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Abstract 

In this paper, we present the quantum mechanics as a reactive system. To 
show this, “holography” is introduced as a reactive system. Illumination of 
the object and reference beam create sources (hologram) that are activated 
by the same reference beam, which is reacted in a way to produce the im-
age. Controlled chemical system reacts to the external or internal change 
generated new sources (chemical product) that diffuse in the body envi-
ronment, and establishes a new equilibrium. The droplets bouncing on a 
vertical vibrating fluid bath that simulates the main quantum phenomena 
is a reactive system between droplets and vibrating fluid. It is shown that 
quantum mechanics is a probabilistic reactive system between quantum 
potential and pseudo kinetic energy in which an integral is the Fisher in-
formation. Information and probability are the key points in quantum 
mechanics. Quantum mechanics can be built by only the probability nor-
malization properties and associated information without assuming any 
other hypothesis. With joint probability and Fisher information by Euler 
Lagrange equation, we can find the quantum potential and the continuity 
equation. With only probability approach, it is possible to give a meaning 
to the Schrodinger equation without any thermo-dynamical model of 
quantum mechanics. The reactive system can be denoted as a morphoge-
netic system where the form is generated by some designed rules or prop-
erties. 
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1. Introduction 

In this paper, we introduce the meaning of the reactive system (morphogenesis) 
with the field and sources that react in a controlled way to the field in a way to 
generate needed constraint in the system sources field. First example of the reac-
tion system is the “holography” [1]. Another example is “Turing morphogenesis 
by chemical system and ‘diffusion’”. Designed constraints of the field structure 
can be generated by synchronic action of field control sources by designed rules 
(morphogenetic software). Sources and field interact in a controlled way to gen-
erate the wanted pattern or constraint. So field activates sources whose action 
generates the wanted structured field in a reactive system. Quantum mechanics 
simulation (by droplets bouncing experiments on a vertical vibrating fluid path) 
is presented as a reactive system. Vibrating fluid is an active environment that 
reacts with the droplets and the same droplets react again with the vibrating flu-
id. The morphogenetic process is created by the interaction between fluid and 
drop object. The droplets and vibrated fluid generated behaviors are similar to 
quantum mechanics. In this paper, we’d like to go beyond the case of droplets 
and vibrating fluid. Rather with the concept of probability only, we’ll show that 
there exists a pseudo kinetic energy in which the integral is the Fisher informa-
tion of which some minimum condition gives us the required quantum potential. 
Quantum potential and equation of the continuity for the probability show the 
possibility to justify the meaning of the Schrodinger equation and also all the 
quantum mechanics structure. So the joint probability in many-particles system 
is the fundamental and unique concept to justify the entanglement and many 
other phenomena in quantum mechanics.  

2. Morphogenetic Systems (Reactive System) 

Given this wave model  
2 2 2

2 2 2 2

1 0
x y c t
ρ ρ ρ∂ ∂ ∂
+ − =

∂ ∂ ∂
                    (1) 

The solution of it is a function of the space time variables, which is an initial 
value of the density ρ  (Figure 1).  

The homogeneous Equation (1) can substituted with a non-homogeneous eq-
uation 

( )
2 2 2

2 2 2 2

1 , ,S x y t
x y c t
ρ ρ ρ∂ ∂ ∂
+ − =

∂ ∂ ∂
                 (2) 

where S is an ordinary source that changes in the space and time. The source S 
superpose its ρ  density fields on the homogeneous solution of the wave Equa-
tion (1). The Equation (2) is a non-reactive system because the source S is com-
pletely independent from the density ρ  (Figure 2). 

All the previous equation describes the non-reactive sources.  
Now we make a transformation of the density by the transformation U. So we 

have  
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Figure 1. Wave generated by a drop of water. The drop generate the initial condition and 
after the wave move independently from the initial drop, we have no real sources. 
 

 
(a) 

 
(b) 

Figure 2. Wave superposition by different non-reactive sources. (a) Wave superposition 
by a non-reactive source; (b) Wave superposition by another non-reactive source. 
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US x y t U U
x y c t x y c t

US x y t U
x y c t

US A U

ρ ρ ρ

ρ ρ

ρ

ρ

∂ ∂ ∂
+ −

∂ ∂ ∂

   ∂ ∂ ∂ ∂ ∂ ∂
= + + − − + −   

∂ ∂ ∂ ∂ ∂ ∂   
  ∂ ∂ ∂

= + + −  
∂ ∂ ∂   

= +

   (3) 

Now this becomes a reactive system which is generated by the transformation 
U of the density given by Equation (2). The reactive sources are defined in this 
way 

[ ],RS A U ρ=                             (4) 

The Equation (3) is the “prototype of the morphogenetic system (reactive sys-
tem)” which organizes itself by the detection of the local field in (2). With the 
information of the local field, it generates new waves actively, which superpose 
with the previous field, to create the designed transformation U.  

Now, if the reactive sources are equal to zero, then in this case 
2 2 2 2 2 2

2 2 2 2 2 2 2 2

1 1 0U U
x y c t x y c t

ρ ρ
   ∂ ∂ ∂ ∂ ∂ ∂

+ − − + − =   ∂ ∂ ∂ ∂ ∂ ∂   
 

We have 
2 2 2 2 2 2

2 2 2 2 2 2 2 2

1 1U U US
x y c t x y c t

ρ ρ
   ∂ ∂ ∂ ∂ ∂ ∂

+ − = + − =   
∂ ∂ ∂ ∂ ∂ ∂   

 

For which when the source S change by U the density ρ  change in the same 
way. Without the reactive sources the density can change only in the same way 
of the sources. Only reactive sources can give to the field of waves any type of 
constrain or form. 

When the source depend on the field the commutator [ ],RS A U ρ=  is dif-
ferent from zero. We remark that to generate the reactive source is necessary a 
non-local connection among field and sources as in the holographic process. All 
the sources must be active in that same time (synchronic condition).  

Example of reactive sources process  
The first Figure 3(a) shows a contradictory or inconsistent state. In fact in the 

first figure we have a violin and we listen the real violin. In the second we create 
reactive sources that produce the same sound but without the violin. Now, we 
have a complex wave pattern that we have designed by the reactive sources. The 
Equation (3) is nothing but the equation for the morphogenetic of designed pat-
tern by reactive sources. 

3. Holographic Process as a Reactive System  

“Holographic process” is again a morphogenetic process for which a coherent 
light interfere with the object light. The superposition of the two optical field is 
memorized in a sensitive paper (hologram). So we print the hologram of the  
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(a) 

 
(b) 

Figure 3. Reactive sources [2]. 
 
light in the paper. This hologram [1] is a passive element. Now when we illumi-
nate with the coherence light in the paper, the passive hologram became a set of 
active sources of light that generate back the image of the object with its three 
dimensional form. So the image is created by a reaction of the sensitive paper to 
the coherent light. The active sources depends on the original field superpose to 
the coherent light. The holographic process creates reactive sources by means of 
which we can read or rebuilt the three dimension image of the object. First part 
of Figure 4, is WRITE or source building, second part (i.e. Figure 4(b)) is an ac-
tivation of the sources and generation of the object image that denoted as READ. 

4. Turing Morphogenetic Chemical Diffusion Reactive  
System 

We know that diffusion process destroy any structure in order to obtain an ho-
mogeneous density with time. “Turing” discovers that when we include in the 
diffusion process a chemical system with a network of chemical reactions, we 
generate in particular cases structures far from homogeneous states. When we 
want generate structures or forms we can design special chemical reactions as 
active sources of molecule. The chemical reaction with diffusion generate dif-
ferent wanted density of molecule in the body. These sources are created by 
chemical reactions so that they are dependent from the initial density of all the 
molecule in the system (building of the sources) after the generate molecules  
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(a) 

 
(b) 

Figure 4. (a) Holography recording or WRITE process that generate holo-
gram memory; (b) Activation of the source by a coherent beam or READ 
process that generate three dimensional image. 

 
gets diffused in all the system to generate a pattern or a form in all the system. 
The wanted structure or conceptual object is the engine that control the sources 
that in the diffusion process generate the image of the conceptual object. The 
Turing process is a morphogenetic system (reactive system) between the chemi-
cal reaction system (sources) and the field of the diffused molecule. In a mathe-
matical way, we have the diffusion process by sources independent from the ini-
tial density [3] 

2 2

2 2

1j j j
jS

D tx y
ρ ρ ρ∂ ∂ ∂

+ − =
∂∂ ∂

 

Suppose, for given the chemical reactions system 
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A B

B C

B C C

C D

→

→

+ →

→

                       (5) 

The muster equation for this chemical system is 

1

2
1 2 3

2
2 3 1

4

A
A

B
A B B C

C
B B C C

D
C

k
t

k k k
t

k k k
t

k
t

ρ
ρ

ρ
ρ ρ ρ ρ

ρ
ρ ρ ρ ρ

ρ
ρ

∂ = − ∂
∂ = − − ∂

∂ = + −
 ∂
∂ =
 ∂

                 5(a) 

So the diffusion equation can be written as 
2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

1 0

1 0

1 0

1 0

A A A

B B B

C C C

D D D

D tx y

D tx y
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ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

∂ ∂ ∂
+ − =

∂∂ ∂

∂ ∂ ∂
+ − =

∂∂ ∂

∂ ∂ ∂
+ − =

∂∂ ∂

∂ ∂ ∂
+ − =
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                  5(b) 

Now, we have the reactive system of equations, by applying 5(a) in 5(b) as  

( )

( )

( )

( )

2 2

12 2

2 2
2

1 2 32 2

2 2
2

2 3 12 2

2 2

42 2

1 0

1 0

1 0

1 0

A A
A

B B
A B B C

C C
B B C C

D D
C

k
Dx y

k k k
Dx y

k k k
Dx y

k
Dx y

ρ ρ
ρ

ρ ρ
ρ ρ ρ ρ

ρ ρ
ρ ρ ρ ρ

ρ ρ
ρ

∂ ∂
+ − − =

∂ ∂

∂ ∂
+ − − − =

∂ ∂

∂ ∂
+ − + − =

∂ ∂

∂ ∂
+ − =

∂ ∂

            (6) 

So we have two systems, the first one tells us the “behavior of the metabolite A, 
B, C, D when we change the time for the same position. The second one is a 
“reactive diffusion process” for which we can compute the metabolites for the 
same time as parameter with different positions. For the previous chemical sys-
tem, we have that “A” is eliminated from the system so we have a negative 
source for “A”. For “B”, we have a positive source that is originated from A, and 
also a negative source that eliminate B and generate C and 3C. For “C” this is 
generated from internal system of B and in the same time is eliminated to pro-
duce “D” which is included in the system. In conclusion, A is destroyed, D is 
generated by B and C and are oscillated elements that one time they are gener-
ated and in a second time they are destroyed. Because we have a diffusion 
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process the oscillation process alimented by A and D that is eliminated, move in 
the system and generate waves. For the oscillation reaction we have the space 
time behavior (Figure 5). 

5. Simulation of the Quantum Mechanics by Droplets  
Bouncing on a Vertical Vibrating Fluid Bath 

For the simulation of the quantum mechanics by droplets bouncing on a vertical 
vibrating fluid bath as we can see in this image (Figure 6).  

The simple equation of the droplets bouncing on the vertical vibrating fluid is 
[4] 

2

2

d d dsin
d dd

x x xm a w
t tt

ρ  + =  
 

                    (7) 

 

 
Figure 5. The Turing morphogenesis by diffusion and chemical reaction. 

 

 
Figure 6. Image of droplets bouncing on the vertical vibrating fluid by which 
we can simulate a lot of properties in quantum mechanics. 
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where 
dsin
dR
xS w
t

ρ  =  
 

 is a reactive source.  

In the polar coordinates we have 
2

2

d d d dsin cos
d d dd

x x x xm a i w w
t t tt

ρ ρ    + = +    
    

 

We remark that  
2

2

d d 0
dd

x xm a
tt

+ =  is the model for the “dumping process”.  

The reactive source gives the energy to the droplet to move under the action 
of the vibrating fluid. So we have a couple between the vibrating and the droplet 
bouncing. The energy move from the droplet to the fluid and the other way 
around. For the transformation U we have 

2

2

2 2

2 2

2 2

2 2

d d d d d d
d d d d dd

d d d d d
d d d d d

d d d d d d2
d d d dd d

d d d d d d2
d d d dd d

d d2
d d

Ux Ux Ux x Um a m aU ax
t t t t tt

x U x Um U x a U x
t t t t t

x U x U x Um U x a U x
t t t tt t

x x U x U UU m a m mx ax
t t t tt t

U xm ax
t t

 + = + + 
 

   = + + +   
   

   = + + + +   
  

 
= + + + + 

 

= +
2

2

d
d R

Um S
t

  + = 
 

           (8) 

Given the dumping solution x, we can found the solution for U. So we can 
compute the transformation by which we can know the transformation of x. We 
can also design the transformation U and with “x” we can compute the reactive 
sources to generate the transformation U. This is the process by which we can 
compute the sources to obtain the transformation of x. Many experiments shows 
the analogy between quantum mechanics and the reactive previous phenomena. 

6. Fisher Information and Joint Probability 

The probability to have joined set of data and states is given by the expression 

( ) ( ) ( )1 1, , , , , ,n m j kp v p s s q q p s q= =                  (9) 

where we have two type of variables. The variables qk are the internal or macro 
variable to the particle, and sj are external variables that generate noise to the 
states of the particle as in the Brownian movement. Any particle in quantum 
mechanics is in correlation with all the other particles in the universe that exter-
nally change the state of any particle. In the real world we must consider the 
state of all the universe, but because this is impossible, we perceive the other part 
of universe as noise. In agreement with the previous chapter we have the same 
separation of sources and variables (states). States and sources are joined by the 
probability in the multidimensional space. We know that for all possible states qk 
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we have the fundamental properties 

( ) 1 2, d d d 1j k np s q q q q =∫   

So we have 

( ) ( )

( )
( ) ( )

,
, d d

, 1 log, d d 0
,

j k
j k j j

k k

j k
j k j j

k kj k

p s q
p s q q q

q q

p s q pp s q q p q
q qp s q

∂∂
=

∂ ∂

∂ ∂
= = =

∂ ∂

∫ ∫

∫ ∫
 

With another derivatives we have 

2

2

2

2

log logd d

log log d

log log 1 d

log log log d

log log logd d

j j
h k h k

j
h k k h

j
h k k h

j
h k k h

j
h k k h

p pp q p q
q q q q

p p pp q
q q q q

p p pp p q
q q q q p

p p pp p q
q q q q

p p pp q p q
q q q q

 ∂ ∂ ∂ ∂
=  ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂
= + ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂
= + ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂
= + ∂ ∂ ∂ ∂ 

∂ ∂ ∂
= +

∂ ∂ ∂ ∂

∫ ∫

∫

∫

∫

∫ 0j =∫

 

where 

( ) ( )log , log ,log log d j
k h k h

p s q p s qp pI p q E
q q q q

∂ ∂ ∂ ∂
= =  

∂ ∂ ∂ ∂ 
∫       (10)  

is the required Fisher information.  

For instance, given the like-hood distributions ( )
2

2, e
x

F x σσ
−

=  with 1σ =  
we have as Figure 7 & Figure 8. 

It is easy to show that the Fisher information in the first case, i.e. Figure 7 is 
less than that of the Fisher information in the second case i.e. Figure 8. So it can 
be concluded that less is the variation of the data higher is the Fisher Informa-
tion. And also, more we are near to the deterministic process more high is the 
Fisher information.  

7. Quantum Mechanics as Reactive (Morphogenetic)  
Information System 

From the Fisher information we have 

( )1 2
log log, , , dn k

i j

S s s s q
q q
ρ ρρ ∂ ∂

=
∂ ∂∫               (11) 

where we define log

iq
ρ∂

∂
 as like the osmotic velocity that we see in Nelson [5] 

mechanics and log log

i jq q
ρ ρ∂ ∂

∂ ∂
 like a kinetic energy. For the minimum action  
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Figure 7. Like-hood distribution with lower Fisher information. 

 

 
Figure 8. Like-hood distribution with higher Fisher information. 

 
principle of the like kinetic energy we have the average value of the like kinetic 
energy as action S function of the external sources sj. The minimum variation of 
the action function of the external variables is given by the expression 

( )1 2
1 log log, , , d
2n k

i j

S s s s q
q q
ρ ρδ δ ρ ∂ ∂

=
∂ ∂∫              (12) 

Derivation of Euler-Lagrangian interpretation of Schrodinger Equation 
The Euler Lagrange equation the minimum variation of the Fisher entropy (12) 

is given by the expression 

2

1 log log 1 log log
2 2

1 log log 1
2

1 1 1
2

i j i j

i j

i j

i j

i j

x x x x
S

x
x

x x

x x
x

x x

x x x
x

µ

η

µ

µ

η

ρ ρ ρ ρρ ρ

δ
ρρ

ρ ρ

ρ ρ
ρρ

ρ ρ

ρ ρ
ρρρ

   ∂ ∂ ∂ ∂
∂ ∂      ∂ ∂ ∂ ∂∂   = −

∂∂ ∂ ∂
∂

  ∂ ∂
∂   ∂ ∂ ∂ ∂  = − ∂∂ ∂ ∂

∂ 
 
  ∂ ∂

∂   ∂ ∂ ∂ ∂ ∂  = − ∂∂ ∂ ∂ ∂
∂ 

 
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2

2 2

1 1 1 2
2

2π
i j i j

m Q kQ
x x x x h
ρ ρ ρ

ρρ
∂ ∂ ∂

= − = =
∂ ∂ ∂ ∂  

 
 

 

here, Q is the quantum potential and h is the Plank constant.  
In fact we have 

2 2

2 2
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1 3 1 2 1 1
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22 2 2
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For a set of states we have 
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= ∇ ∇ − ∇      

   

= ∇ −

 

i.e. 21 1
2

Q u u
k

= ∇ −                       12(i) 

where u is the pseudo osmotic velocity [5]. As we know from quantum potential 
is possible to generate again the Schrodinger equation in this way 

2

2

2

1 1 22π
2 2

1  0
2

i j
i j i j

i j

h
S p p V
t m m x x x x

S p p V Q
t m

ρ ρ ρ
ρρ

 
   ∂ ∂ ∂ ∂ + + + −  ∂ ∂ ∂ ∂ ∂ 

∂
= + + + =
∂

 

Now for  
2R ρ=  

and the Plank constant is equal to 1 we have 
21

2
RQ

m R
∇

= −  

So for S mv p∇ = =  we have 
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2 21 1 0
2 2 2i j

SS S Rp p V Q V
t m t m m R

∇  ∂ ∂ ∇
+ + + = + + + − = ∂ ∂  

      12(ii) 

where Q is the Bohm quantum potential that is a consequence for the extreme 
condition of Fisher information (minimum or maximum condition for the 
Fisher information).  

Now we write the continuity equation for the probability 2Rρ =  in this way 

( ) 0v
t
ρ ρ∂
+∇ =

∂
 

That can write in this way 

( ) ( )
2

2 2 22 2 2 0R R RR v R R v R R Rv R v
t t t

∂ ∂ ∂
+∇ = +∇ = + ∇ + ∇ =

∂ ∂ ∂
 

For 0R ≠  we divide the previous expression for 2R so we have 

( )

2 12 2 0
2

1 1 2 0
2 2

R RR R Rv R v Rv R v
t t

R RRv R v Rmv R mv
t t m

∂ ∂
+ ∇ + ∇ = +∇ + ∇ =

∂ ∂
∂ ∂

+∇ + ∇ = + ∇ + ∇ =
∂ ∂

 

Because S mv p∇ = =  we have 

( )21 1 12 2 0
2 2 2

R RR S R S R S R S
t m t m

∂ ∂ + ∇ ∇ + ∇∇ = + ∇ ∇ + ∇ = ∂ ∂ 
 

Now we combine the continuity equation of the probability with the  

( )
2 2

21 1 2 0
2 2 2
SS R RV i R S R S

t m m R t m

 ∇∂ ∇ ∂  + − + + + ∇ + ∇ ∇ =  ∂ ∂  
 

where the real part is consequence of the Fisher information and the imaginary 
part is due to the continuous equation for the probability. 

Now for the equation eiSRψ = , from the previous equation for S we have the 
Schrodinger equation. [6] [7] 

21 with 1
2 2π

hi V
t m
ψ ψ∂  = − ∇ + = ∂  

 

In conclusion we can make a reverse process used by Schrodinger we can 
generate the Schrodinger equation by the information space and the continuity 
equation of the probability. In this way the Hilbert mechanism can be explained 
only by probability normalization constraints. 

8. Quantum Mechanics as a Reactive System by Like Kinetic  
Energy and Quantum Potential 

Given the terms in (10) 
2

1 2
log log log,
h k k h

p p pF F
q q q q

∂ ∂ ∂
= =
∂ ∂ ∂ ∂

               (13) 

We compare the classical reaction process between the kinetic energy of a par-
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ticle with the potential energy with the quantum potential and the pseudo kinet-
ic term in a way to show that also the quantum mechanics is a reactive system 
like the particle in the field. 

The terms (13) can be write in this way 
2 2

1 2

2 2

log log 1 1 1

log log 1
h k h k h k h k h k

k h k h

p p p p p pF
q q q q q p q q q p q qp

p p p pF
q q q qp

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= = = = − + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
∂ ∂ ∂ ∂

= =
∂ ∂ ∂ ∂

 

The sum of the two functions is 
2 2

1 2 2 2

2

2 2

1 1 1 1

1 1 1 1 1
2 2

h k h k k h h k

h k h k h k

p p p p p pF F F
q q p q q q q p q qp p

p p p p pF
p q q q q q qp p

∂ ∂ ∂ ∂ ∂ ∂
+ = = − + + =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂
= − +

∂ ∂ ∂ ∂ ∂ ∂

 

where we have 
2

2

1 1 1
2h k h k

p p pkQ
p q q q qp

∂ ∂ ∂
= −

∂ ∂ ∂ ∂
 

And pseudo kinetic energy is 

1 log log
2 h k

p pK
q q

∂ ∂
=

∂ ∂
 

So we have 
21

h k

pkQ K
p q q

∂
+ =

∂ ∂
 

The term 
2

h k

p
q q
∂

∂ ∂
 is the Hessian of the probability. We remember that the  

eigenvalues of the hessian give us the stable condition of the quantum system. If 
the eigenvalue is positive we have the stable condition when the eigenvalue is 
negative the state is unstable. Only the stable condition for the energy is possible 
in quantum system. Given  

212 2
h k

pG K kQ K kQ kQ kQ
p q q

∂
= − = + − = −

∂ ∂
 

When we substitute the values we have 
2

2 2

2

2

2 2

2

2 2

2

1 1 1 1 1
2 2

1 1 12
2

1 1 1 12
2

1 1 log

h k h k h k

h k h k

h k h k h k

h k h k h k

p p p p pG
p q q q q q qp p

p p p
p q q q qp

p p p p
p q q p q q q qp

p p p p
p q q q q q qp

   ∂ ∂ ∂ ∂ ∂
= − +   ∂ ∂ ∂ ∂ ∂ ∂   

 ∂ ∂ ∂
− − ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂
= − − ∂ ∂ ∂ ∂ ∂ ∂ 

∂ ∂ ∂ ∂
= − + = −

∂ ∂ ∂ ∂ ∂ ∂
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In conclusion we have the reactive system 
2 log

h k

pG L K kQ
q q

∂
= = − = −

∂ ∂
 

That is comparable with the (12) 

( )

2

2

log

and

log log logd d d d

h k

k k k k
h k k h

pG K kQ
q q

p p pS K kQ q q q L q
q q q q

ρ ρ ρ

∂
= − = −

∂ ∂

∂ ∂ ∂
= − = − = =

∂ ∂ ∂ ∂∫ ∫ ∫ ∫

 

So the classical action potential that is the difference between kinetic energy 
and potential energy can be found also in quantum mechanics by the like kinetic 
energy and quantum potential.  

9. Conclusion 

In this paper, we present reactive systems (morphogenetic system) in different 
contexts. The first is the wave reactive system, the second is the Holographic 
system, the third is the diffusion and chemical morphogenetic system and the 
last one is the walking droplets [4] [8]. With the inspiration taken from the con-
cept of “Bijective methodology” [9] [10], we can present the quantum mechanics 
as a reactive system. At the end of the presentation of the different reactive sys-
tems, we introduce the Fisher information from the joint probability function of 
the noise sources and physical states. With the minimum condition of the Fisher 
information which can be satisfied by Euler Lagrange equation and the quantum 
potential, after the continuity equation of the probability we can obtain the 
Schrodinger equation that is a direct consequence of the minimum Fisher in-
formation. We remark that Schrodinger equation does not use any thermody-
namical model as Brownian model. We establish an analogy between classical 
mechanics where we define the “Lagrangian” by kinetic energy and the potential 
energy and quantum mechanics where we define a like kinetic energy and 
quantum potential. So we can define a Lagrangian and action for quantum me-
chanics in the same way as the classical system. In this way, the quantum me-
chanics became a reactive system between like kinetic energy and the field of 
quantum potential. In this way, Quantum mechanics may become a pure proba-
bilistic phenomenon where the wave function and Hilbert space are only a ma-
thematical instrument to compute the joint probability in different particles 
structures. The entanglement in this quantum reactive system is the most im-
portant phenomenon that is described by the joint probability.  
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