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In this paper we study the solution of random linear oscillatory equation

ing the method. Finally, the time evolution of the mean, variance and standard
deviation has been plotted for a range of values of the natural frequency w
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http://creativecommons.org/licenses/by/4.0/ The Adomian decomposition technique was firstly introduced by Adomian in

1975. This technique can be used to solve differential, integral, algebraic and

many other equations (linear or nonlinear) [1]-[12]. The method is based on a

suggestion by Adomian G. that the solution can be decomposed into compo-
nents. In the coming sections we will see that the Adomian decomposition me-
thod is also very convenient computationally and offers some significant advan-
tages [13]-[20]. The Adomian decomposition method is not a perturbation pro-
cedure, so no assumption concerning the size of randomness is necessary, where
each term from the decomposed solution depends only on the preceding terms.
A little work in the convergence of the procedure had been done [21] [22] [23]
[24] [25].

2. Problem Formulation

In this paper, we focus on solving the following Solving the linear oscillatory

problem
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i+w'x=F(;0) (1)
F(t;a)):e(t)[l+gn(t;a))] (2)
under stochastic excitation F (t;a)) with the deterministic initial conditions
x(O) =X, x(O) =X,

where

w: frequency of oscillation,

& : deterministic nonlinearity scale,

we(Q,0,P): a triple probability space with Q as the sample space, where
ois a o-algebra on event in Q and Pis a probability measure, and n(t;a)) is

a white noise with the following properties:
En(t;0)=0 (3)
En(t;;0)-n(t;0)=cov[n(4),n(t,)]=56(t —1,) (4)

By obtaining the P.d.f. of x(t), the average and variance of the solution
process in terms of t: time, the general solution is

. ‘
x(1)=x, coswt+x—w‘jsinwt+é}[sinw(t—s)F(s;q)ds (5)

The ensemble average is given by

X . 1.
Ex(t)= g,y = x, cos wt+;°sm wt+;£sm w(t—s)EF (s;q)ds

(6)
: t
= X, COS Wt + 2% ginwe +ljsin w(r—s)e(s)ds
w @5
The covariance takes the form
cov(x(1).x(1,))= E(x(tl )- :Ux(tl))'(x(tz )- /Jx(tz))
(92 4 (7)
= —zjsin w(t, —s)sinw(r, —s)e’ (s)ds
W
The variance is
2t
o2 (1) =25 [sin> w(t —s)* (s)ds (8)

0

Due to linearity and the deterministic properties of x,,%, and the frequency

wwe obtain a Gaussian solution process:

,1["(’)**‘»-(1)]2
1 2 T
S =—F=¢ " )

- t
where 11, = x, cos wt +x—a‘;sin wt+%.[sin w(t—s)e(s)ds.
0
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21
:—zj sin® w(t—s)e’ (s)ds
0

Equation (9) represents a closed form solution of problem (1) with random

loading condition.

3. The Adomian Decomposition Method
Case-study:

Let us consider
F(t,w)=¢" +en(t;0) (10)
In the Adomian decomposition method, differential operators are decom-
posed. Thus Equation (1) is rewritten in the following form:

(L+R)x=F(t;q) (11)
where:
L= % and R =0’
Hence,
Lx=F(t;q)—Rx (12)
Solving for xwe obtain
x=L"F(t;q)—L"'Rx+¢(t) (13)

where ¢(t ) is the solution of Lx=0

2
szO:%zO:x:at—i-c (14)
t

Subject to the initial conditions:
#(1) = x, + Xt (15)
Thus, the solution of equation takes the form:
tt tt
x=x, + Xyt + [ [ F(t:q)dede —w* [ [ x(¢) dedt (16)
00 00
We now assume that the solution can be written in the following form:

x(t):x(o) (t)+x(1)(l)+---:2x(i) (t) (17)

Substituting (17) in (16) we obtain:

© i tt w bt
Yl = iyt + [ [ F(rq)dide— 0y [ [ 21 (1) deds (18)
i=0 00 =000
By matching the boundaries, we obtain:
tt
KO (6)=x, + 3yt + [ [ F(t:q)dede (19)
00
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x (t) = —w2jjx(0)dtdt (20)
00
tt
x () =—w? [ [ £ (¢) dedt (1)
00
And the nth term will be:
tt
2 () =—w? [ [ (1) dedt, n>1 (22)
00
By applying this procedure to equation, we obtain:
0 ) 1 2, F 2 -l
X (t)=—wx02—!—w xoi_WL L'F(t;q) (23)
x(z)(t)=w4x i+ whx i+W4L’1L’1L’1F(t' ) (24)
* 41 ’ 51 e
) o 10 o 1 6(7-1\* )
X (t):—w xoa—w xoa—w (L ) F(t,q) (25)
(4) g 1° g, O 8 (r-1\° .
X (t):wxog-i-w xog-i-w (L ) F(t,q) (26)
The nth term is:
(n) 2n > 2n t2"+1 2n 1\
xX(t)=w xo—n+w xo(2n+1)!+w (L ) F(t;q) (27)
Thus,
x(£)=x 45V 4 2@ 4
2 4 . 3 5
2! 4! 10} 3! St
. (28)
2w - L—lz 5 L713_ 7 L714 9 L*IS :|F ;
+W|:W w( )+w( ) w( )+w( )—i— (tq)
= x, cos ot + L sin a)t+i[a)L’1 -’ (L’I)Z}F(t;q)
10} 0]
where,
frof P =) p @)
u)du" = u)du
0 0 0 (n—l)'
tt t
LIF(t,q):”F(t;q)dtz:J-(t—u)F(u;q)du (30)
00 0
- trtt . ’(t—u)3
L'L F(t;q):ﬂ!{F(t,q)dt :{ 3 F(u;q)du (31)
N trtitt . ’(t—u)s
L'L'L'F(t;q9)= F(t;q)dt” = F(u;q)du (32)
oo -5 e
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Figure 1. The mean of x(¢) at w=1.
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Figure 3. The covariance of x(f) at £=0.l,w=1.
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Figure 4. The covariance of x(1) at ¢=03,w=1.
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Figure 5. The mean of x(¢) at @=0.5.
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Figure 6. The variance of x(¢) at @=0.5.
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Figure 8. The covariance of x(f) at £=03,0=0.5.

. t
x (1) =x, coswt +%°sin wt+%{w}[(t —u)F(u;q)du

. t —_— 3
=X, coswt+ﬁsinwt+lj[w(t—u)—M+~-}F(u;q)du
)

W

i 1k
= t+— t+— t—u)F(u;q)d
Xpcoswe +— sinw +Wz[smw( u)F(u;q)du
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Example:
Let us consider

F(t;a)):e(t)[1+gn(t;q)] (34)

in the previous case-study. By using the decomposition method, the following

results are obtained (Figures 1-8).
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