical comparisons. We do numerical experiments on 4 random in-
stances when dimension n takes different values, respectively, such as n = 100, 
500, 1000, 2000. The corresponding m we chose smaller than n, the same as n, 
and bigger than n. where all weights 1, , mω ω  are equal to 1, all the numerical 
tests are implemented in MATLAB R2016a and run on a laptop with 2.50 GHz 
processor and 4 GB RAM. 

All the input points ix  orderly form an 45000n×  matrix. We randomly 
generate this matrix using the following matlab scripts: 
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Table 1. Algorithmic frameworks of subproblem. 

Algorithm 1: Piecewise-linear Algorithm 

 The number of ( )0 1, 2, ,ia i m≥ = 
 is C, let t = C/m. 

 If 0.5t ≥ , the minimax point is searched from the left 1x = − , otherwise, from 1x = . We 
only describe the search process of start from the left, and the right is the same. Solving the in-
tersection coordinates ( ),i iX Y  of the 1x = −  and ( )1, ,iy i m= 

, let ( )1, , mY Y Y= 
 and 

( )maxpY Y= , if the corresponding 0≥pa , then terminate the search and 1x = −  is the solu-
tion of the subproblem. 

 If 0≤pa , then solving the intersection coordinates ( ),j jYX   of the straight line with a slope 

bigger than pa  and the current line py . 

 Here, the number of lines where the slope is larger than pa  is recorded as w, remember

1, , WY Y Y=  

 , let ( )maxhY Y=  , and judge whether the abscissa hX  is out of bounds, if 

1hX > , then x = 1 is the solution of the subproblem, otherwise judge whether or not 0≥ha , if 

0≥ha , then stop to research, and hX  is the solution of the subproblem, otherwise repeat the 
step 3, until the minimax point is found. 

 
Table 2. Numerical results. 

n m CR 
Wang Xia Our Algorithm 

max min ave Time 1 f(x1) f(x2) Time 2 

n = 100 

50.00 243.46 209.39 148.99 179.27 0.62 197.41 210.51 0.70 

100.00 234.17 195.99 143.95 172.44 1.67 195.82 188.37 0.52 

150.00 231.58 193.74 143.98 171.21 3.24 195.01 199.84 1.08 

200.00 230.38 194.58 141.21 167.74 5.33 187.67 189.64 1.02 

n = 500 

250.00 1194.59 1065.03 934.69 1013.53 3.62 1060.51 1089.49 5.77 

500.00 1174.71 1048.90 940.91 999.97 10.73 1061.97 1078.25 10.74 

750.00 1160.43 1034.18 933.32 990.97 21.43 1042.69 1056.50 15.23 

1000.00 1151.97 1030.25 915.98 983.87 35.80 1008.60 1026.29 21.55 

n = 1000 

500.00 2381.02 2172.04 2008.44 2094.29 9.89 2166.56 2225.10 27.00 

750.00 2340.18 2127.92 1958.32 2070.12 28.07 2146.04 2203.33 42.47 

1000.00 2322.15 2122.13 1977.70 2064.92 55.10 2123.73 2162.60 54.63 

2000.00 2313.60 2114.86 1962.88 2061.42 91.23 2100.44 2123.65 107.83 

n = 2000 

1000.00 4724.03 4390.64 4159.86 4297.14 28.42 4356.34 4472.37 171.00 

2000.00 4674.71 4365.89 4159.95 4275.33 84.91 4346.58 4428.84 340.09 

3000.00 4653.52 4347.41 4138.40 4264.89 170.71 4336.45 4400.54 506.70 

4000.00 4637.10 4348.47 4101.46 4254.41 282.94 4306.64 4375.76 651.73 

 
( ) ( ),0 ; 4 , 450 2;rand state X rand n= ∗ −  

We report the numerical results in Table 1. The columns ( )v CR ′  present the 
optimal objective function values of convex relaxation [1] of the 26 instances. In 
[1], they first reformulate (1) as an equivalent smooth optimization problem as 
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following 

( )( )
,

T 22

max

. .  2

ζ
ζ
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χ

− +

∈

x

i i
is t x x x x

x

 

product the following convex relaxation (CR) when [ ]1,1 nχ = − : 

( )( )
,

T 2
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. .  2

      

x

i i
is t n x x x

x

ζ
ζ

ω

χ

− +

∈

 

we solved it with CVX solver [8]. 
The next column present the statistical results over the 1000 runs of the gen-

eral algorithm proposed in [1], the subcolumns “max”, “min”, “ave” and “time 
1” give the best, the worst, the average objective function values and running 
time found among 1000 tests, respectively. The last column is the result of our 
algorithm, where we choose 0 vector as the initial point. Finally, add a rounding 
(i.e., if ( )0 0hx ≥ , then ( )0 1hx = , otherwise ( )0 1= −hx , for 1, ,= h n  for the solu-
tion ( )0x  obtained by the iteration. The subcolumns “f(x1)”, “f(x2)” and “time 2” 
represents the numerical result corresponding to no add rounding, add round-
ing and running time of our algorithm, respectively. Numerical results show that 
the effect of “f(x2)” is the best. Table 2 shows that the qualities of the solutions 
returned by our algorithm are generally higher than those obtained by the gen-
eral algorithm in [1]. 

5. Conclusion 

In this paper, we reformulate the maximin dispersion problem as QCQP prob-
lem and the original non-convex problem is approximated by a sequence of 
convex problems. Then, we adopt the random block coordinate descent method 
(RBCDM) to obtain the solution of subproblem. Numerical results show that the 
proposed algorithm is efficient. 
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