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1. Introduction

Our reference to optimal control theory of ODEs is [2] and to control theory of
discrete systems [3]. There is a review of papers in optimal control theory ap-

plied to cancer [4]. The model we consider here is from [1] and is defined by
I+7y « y/j
A=| 8§ l+m 0 |, T(y)=dy+g 1)
o 0 1+,

where y= (C, GF,GI)T , &= (gc,gF,g, )T €R’, and T denotes transpose. Here
aeR,, peR_, d,0eR, p,,u, <0.Weassume that ad+ o =0.

The matrix A has characteristic polynomial —p (/1) where
p(A)=A =223+ +u; +,u,)—/1(a§+[)’0'—(l+yp)(1+,u,) ()

—(14+7) 2+ pp + 1, )+ S (14 w1, )+ Bo (14 1 )= (1+ 7)1+ 2 ) (14 1) 3)
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and this polynomial can have (i) three real roots or (ii) one real root and two
imaginary roots. It turns out that asking u =y, = u, simplifies matters consi-
derably. Then

p(A)==(1+u=2)(A =(2+7+u)A+(1+y)(1+u)-ads-Bo)  (4)

So the eigenvalues are 1+ 4 and

A =1+”T“i%\/(y—y)2+4(a5+ﬂa) (5)

We assume that 1+ >0, <0. In case (i) if the eigenvalues of A4, /L,/L,/i
are positive and distinct and we assume this, then you can find an affine vector

field Xon R’ such that the time one map is d
of =T (6)
see [1] and below. In case (ii) if the eigenvalues of A are

1+ y,atib,a>0,14+ 1 >0,b#0 and we assume this, you can also find an affine
vector field Xon R’ such that

o =T 7)
In case (i) define a matrix of eigenvectors

I+u-A4, 1+u-14 0

and in case (ii) define

U=| -0 0 -p 9)
- 0 «o
Then in case (i)
A 0 0
A=D"'AD=0 A 0 (10)
0 0 1

if the eigenvalues are distinct and positive and in case (ii)

a b 0
A=U"'AU=|-b a 0 (11)
0 0 l+u

see [1]. Here D™ denotes the inverse to D. To find an Xin case (i) define when

the eigenvalues are real, positive and distinct, an affine vector field

InA, 0 0
Y(x): 0 InA 0 |x+d (12)
0 0 Ini

Then with the right choice of d
@ (x)=D"'ADx+D'g (13)
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hence if we let
X(y)=DY(D"(»)) (14)
we get
O =T (15)
And to find an Xin case (ii) when a >0,b# 0,1+ 4 >0, define
a b 0
Y(x)=|-b a 0 +d (16)
0 0 In(1+u)
Then with the right choice of a,,b, € R,deR® we get
@) (x)=U"'4U(x)+U'g (17)
hence with
X(y)=vr(U(»)) (18)
we have that the time one map is
O (y)=T(») (19)

See [1] for details of the above and also below.
In section two we solve the problem:
minmize C (T ), T >0 (fixed) subject to

’

C C
GF | = X| GF |+eu(t) (20)
GI GI

u(t)e [O, gﬂ, g] >0, by first solving it for ¥ and then infer the solution for
X Here

e, =B=(0,0,1)" (21)

and u(t ) is piecewise continuous. In section three we apply the discrete Pon-
tryagin minimum principle to the difference equation

Xy =Ax, +Bu, +g
where
x, =(C(k),GF (k),GI(k))' (22)

u, G[O,gﬂ,g? >0. k=0,1,---,N—1, where NeN,N >2,x, =x, with the
objective to minimize C (N ) There are again two cases to consider (i) and (ii)
above. If u=p, =p, and the eigenvalues are positive and distinct, maximal
chemo therapy is optimal. But in case (ii) it is not always optimal.

When g, # y, and the eigenvalues are real and distinct, we produce a
counter example to maximal chemo therapy being optimal, see section four.
Some solid tumors grow like Gompertz functions, see [5]. There are several im-

portant monographs in mathematics and medicine, see [6]-[11]. [12]-[19] are
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my latest papers on cancer and mathematics. [20] is our reference to roots of cu-
bic polynomials. [21] proves continuous dependence of roots of a polynomial on
the coefficients of the polynomial.

In section five we consider optimality of the discrete model T'when . # 4, .

Here we also determine optimal control of the map 7.

2. Optimal Control of X

The purpose of this section is to minimize C (T ) , subject to

’

C c
GF | = X| GF |+eyu(r) (23)
GI GI

T >0 fixed and with =, =y, . Let us consider (ii) first. We assume that
there are a real eigenvalue 1+ and two imaginary eigenvalues
atib,a>0,1+ u>0,b#0.

Now define the two by two matrix

L% B (24)
-b q
where
b, =tan (éj (25)
a

a, = Ina* +b* (26)
a, b a b
= =L 27
exp(_bl alj (—b aj @7)

B=|-b gq 0 (28)
0 0 1n(1+,u)

This will imply, that

Also let

and define the vector field
Y(x,v)=Bx+d+U ey =Y (x)+U 'eyv (29)

which is affine when v=0, where ¢,e,,e, is the canonical basis in R’. Also
x,d € R3,ve[0,gﬂ,g? >0. Put

X(y)=UtUu" (») (30)
Let
X(yv)=X(y)+ey=0r(U" (y).v) (31)
Define d,,d,,d, by
U (g)1,2 =L, (L-id)d,, (32)
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and

—HE_a,=(Ug), (33)

Then
o =T (34)
when v =0. To this vector field with ve [0, g?] associate the Hamiltonian
H(x,p,v,t)=p"Y(x,v) (35)

Then we have the adjoint equations
., OH

P =———=—-pa +pyb (36)
ox,
H
Py = _6_ =-pb - p,q (37)
ox,
Ds =—a£=—p3 In(1+u) (38)
Ox;
So
P e (R (39)
’ -b  -a )\ p,
which has flow
cos(bt) sin(bt
Pa(t)= eXl:)(_alt)[—sin((ll) t)) cos((blt))] 7.2(0) (40)
1 1
Define
d(t)=L"(exp(Lt)~id)d, (41)

Then the flow of Yisfor v=0

X
i (t.x),, = exp(th)(xl

2

j+d(t) (2)

exp(ln(1+y)t)—1

@ (t,x), =exp(In(1+ )1 )x, + n(1+ ) d, (43)
Define
S, (x)=(1+p—a)x, —bx, (44)
Then we have the transversality conditions
oS
T)=2L - — 45
p(T)=7 =lru=a (43)
oS,
T)=2=p 46
12 ( ) o, (46)
oS
T)=L—0 47
P (T) o (47)
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This means that p;, (t ) =0 and

pa(T)=exp (_alT)[ cos(hT) sin(blT)]pLz (0)- (1+ ,u—aj )

—sin(bT) cos(bT) —b

The two by two matrix in this equation has inverse

[cos(blT) —sin(blT)]

sin(bT)  cos(hT) (45)

So

21 (0) = exp (alT)[cos(blT) —sin(blT)J[H y—aj (50)

sin(bT)  cos(hT) —b

But then we have

e {8 )
Notice that we have
U, =bp (52)
Uy =(1+u-a)p (53)
If
H(x"(¢), p(t).u (¢),0) < H(x"(t), p(¢),u.t) (54)

for all u eU:[O,g?], then (x*(t),u (t)) is optimal, see Equations (55) to
(60). But this amounts to the inequality
1

(p,(1)bpu.+ p, (t)(l—i—,u—a)ﬂu*)det—(U) (55)

=exp(q (T—t))((cos(b1 (t=T))(1+ u—a)-bsin(b, (t—T)))bﬂu* (56)

+(—sin(bI (t—T))(l+y—a)—bcos(b] (t—T)))((l+,u—a)ﬂu*))ﬁ(U) (57)
. 5 2 1
=exp(a, (T —1))sin (b, (t—T))(—b —(1+u—a) )ﬂu* 3t (0) (58)
. 1
= exp(a1 (T —t))(a§+/)’0')ﬂu* sin (bl (t-T)) 3 (0) (59)
<exp(q, (T—1))sin(b, (t—T))% (60)
where det(U ) denotes the determinant of U. We have used that
1+,u—a:1+,u—(1+7+Tﬂj=% (61)
and
A:l+y;ﬂ+%\/(7/—y)2+4(a5+ﬂo—):a+ib (62)
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so that
(14 p—a) +b* =—(ad + fo)

and also that detU = —b(a5+ﬁ0') . So if
in(b (t=T
sm( 1(b )) o

then
u (t) = g})

is optimal and if the reverse inequality holds then
u (1)=0

(63)

(64)

(65)

(66)

is optimal. We shall now consider the case where all eigenvalues A,lﬁ,i are

real, positive and distinct and that u =y, = , . Here we let
Y(x,u)=Ax+d+D"'eu

where
A =diag(InA,,In A_,In(1+ u))

Also define din

A, -1 .
InA, d, (D lg)l
A -1 .
InA, d,=(D"g),
7 .
i (P,

d=(d,.d,.d, )T € R’ . Now define the Hamiltonian
H(x,p,u,t) = pTY(x,u)

Then we get the adjoint equations

. oH
Ps R ~In(1+u) p,

see [2]. Now define

Then we have the transversality conditions

as 1+u—-24,
T)="t=|1+u-2
p(T)=— +ﬂ0

179

S (x)=(1+u=2,)x +(1+ u—2)x,

(67)

(68)

(69)
(70)

(71)

(72)

(73)
(74)

(75)

(76)

(77)

Applied Mathematics
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by [2] and see below. Now observe, that

det(D)=(4, -1.)(ad+ po) (78)
Because
1+,u—/11:%$%\/(u—y)z+4(a5+ﬂ0) (79)
we find
(1+u=2,)(1+u-2)=—(ad+ po) (80)
We shall need
—as-po —a(l+u-21) —p(l+u-2)
D'=| as+po  a(l+u-2) P(+u-1) d% (81)
0 o(r-2)  (a-a) )
We have
(1) x(T)
0 |=D|x(T) (82)
0 x(T)
hence the definition of §,. Now
oS,
p(T)=== (83)

thus
p(T)=p(0)exp(~In A1) _ = p (0)exp(-InAT)=1+u—4  (84)
P, (T)=p,(0)exp(—In /LI)LZT =p,(0)exp(-InAT)=1+u-A (85)

ps(T)=p, (O)exp(—ln(1+,u)t)| . :p3(0)exp(—ln(1+y)T):0 (86)

t=

So
p(t)=(1+u-2, )exp(InA (T 1)) (87)
Py (t)=(1+u—2 )exp(InA_ (T 1)) (88)
ps(t)=0 (89)
If

H(x"(t), p(t)u" (¢),t) < H(x"(¢), p(t),ust) (90)

forall ueU, (x'(f).u"(¢)) is optimal. And this is equivalent to
p(t) D e’ (1)< p(t) D e (91)

which again is equivalent to

(1+ 2~ 4, )exp(In 2, (T—t))(—ﬂ)(1+y—ﬁ_)dztég) (92)
(=2 )exp(In A (=) B(1+ =1 )~ (93)

det(D)
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—-ad - fo

= (t)ﬂ(/L ~2 )(ab + fio

)(—exp(lni+ (T—t))+exp(ln/17 (T—t))) (94)

1

Suﬂ(exp(ln/i+ (T—t))—exp(lnlﬁ (T_t)))ﬂ (95)
for all u e U. It follows that
w(t)=g; (96)
is optimal. We have the two Hamiltonians
HY(x,p,u,t)zpTY(x,u)=<p,Y(x,u)> 97)
H* (,q.,v:1)=q" X (y,v) = (g, X (»,v)) (98)

where <~, > denotes the canonical inner product. It follows that when the ei-

genvalues are a+ib,1+u>0,a>0,b=0

y(1)=Ux(r) (99)
p(t)=U"q(1) (100)
if
¥(0)=Ux(0) (101)
p(T)=U"¢(T) (102)

where y(t ) is an integral curve of Xand x(t) an integral curve of Y. Because

q'=—%=—(U')T B'U"q (103)
hence
U'q'=-B"U"q (104)
and
p'=-B"p (105)
We now get, that
H* (y(1).q(1).v(0).1) = {a(0). X (»(1).v(1)) (106)
=(q ()07 (U7 ¥ (1).v(1)) (107)
:<UT(q(t)),Y(U’1 (y(t)),v(t))> (108)
=(p(6), Y (x(1),v(r))) (109)
=H"(x(¢),p(),v(2).1) (110)
So
H* (y(0).q(0).v(0).0) = H" (x(2). p(t).¥(1).1) (111)
When the eigenvalues of A are real, distinct and positive
y(1)=Dx(1) (112)
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p(t)=D"q(t) (113)
if
»(0)=Dx(0) (114)
p(T)=D"q(T) (115)
We also have
¢'=—(D") ATD"q (116)
and
(DTq), =-A"D"g (117)
thus
p'=-A'p (118)
Hence
1Y (1(0),9(0)9(0)1) = ((0), p(0). (1)) 119)

We need the following theorem, which is well known.

Theorem 1 Now The following statements about a C* function from
f:R">R (120)

to the reals, where n is a positive integer, ne N are equivalent:

i) f(Ax+(1=2)y)<Af(x)+(1-2)f(y) where 2€[0.1];
) £(0)2 7 (0)+ L (x)(3-):

o f
iii o . >0
( ) Zz,‘/:l,u-,n}/l axiaxj }/]

where x,y,7 €R".
(x(t),u (t)) is admissible by definition if 0<u(7)<g] and

x’(t)=Y(x(t),u(t)), x(0)=x, eR’ (121)
To see that
S, (x" (7)) <5, (x(1)) (122)
fo; (x"(#).u"(t)) optimal candidate and (x(¢).u(r)) admissible argue as in
2
A=S,(x"(T))-5, (x(T)) (123)
=S, (x"(7))-5,(x(1)) (124)

(125)

~(H (x(0), p (), (1) 1) = p (1) (1))

We have the following inequality, which follows from theorem 1.
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H (x*,p,u*,t)—HY (x,p,u,t)

Y y (126)
< agi (x*,p,u*,t)(x* —x)+ 6; (x*,p,u*,t)(u* —u)
We also have
p’:—agiy (x*,p,u*,t) (127)
We can now estimate
ALS, (x* (T))—Sl (x(T))+IOTp'T (x—x*)+pT (x'—x*' )dt (128)
+.[0 g; (x*,p,u*,t)(u*—u)dt (129
rd/ g . .
< . a(p (x—x ))(t)dt+S1 (x (T))—S, (x(T))
= p(r) (x(1)=¥" (1)) +5,(x (7)), (x(7) (130)
oS,/ « . .
- a(x (T))(x(T)=x"(7))+S, (x"(7)) =S, (x(7)) (131)
<0 (132)

because S, is convex, by theorem 1. We have used, that we have arranged, that
oH

E(x*,p,u*,t)(u*—u)so (133)

for all u € U, by the mean value theorem.

We have optimality.

3. Optimal Control of T
In this section we consider the problem: minimize C (N ) subject to
Vst :AJ’k+B”k+g=f(Yk:“k) (134)
k=1---, N-1,NeN,N > 2,u(k) elU= [O,g?],gio >0,4=u, =p, where A

is as in the introduction.
Also

v =(C(k),GF (k),GI(k)),g e R’ (135)
Here
B:(O’O’l)T= g:(gC’gF’gl)T (136)

Assume (i) the eigenvalues of A are real and distinct.
In the Discrete Pontryagin Minimal Principle applied to 7 you define the
Hamiltonian by (138) and then you find
aH * * s
a7(}6,{,uk,ﬂk)(uk—uk) (137)
k
and minimize it to find the optimal control u,t. It is optimal due to computa-
tions (157) to (163) below.
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Define then the Hamiltonian

H(xg,u, A4 )= (;ka +Bu, +D"g) (138)

where /4, € R and (139)
B=D"'B (140)

A=D"4D (141)

Then we have the adjoint equation

Ay =a—H(xk,uk,ﬂk)= A2, (142)
Xk
Inductively
Ao = (A7) Ay (143)
In particular
d=(47)" 4, (144)

For k=0 we have

H(xé,ué,%) =(4)" (;lx; + Bug +D’1g)

~ R (145)
< H(x;,u,/lo) =( )T (Ax; + Bu +D_lg)
which is equivalent to
(4)" Buy <(%)" Bu (146)
Define
S(x)=F(x)=(1+p-2)x +(1+x-2)x, (147)
Now
~\N-1
A =(A") Ay, (148)
where
I
o :a—(xN) (149)
Ox
Thus

Ak ~ - T Ak ~ Ak 6FT ~“N-1 A ¥
()" Bu =((AT)N ‘/IN,I) Buy =(Ay )" A% Bu; =7 (x4 By (150)

Assume that (i) holds and A4,,4 ,1+ g€ R are distinct, when p=p, =y, .

Then
D, 1 _ﬂ(l"'/l_’?"—) 1
B=| Dy, |———=| B(l+u-2,) =D'e, (151)
D
D, det(D) (4 1) det(D)

So now we get, that (146) amounts to
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Ao 0
(l+u-A,1-p-2,0) 0 A 0 B (152)
0 0 (1+p)"
N-1 N-1
_ -f(-ad - o) A, .\ p(-ad - po) A’ )
det(D) det(D)
_ a5+ﬁo‘ ﬂ(lﬁil —ﬁ,ﬁNfI) (154)

(2, —2.)(ad + po)

_ Aﬂ (A =2 <0 (155)

iy
Similarly for k=1,---,N-2

ﬂ,N_k_] 0 0
A Buy =(1+ pu=A, 1+ u-2.,0) 0 A 0 Bu; <0 (156)
0 0 (1+p)

For k=n~N—1 we have, that (1,0,0)- B =0. This means that maximal chemo
therapy is optimal. Because similar to (128) to (132), we get

A=S,(xy )-S5 (xy) (157)
* N * * *
=5, (xN)—S1 (xy)+ k:O(H(xk,uk,ﬂvk)—H(xk,uk,/ik)—/1,3)6,(+1 +ﬂ,chk+1) (158)
N-1
SSl(x;,)—Sl(xN)—i-k Og%(x;,uz,/lk)(x,t—xk) (159)
=0 O
+Si(x;,uz,/1k)(u; —uk)—/lka,’:+1 +ﬂkak+1 (160)
Uy
<S, (}CZ,)—S1 (xy)+ N_l/i,ll (x,t -Xx, )—lka:H +Ax,, (161)
=0
=S5, (x;k\,)—S1 (xN)—/if,fl (x; —xN) (162)
=5, (xy)-5, (xN)—%(x;,)(x*N—xN)SO (163)

by theorem 1 and since S, is convex.

Then we have

C.(N)=C(N)=S5,(xy) =S (xy) <0 (164)
As above we get
H(yu,. &)=< (Ay +g+eyv,) (165)
and
Vi =Ay, +g+ey, (166)
Also
$o=4'¢, (167)
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and
A =A%,
Thus
Ay = DTg k-1
When
¥, = Dx,
then
Vi = Dx;
Hence

I:I(ykavk’gk):H(xk’Vk’lk)

(168)

(169)

(170)

(171)

(172)

Now consider the case where there are imaginary eigenvalues

axib,a>0,b#0,1+ x>0 for A. We need the following well known formulas

for

a bY™ (4, B,
b a) (-B, 4,
which are well known, where peN; and

2 (2p+1 i
Ap :zo[ j(_l)q quaZp 1-2¢q
q

2q

L(2p+1 q 12q+1 _2p-2
B, = 1) pHH g
3 b SO

and peN

where
P 2p _
¢, =330 Jvywra
D ZPI( 2p ](_1)‘1 b2q+1a2p7172q

You can prove them by induction. We have

H(xk,vk,lk)=</1k,1§xk +U e, +U7'g>

:[:I(yk’vkagk):<é,k’Ayk +g+e3vk>

where
a b 0
B=|-b a 0
0 0 1+u
As above

(173)

(174)

(175)

(176)

(177)

(178)

(179)

(180)
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~r\N-k-1 [ &T N—k—la_F
A=(B") " Ay, =(B") P (181)
where
S (x)=F(x)=(1+p—a)x —bx, (182)
So
- . ke T 1
A B=(1+p-a,~b,0) BV (Bb, p(1+u-a).*) F(0) (183)
For k>0 wefindwhen N—-k-1=2p+1,k#N-1
OH A4, B b 1
el 1 _ —b 4 P
v, (1u=a, )[—Bp Ap]ﬂ[H,u—ajdet(U) (184
:ﬁ((1+,u—a)(Apb+(l+y—a)Bp)—b(—pr+(l+,u—a)Ap))detl(U) (185)
2 . 1
= B((1+u=a) +b )B"—det(U) (186)
1
—ﬁ(—a5—ﬂ0)3pm (187)
_B
=4 B, (188)

Here det(U)=-b(ad+ o). When N-k-1=2p,k#N-1
C, D b
a—H:(H—y—a,—b)( ? pJﬁ( j;zﬁD (189)

v, -D, C, )" \l+u-a)det(U) b *
If
Zp, <0 (190)
let
vi=g (191)
and
v, =0 (192)
if the reverse inequality holds. If
gDp <0 (193)
let
V=g (194)
and
v, =0 (195)

if the reverse inequality holds. Then (x,t,v,t) is optimal, by (157) to (163). For
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k=N—1 we have (1,0,0)-B:O.

4. A Counter Example

We shall now present a counter example to optimality of maximal chemo thera-

py when the eigenvalues are real and g, # g, for the model
T(y)=dy+g (196)

of the introduction.

Remember the definition of the discriminant A of a cubic polynomial
p(A)=2+a, A’ +a,A+a, (197)
Namely
~108A = a}a; —27a; —4a, —4a; a, +18a,a,a, (198)

Notice that the degree of 1+ is fourin aja; and —4aja, while it is only
two or three in —27a;,~4a;,18a,a,a, . We thus get

—108A = ala; —4a; a; +lower order terms in (1+ ) (199)
=(3+y+uy +y,)2(a6+ﬂo-)—(l+yF)(1+y,)—(1+;/)(2+yF +y,)2 (200)
+4(3+ 7+ + 4, ) (a8 (14 4, )+ B (14 g1 ) = (1+ 1) (1+ g1 ) (1+ 11, )) (201)
+lower order terms in(1+ ) (202)

which becomes
((1+;/)2 (T )+ (14 ) +2(047) (14 )+ 214 7) (14 1) (203)
+2(1+ 1, ) (14 ) )(@6 + Bo—(1+ 1 ) (14 41, ) = (14 7) 2+t +41,)) (204)

+ 4((1 + ;/)3 +lower order terms in (1+ 7))(016(1 + 41, )+ Bo(1+ )

205)
—(1+7) (1 ) (1 1))
=(1+7/)2 (1+;/)2 (1+ +1+y1)2 —4(1+7/)4 (14 2 ) (1+ ;) (206)
+lower order terms in (1+ )
and this is
(1+7)* ((1+,UF)2 (1, Y+ 2(04 1 ) (1 2 ) =4 (14 ) (14 1, )) (207)
+lower order terms in (1+ )
=(1+ ;/)4 (tp — 1 )2 +lower order terms in(1+ ) (208)
It follows that for —» large
A<O (209)
so that there are three real distinct roots, see Uspensky [20]. But
A =B(+y)+B(1+4,)>0 (210)

when —y islarge. So maximal chemo therapy is not optimal for ~ =3.In fact
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xy=A’xy+ A* (Buy + g)+ A(Bu, + g)+ Bu, + g (211)

So u, =0,u, = g? gives an optimal trajectory.
5. Optimality of T When 4, = 4,

Consider the model 7'from the introduction

T(y)=Ay+g+ue, (212)
where
1+y a p
A=| 5 l+p, O (213)
o 0 1+ 4,
and

y=(C,GF,GI)", g=(g¢.25.8,) €k’ (214)

Assume (i) the eigenvalues A,l_,/i =14+ of A are real and distinct, when
H=Hp =H -

Theorem 2 There exists a Euclidean open ball B, ( M, ,u), p>0 in R*, such
that for ( Ur, ,u,) €B, ( M, ,u) maximal chemo therapy is optimal.

Also let
(Ut pp =2 )14, =2,) (W pp =2 ) (14 4, = 2) ~B(1+ 1y~ 7)

D=|  —5(l+p -2 —5(1+ 4, - 1) 5B (215)

—0'(1+,uF—ﬂ+) —0'(1+,uF—/L) —a5+(1+}/—/i)(1+yp—i)
be a matrix with column eigenvectors to the eigenvalues /L,/L,}: of A. We

have (6 #0)
I+u-A, 1+u-4 0

det(D)| =(l+p-2)(1+u-2)| -6 -5 B5| (216)

= -0 —ad
=(1+u-4,)(8’a+ pos )(-ad - op) (217)
~(1+u=2.)(8*a+ Bos ) (—ad - op) (218)
=(4, -2 )(a6+ o) & (219)

Define the Hamiltonian
H (xp 1y, 2 ) = A7 f, (01 ) = AT (Ax, + g+ Bu, ) (220)
k=0,--,N-1 and
F(x)=(1+p —A) 1+ 2, = A)x +(14+ 4 = A )1+, — 4 x,
—,6’(1+yp—/i)x3 (221)
We have

A = (A7) 2y (222)
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In particular
do=(aT) " A = (aT) " L () (223)

Now consider the system

V.., =D"'4Dy, + D"'g+ D e, (224)
which is conjugate to the x, system. Now observe that with
I:I(yk,vk,g“k):g“,j(Ayk+D"g+D’1e3vk) (225)
and
A=D"'4D (226)
we have that
6 =(A")" ¢ (227)
and
& =(A")" ¢, (228)
H(30,v0:$0 ) < H (3570060 (229)
is equivalent to
¢oD'Bv, <) D' By, (230)
So if
A=¢,D'B<0 (231)
then maximal chemo therapy is optimal, by a computation like (157) to (163).
Here
T OF / «\T
(€)= ) 232)

:((1+/1F—/1+)(1+,u, =24,), (04 e =2 ) (1+ 4, —L),—ﬂ(l—i—,uF—i))

But this amounts to
D

A=(l+,uF—/1+)(1+y1—ﬂ+)/1f"det—(3lD) (233)
D
+(1+ﬂF_ﬂ’)(l+u1_/1’)l’AHclet—(32D) (234)
_ AN Dy,
B(1+ - 2)2 aet(D) (235)

where D, are complements in D. Hence
Dy =(1+pp =2 ) (14 1, = 2.)B -8 (1+ 1, —/17)(1+up —/i) (236)
Dy =—(1+ gty =24, ) (14 1 = A, ) B+ B (14 g1y = A ) (14 s = 2) - (237)

Dyy = (14t =2, ) (14 1y = 2, )(=8) (14 11, ~ 2. )

238
+ 81+ p, =2 ) (V4 pp =2 ) (14 11, = 2.) (238)
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Inserted into (233) to (235) we obtain, that A becomes

1
T+, =2 )W+ 2, = A ) AN (1 =) (1 + 1, = 2A) OB
sy A s =2 (=22 -

~5B(1+ =2 ) (1+ 4 —i))

+

det(D)(1+,uF =2 ) (U pty = 2 ) AN (Vo pap = 2 ) (14 4, — 4, ) OB o1

+Op (1+ 1, —/1+)(1+yF —i))
1

+det(D)(_ﬂ)(l+”F ~A) A (1 g =2 (1 1y = 2)(=8) (1 p = A) (241)

+0 (1, =2, ) (14 =2 ) (14 1, = 1)) (242)

Now observe that when u,. =y, = u

1

A= 4 (D)

(4 =AY+ =2 )1+ =2 ) (14 =2 ) B (AY = 27) (243)

=p (244)

(0{5+ﬂ0')2 (ﬂN—l _/1N71)
(2. -2 )as+pa)

So maximal chemo therapy is optimal in this case as we have seen above. Now

compute
! N-1 _ gN-1
A:det(D)5ﬂ(1+ﬂF—A)(lwf—%)(HﬂF—ﬂ,)(lﬂz,—/l,)(z+ A1) (245)
! 7 N-1 n-1
+det(D)5ﬂ(1+“F"1+)(1+ﬂ1—/L)(—(Huz—/L))(lwp—ﬂ)(/t - 2") (246)
+ 1 5ﬂ(1+,up—/17)(1+,u1—/17)(14-[11,—A+)(1+IUF_Z)(17N*1_£N—1)(247)

det(D)
Notice that for k=0,---,N -2
1
C =F(D)§ﬂ(l+,u1¢ —ﬂ,+)(l+,u, —i+)(1+,uF —l_)(1+,u, —/1_)

(A -2 <0

when u=p,. =y, , due to the assumptions. Observe also that (246) = 0, (247) =
0, when x =y, =y, ,because then A=1+pu.Nowtake p>0 such that

B (1 ptp =2, ) (1 gty = 2 ) (= (1 ;= A)) (14 1 = 2

D
det(D) (248)
.(ﬂ,N’k’l _ika—l) < G
+ 3
and
1 ~
depy P U s =2 ) =2 )1+ =2,)(1+ - 7)
(249)
.(}LN-k-l _j:N—k—l) <&
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And finally

1
By =2+ 1, =2 )1+ gy =2 ) (14 g1, — A
RIRL (1~ 2. enr)

(A =2 > —%ck

But then A <0, and maximal chemo therapy is optimal. We have used, that
the roots of a polynomial depend continuously on the coefficients of the poly-
nomial, see [21]. For &= N —1 notice that (1,0,0) ‘B=0.So u, =g’ is
optimal.

When (ii) define the following Ubelow by computing

(1+pp —a—ib)(1+ p; —a—ib)
—5(1+y[—a—ib) (251)
—o(1+ pp —a—ib)

(1+ ptp —a)(1+ g, —a) =B +i(=(1+ p, —a)b—(1+ . —a)b)
= 61+ p; —a)+isb (252)
—o(1+ pp —a)+iob
=v, =V, +iv, (253)

So define Uto be

(1+pp —a)(1+p, —a)-b* (14, —a)b—(1+ u, —a)b —[)’(1+,uF—ﬂ:)
—-5(1+ p, —a) b B (254)
—0'(1+/1F—a) ob —a§+<1+7—i)(l+yF—/i)
Then
a b 0
U'dU=|-b a 0 (255)
0 0 1
Define
ﬁ(x)z((l+,uF—a)(1+,ul—a)_b2)x1+(—b(a—1—,u1)—b(a—l—,uF))x2(256)
_ﬂ(l'*'/uf_/i)xs
Theorem 3 Suppose (ii) i.e. eigenvalues of A are a+ib,b#0.If
N-k-1=2p+1,k=0,---,N-1 and
o 4, B, 0
(4" 'B)y=—|-B, 4, 0 |U'B<0 (257)
x 0 O 12p+1
let v, =g, and if the reverse inequality holds let v, =0.If
N-k-1=2p,k=0,---,N-1 and
oF ¢, D, 0
(4" 'B)=—|-D, C, 0 |U'B<0 (258)
“lo o 2

let VZ =g) and if the reverse inequality holds v,: =0. Then (x,t,v;:) is optim-
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al.

Proof Define the Hamiltonian

F](yk,vk,gk)=§kT(U’1AUyk+U’1g+U’lek) (259)
Then with
a b 0
B=U"'AU=|-b a 0 (260)
0 0 4
we find
~ o \N—k-1 < \N-k-1 OF
G=(B") " ¢ =(B") = (261)
Ox
So
-t (A4, B, 0
oH _or EN‘k‘lU'lea—F -B 4 0 |{U'B (262)
ov, Ox ox e
0 0 A

when N-k-1=2p+1,k=0,---,N—-1 and when
N-k-1=2p,k=0,---,N-1

.r(C, D 0
8FT P P .
— |-D, C 0 (U'B (263)
ax P p -
0 0 A¥

Optimality follows from a computation like (157) to (163).
Theorem 4 Suppose (i) and the eigenvaues of A are real and distinct. If

-
- ANET 0 0
(¢4 B)y="| 0 A" 0 [D'B<0 (264)
Ox 0 Nkl

let V,: =g) and if the reverse inequality holds let v,: =0. Then (x,t,v;:) is op-
timal.

Proof Define the Hamiltonian

FI(Yk:Vkagk):é//j (D_lADJ’k +D_1g+D_lek) (265)
Then with
A=D"'4D (266)
we get
_ T \N-k-1 B T \N-k-1 OF
=) an=(aT) o (267)

Then the partial derivative of A with respectto v, is

ﬂN—k—l 0 0
oFT| 7
i 0 AN 0 |D'B (268)
ax 0 0 iN*k*l

Optimality follows from a computation like (157) to (163).
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6. Summary

In the present paper we applied the discrete Pontryagin Minimal Principle to a
discrete model 7 of cancer growth and the Pontryagin Minimal Principle to an
affine vector field that generates 7. When u =y, =, and the eigenvalues of T"
are real and distinct, maximal chemo therapy is optimal for the discrete model,
while this is not necessarily so when the eigenvalues of A4 are

1+ u,a+ib,b#0,1+u>0.

For the affine vector field that generates 7, we have proven similar statements,
when u =, = u, . Maximal chemo therapy is optimal, when the eigenvalues of
A are real, positive and distinct and this is not necessarily so, when there are
imaginary eigenvalues. We finally considered what happens in the discrete mod-
el, when g, # g, . In particular we have derived an optimal strategy to give

chemo or immune therapy.
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