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Abstract 
A nonautonomous schistosomiasis model with latent period and saturated 
incidence is investigated. Further, we study the long-time behavior of the ep-
idemic model. The weaker sufficient conditions for the permanence and ex-
tinction of infectious population of the model are obtained by constructing 
some auxiliary functions. Numerical simulations show agreement with the 
theoretical results. 
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1. Introduction 

Schistosomiasis (also known as bilharzia) is a disease caused by parasitic worms 
of the Schistosoma type [1]. Schistosomiasis affects almost 210 million people 
worldwide [2], and an estimated 12,000 to 200,000 people die from it each year 
[3] [4]. The disease is most commonly found in Africa, Asia and South America 
[5]. Around 700 million people, in more than 70 countries, live in areas where 
the disease is common [4] [6]. Schistosomiasis is second only to malaria, as a 
parasitic disease with the greatest economic impact [7]. 

Mathematical modeling has become an important tool in analyzing the spread 
and control of infectious diseases. In recent years, many schostosomiasis models 
have been proposed and studied ([8]-[13], etc.). These models provide a detailed 
exposition on how to describe, analyze, and predict epidemics of schistosomiasis 
for the ultimate purposes of developing control strategies and tactics for schis-
tosomiasis transmission. 

Many diseases incubate inside the hosts for a period of time before the hosts 
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become infectious. Using a compartmental approach, one may assume that a 
susceptible individual first goes through an incubation period (and is said to be-
come exposed or in the class E) after infection, before becoming infectious. The 
resulting models are of SEIR or SEIRS types, respectively, depending on whether 
the acquired immunity is permanent or otherwise. 

In the aforementioned framework, their coefficients are considered as con-
stants, which are approximated by average values. However, we note that eco-
systems in the real world often appear the nonautonomous phenomenon. Re-
cently many nonautonomous epidemic systems have been studied ([14]-[20], 
etc.). In fact, natural factors, such as seasonal changes in moisture and tempera-
ture, affect the abundance and activity of the intermediate snail host, Oncomela-
nia hupensis, and the transmission dynamics of schistosomiasis are in a constant 
state of flux [21]. Moreover, there are many social factors related to human be-
haviors accounting for the change of schistosomiasis incidence, such as marked 
changes of contact rates caused by daily production activities [22]. This illu-
strates that the transmission of schistosomiasis shows seasonal behavior. In or-
der to describe this kind of phenomenon, in the model, the parameters of the 
system should be functions of time. As far as we know, the research work on the 
nonautonomous schistosomiasis models is very few. Therefore, it is necessary to 
study nonautonomous schistosomiasis models. 

In this paper, we assume large intermediate host population and thus ignore 
snail dynamics. Motivated by the above description, we develop a class of non-
autonomous schistosomiasis transmission model with incubation period: 
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( ) ( ) ( ) ( ) ( ) ( )( ) ( )

d
,

d 1

d
,

d 1

d
.

d

S t t S t I t
t t S t t I t t E t

t S t

E t t S t I t
t t t E t

t S t

I t
t E t t t d t I t

t

β
µ δ γ

α

β
µ ε γ

α

ε µ δ


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 (1.1) 

with initial value 

( ) ( ) ( )0 0, 0 0, 0 0.S E I> > >                   (1.2) 

Here ( )S t , ( )E t  and ( )I t  denote the size of susceptible, exposed, infec-
tious population at time t, respectively. ( )tΛ  is the growth rate of population, 
( )tµ  is the natural death rate of the population, ( )tβ  is the rate of the effi-

cient contact, ( )tδ  and ( )tγ  are the recovery rates of infectious population 
and exposed population, respectively, ( )d t  is the disease-related death rate 
and ( )tε  is the rate of developing infectivity at time t. 

The organization of this paper is as follows. In the next section, we present 
preliminaries setting and propositions, which we use to analyze the long-time 
behavior of system (1.1) in the following sections. In Section 3, we establish the 
extinction of the disease of system (1.1). In Section 4, we will discuss the perma-
nence of the infectious population. Our results are verified by numerical simula-
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tions in Section 5. 

2. Preliminaries 

In this section, system (1.1) satisfies the following assumptions: 
(H1): The functions ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , ,t t t t dt t tδ µ δ γ εΛ  are nonnegative, 

bounded and continuous on [ )0,+∞  and ( )0 0β > . 
(H2): There exist positive constants ( )0 1, 2,3i iω > =  such that 

( )2liminf d 0,
t

tt
s s

ω
β

+

→+∞
>∫  

( )2liminf d 0,
t

tt
s s

ω
µ

+

→+∞
>∫  

( )2liminf d 0.
t

tt
s s

ω+

→+∞
Λ >∫  

Adding all the equations of model (1.1), then we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )
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t t N t t t N t d t I t

t
t t d t N t

µ µ

µ

Λ − ≥ = Λ − −

≥ Λ − +
 

Let ( ) ( ) ( ) ( )t t tN S E It= + +  be the total population in system (1.1) with the 
initial value ( ) ( ) ( ) ( )0 0 0 0N S E I= + + . We denote by ( )*N t  the solution of 

( ) ( ) ( ) ( )
*

*d
d

N t
t t N t

t
µ= Λ −                   (2.1) 

with initial value (1.2), and denote by ( )N t∗  the solution of 

( ) ( ) ( ) ( )( ) ( )*
*

d
d

N t
t t d t N t

t
µ= Λ − +                (2.2) 

with initial value (1.2). Then 

( ) ( ) ( ) ( ) ( )*
* .t t t tN S tE I N≤ + + ≤  

By [22], we have the following result: 
Lemma 2.1. Suppose that assumptions (H1) and (H2) hold. Then: 
(i) there exist positive constants 0m >  and 0M > , such that 

( ) ( )

( ) ( )

* *

* *

0 liminf limsup

liminf limsup .
t t

t t

tm N N

M

t

N tN t
→+∞ →+∞

→+∞ →+∞

< ≤ ≤

≤ ≤ ≤ < +∞
            (2.3) 

(ii) the solution ( ) ( ) ( )( ), ,S t E t I t  of system (1.1) with the initial value (1.2) 
exists, is uniformly bounded and ( ) ( ) ( )0, 0, 0t tS E tI> > >  for all 0t > . For 
the solution ( ) ( ) ( )( ), ,S t E t I t  of system (1.1), we define 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )1, : 1

1
p S

G p t d
S

t t
t t t t

t p
β

δ γ ε
α

 
= + + − − + +  

 

and 

( ) ( ) ( ), : .W p t pE t tI= −                     (2.4) 

for 0p > , 0t > . In Sections 3 and 4 we use the following lemma in order to 
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investigate the longtime behavior of system (1.1). 
Lemma 2.2. If there exist positive constants 0p >  and 1 0T >  such that 
( ), 0G p t <  for all 1t T≥ , then there exists 2 1T T≥  such that ( ), 0W p t >  or 
( ), 0W p t ≤  for all 2t T≥ . 
Proof: Suppose that there does not exist 2 1T T≥  such that ( ), 0W p t >  or 
( ), 0W p t ≤  for all 2t T≥ . So we have 

( ) ( )pE s I s=                         (2.5) 

and 
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 (2.6) 

Substituting (2.5) into (2.6), we have 
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=

 

From Lemma 2.1, we have 0p >  and ( ) 0E s > , so ( ), 0G p s > , which is a 
contradiction with ( ), 0G p t <  for all 1t T≥ . The proof is completed. 

3. Extinction of Infectious Population 

In this section, we obtain conditions for focus on the extinction of the infectious 
population of system (1.1). 

Theorem 3.1 Suppose that assumptions (H1) and (H2) hold. If there exist 
0λ > , 0p >  and 1 0T >  such that 

( ) ( )
( )

( ) ( ) ( ) ( )( )*
1 *, : limsup d 0,

1
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R p p N s s s s s

N s
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  = − + + < 
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∫  (3.1) 

( ) ( ) ( ) ( ) ( )( )*
1

1, : limsup d 0
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tt
R p s s s d s s
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λ ε µ δ
+

→+∞

 
= − + + < 

 
∫     (3.2) 

and ( ), 0G p t <  for all 1t T≥ , then infectious population ( )I t  in system (1.1) 
is extinct. i.e. 

( )lim 0.
t

I t
→+∞

=  

Proof: From Lemma 2.2, we consider the following two cases: 
(i) ( ) ( )pE t tI>  for all 2t T≥ ; 
(ii) ( ) ( )pE t tI≤  for all 2t T≥ . 
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First, we consider the cases (i). From the second equation of system (1.1), we 
have 
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So we have 
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for all 2t T≥ . From (3.1), we see that there exist constants 1 0δ >  and 3 2T T>  
such that 
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for all 3t T> . From (3.3) and (3.4), we obtain ( )lim 0t E t→+∞ = . Therefore, it 
follows from ( ) ( )pE t I t> , that ( )lim 0t I t→+∞ = . Now we consider the case 

(ii). From ( ) ( )I t
E t

p
≤  for all 2t T≥  and the third equation of (1.1), we have 
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I t t t t d t
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Then the following expression 
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for all 2t T>  hold. Hence, by (3.2), there exist 2 0δ >  and 4 2T T>  such that 
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+
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 (3.6) 

for 4t T≥ . From (3.5) and (3.6), we have 

( )lim 0.
t

I t
→+∞

=  

4. Permanence of Infectious Population 

In this section, we obtain the sufficient conditions for the permanence of infec-
tious population. 
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Theorem 4.1. Suppose that assumptions (H1) and (H2) hold. If there are 
0λ > , 0p >  and 1 0T >  such that 

( ) ( )
( ) ( ) ( ) ( ) ( )( )2 *

*

, : liminf d 0,
1
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∫      (4.2) 

and ( ), 0G p t <  for all 1t T≥ , then ( )I t  in system (1.1) is permanent. 
Before we give the proof of Theorem 4.1, we first prove the following lemma. 
Lemma 4.1. If there exist constants 0λ > , 0p >  and 1 0T >  such that 

(4.1), (4.2) and ( ), 0G p t >  hold for all 1t T≥ . Then there exists 2 1T T>  so 
that ( ), 0W p t ≤  for all 2t T≥ . 

Proof: From Lemma 2.2, we consider the following two cases: 
(i) ( ), 0W p t >  for all 2t T≥ ; 
(ii) ( ), 0W p t ≤  for all 2t T≥ . 

Suppose ( ), 0W p t >  for all 2t T≥ , then we have ( ) ( )I t
E t

p
>  for all 

2t T≥ . From the third equation of system (1.1), we have 
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So we obtain 
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for all 2t T≥ . From the inequality (4.2), there exist positive constants 0η >  
and 0T >  such that 
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for all t T≥ . So the inequality (4.3) holds for all { }2max ,t T T≥ . Then  
( )limt I t→+∞ = +∞ , which contradicts with the boundedness of ( )I t  in Lemma 

2.1. Now, we prove Theorem 4.1 by using Lemma 4.1. 
Proof: For simplicity, let :m m= −  , :M M= +  , where 0>  is a con-

stant. In fact, Lemma 2.1 implies that for any sufficiently small 0> , there ex-
ists 0T >  such that 
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for all t T≥ . The inequality (4.1) implies that for any sufficiently small 0η > , 
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for all 1t T≥ . We define 
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0 0 0

: sup , : sup , : sup ,
t t t
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= = =  
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0 0 0
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≥ ≥ ≥
= = =  

Thus, by (4.5) and (4.6), for any sufficiently small 1η η<  and 2 1T T> , there 
exist very small i , { }1,2,3i∈  such that 
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for all 2t T≥ . First, we prove 
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In fact, if it is not true, there exists 3 2T T≥  such that 
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for all 3t T≥ . If ( ) 1E t ≥   for all 3t T≥ , then from (4.5) and (4.6), we have 
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for all 3t T≥ . It follows from inequality (4.9) that ( )limt E t→+∞ = −∞ . This con-
tradicts with the boundedness of solution. Hence, there exists an 1 3s T≥  such 
that ( )1 1E s <  . In the following we prove 
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Hence, there necessarily exists an ( )3 1 2,s s s∈  such that ( )3 1E s =   and 

( ) 1E t >   for all ( )3 2,t s s∈ . Let 0n ≥  be an integer such that  

( )2 3 2 3 2, 1s s n s nω ω∈ + + +   . By (4.9), we obtain 
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This contradicts with ( )2 1 2 21
E s M

M
β ω
α

+

> +
+ 



  . Hence, (4.11) is valid. By 

Lemma 4.1, there exists 4 1T s≥  such that ( ) ( ) ( ), 0W p t pE t I t= − ≤  for all 

4t T≥ . Therefore, by (4.10) and (4.11), we have ( ) ( ) 1 2E t I t k+ ≤ +   for all 

4t T≥ , then 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( )

( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( )
( ) ( )( )

( ) ( ) ( ) ( )( )

*

*

*

*

*

*

* 1 2

*

d
d 1

1

1

1

.
1

t I t N t E t I tE t
t t t E t

t N t E t I t

t I t N t E t I t
t t t E t

N t E t I t

t E t N t E t I t p
t t t E t

N t

t N t E t I t p
E t t t t

N t

t N t k p
E t t t t

N t

β
µ ε γ

α

β
µ ε γ

α

β
µ ε γ

α

β
µ ε γ

α

β
µ ε γ

α

− −
= − + +

+ − −

− −
≥ − + +

+ − −

− −
≥ − + +

+

 − − ≥ − + + 
+  

 − − ≥ − + + 
+  

 

 

We obtain 

( ) ( )
( ) ( )( )

( ) ( ) ( ) ( )( )
4

* 1 2
4

*

exp d .
1

t

T

s N s k p
E t E T s s s s

N s
β

µ ε γ
α

  − −  ≥ − + +  +   
∫

 
 

By (4.7) we obtain ( )limt E t→+∞ = +∞ . This contradicts with Lemma 2.1 
( ( )E t  is uniformly bounded). Hence, ( ) 2limsupt I t→+∞ >   is true. 

Next, we prove 

( ) 1liminf ,
t

I t I
→+∞

≥  

where 1 0I >  is a constant given in the following lines. By inequality (4.7), (4.8), 
(4.9) and Lemma 2.1, there exist ( )3 2T T≥ , 2 0λ > , 2 0η >  such that 3 2λ λ≥  
and 3t T≥  , we obtain 

( )
( ) ( )( ) ( ) ( ) ( )( )3

* 1 2 2
*

d ,
1

t

t

s
N s k p s s s s

N s
λ β

µ ε γ η
α

+   − − − + + > 
+  

∫  
 

 (4.12) 

( ) ( ) ( ) ( )( )1 3

1

2
1 d ,

1
t

t

s M
s s s s M

M
λ β

µ ε γ
α

+   − + + < − 
+  

∫ 





       (4.13) 
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( )1 3

1
2d .

t

t
s s

λ
β η

+
>∫                      (4.14) 

Let 0C >  be a constant satisfying 

( )
*

2
2 2 2 2 2

1
e

e
1 1

nm M
M M

η
µ ε γ λ ν η β ω

α α

+ + + +
− + +

> +
+ +
 

 


            (4.15) 

where ( ) 22
2 2e

dµ δ λ
ν

+ + +− + +
=  , *

2

Cn
λ

≤ . 

Because we have proved ( ) 2limsupt I t→+∞ >  , there are only two possibilities 
as follows: 

(i) There exists 4 3T T≥  , then as 4t T≥  , we obtain ( ) 2I t ≥  ; 
(ii) ( )I t  oscillates about 2  for all large t. 
In case (i), we have ( ) 2 1liminf :t I t I→+∞ ≥ = . In case (ii), there necessarily ex-

ist ( )1 2 3 2 1,t t T t t≥ ≥  such that 

( ) ( )
( ) ( )

1 2 2

2 1 2

,

, , .

I t I t

I t t t t

= =


< ∈




 

Suppose that 2 1 22t t C λ− ≤ + . Then 

( ) ( ) ( )
d

,
d
I t

d I t
t

µ δ+ + +≥ − + +                 (4.16) 

which implies 

( ) ( ) ( )( )
( )( )

1

2

1

2
2 1

exp d

e : .

t

t

d C

I t I t d s

I
µ δ λ

µ δ

+ + +

+ + +

− + + +

≥ − + +

≥ =

∫



 

for all ( )1 2,t t t∈ . Suppose that 2 1 22t t C λ− > + . Then 

( ) ( )( )22
2 1e

d C
I t I

µ δ λ+ + +− + + +
≥ =  

for all ( )1 1 2, 2t t t C λ∈ + + . Now we only prove ( ) 1I t I≥  for all  
[ )1 2 22 ,t t C tλ∈ + + . If ( ) 1E t ≥   for all [ ]1 1 2,t t t λ∈ + . By the second equation 

of system (1.1) and inequality (4.13), we have 

( ) ( ) ( ) ( ) ( ) ( )( )1 2

1
1 2 1 2 1 d

1
0,

t

t

s M
E t E t s s s s

M
M M

λ β
λ µ ε γ

α
+   + ≤ + + + + 

+  
< − =

∫ 



 

 
 

which is contradiction. Hence, there exists an [ ]4 1 1 2,s t t λ∈ +  such that ( )4 1E s <  . 
We obtain that for 4t s≥ , 

( ) 1 2 2 .
1

E t M
M

β ω
α

+

≤ +
+ 



 
                

 (4.17) 

By inequality (4.16), then for [ ]1 1 2, 2t t t λ∈ +  

( ) ( ) 22
2 2e .

d
I t

µ δ λ
ν

+ + +− + +
≥ =                   (4.18) 

Therefore, by the second equation of system (1.1) and inequalities (4.8), (4.17), 
(4.18), we obtain that 
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( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )
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

 

for all [ ]1 2 1 2, 2t t tλ λ∈ + + . By (4.14), we have 

( ) ( )( ) ( ) ( )( )

( ) ( )

( )( ) ( ) ( )
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1 2 1 2
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1 21 2
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∫

∫










     (4.19) 

Now, we suppose there exists 0 0t >  such that ( )0 1 2 22 ,t t C tλ∈ + + , then 
( )0 1I t I=  and ( ) 1I t I≥  for all [ ]1 0,t t t∈ . By Lemma 4.1, we assume that 1t  

is so large that ( ) ( ) ( ), 0W p t pE t I t= − ≤  for all 1 22t t λ≥ + . Hence, by (4.8), 
we further have 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( )
( ) ( )( )
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+  

 
 

for all ( )1 2 22 ,t t tλ∈ + . By (4.12) and (4.19), we have 
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Thus, by (4.17), we have 
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e
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1 1

nM m
M M

η
µ ε γ λβ ω ν η
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α α
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 
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
 

This contradicts with (4.15). Hence, ( ) 1I t I≥  for all [ ]1 2 22 ,t t C tλ∈ + + , 
which implies ( ) 1liminft I t I→+∞ ≥ . Thus, the infectious population of system 
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(1.1) is permanent. 

5. Numerical Simulations 

Numerical verification of the results is necessary for completeness of the analyt-
ical study. In Sections 3 and 4, we focused our attention on the dynamic analysis 
of system (1.1). In the present section, numerical simulations are carried out to 
illustrate the analytical results of system (1.1) by means of the software Matlab. 

In order to testify the validity of our results, in system (1.1), fix 1Λ = , 
( ) 0.3 0.1cost tβ = + , 0.3α = , 0.1µ = , 0.1δ = , 0.8γ = , 0.2= , 0.5d = . 

Then, from system (1.1), we have ( )*lim 1t N t→+∞ = . We easily verify that as-
sumptions (H1) and (H2) hold.We choose 1λ =  and 2p = . Then we have 

( ) ( )

( ) ( )

1
1 0

1*
1 0

0.3 0.1cos, : 2 0.1 0.2 0.8 d 0.84 0,
1 0.3

1, : 0.2 0.1 0.1 0.5 d 0.7 0.
2

tR p t

R p t

λ

λ

+ = − + + ≈ − < 
+ 

 = − + + = − < 
 

∫

∫
 

and 

( ) 1

0

0.3 0.1cos 1, : 2 0.1 0.5 0.8 1 0.2 d
1 0.3 2

0.1385 0.

tG p t t +  = + + − − +  +   
≈ − <

∫  

for all 0t > . From Theorem 3.1, we see that the infectious population of system 
(1.1) is extinct, see Figure 1. 

Fix 1Λ = , ( ) 0.6 0.1cost tβ = + , 0.6α = , 0.1µ = , 0.02δ = , 0.1γ = , 
0.5= , 0.02d = . We choose 1λ =  and 2p = . Then we have 

( ) ( )

( ) ( )

1
2 0

1*
2 0

0.6 0.1cos, : 2 0.1 0.5 0.1 d 0.05 0,
1 0.6

1, : 0.5 0.1 0.02 0.02 d 0.11 0.
2

tR p t

R p t

λ

λ

+ = − + + ≈ > 
+ 

 = − + + = > 
 

∫

∫
 

and 

( ) 1

0

0.6 0.1cos 1, : 2 0.02 0.02 0.1 1 0.5 d
1 0.6 2

0.06 0.

tG p t t +  = + + − − +  +   
≈ − <

∫  

for all 1t T> . From Theorem 4.1, we see that the infectious population of system 
(1.1) is permanent, see Figure 2. 

6. Conclusions 

In this paper we obtain new sufficient conditions for the permanence and ex-
tinction of system (1.1). We prove that our conditions give the threshold-type 
result by the basic reproduction number given as in (3.1) when every parameter 
is given as a constant parameter. Thus our result is an extension result of the 
threshold-type result in the autonomous system. Our results may contribute to 
predicting the disease dynamics, such as permanence and extinction of the infec-
tious population, when the phenomena are modeled as a nonautonomous system. 
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Figure 1. The trajectories of deterministic system (1.1) with ( )1 , 0R pλ < , ( )*

1 , 0R pλ < , ( ), 0G p t < . (a) Time se-
ries diagram of susceptible population, (b) Time series diagram of exposed population, (c) Time series diagram of 
infectious population, (d) phase diagram of three populations (susceptible, exposed, infectious), respectively. 

 

 

Figure 2. The trajectories of deterministic system (1.1) with ( )1 , 0R pλ > , ( )*
1 , 0R pλ > , ( ), 0G p t < . The mean-

ing of (a) ~ (d) is similar to Figure 1. 
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In Section 5, we provide numerical examples to illustrate the validity of our 
results. In those examples we show that conditions in Theorems 4.1 for the per-
manence and extinction of infectious population of system (1.1) are not satisfied. 
One may argue that our conditions for the permanence and extinction may not 
sharp. 

It is still an open problem that if the basic reproduction number for (1.1) 
works as a threshold parameter to determine the permanence and extinction of 
infectious population like in the autonomous system. 
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