
Open Journal of Business and Management, 2019, 7, 427-446 
http://www.scirp.org/journal/ojbm 

ISSN Online: 2329-3292 
ISSN Print: 2329-3284 

 

DOI: 10.4236/ojbm.2019.72029  Mar. 7, 2019 427 Open Journal of Business and Management 
 

 
 
 

An Inventory Model for Ramp-Type Demand 
with Two-Level Trade Credit Financing Linked 
to Order Quantity 

Hui-Ling Yang 

Department of Computer Science and Information Engineering, Hungkuang University, Taiwan 

 
 
 

Abstract 
In the traditional economic order quantity (EOQ) model, it is assumed that 
the demand rate is constant. Thereafter, many researchers developed inven-
tory model with time-varying demand to reflect sales in different phases of 
product life cycle in the market. However, in practice, especially for fashiona-
ble and high-tech product, the demand rate during the growth stages of its 
life cycle increases significantly with linear or exponential in the growth stage 
and then gradually stabilizes, and remains near constant in the maturity 
stage. It can be taken a ramp-type demand rate into account. Furthermore, in 
today’s supply chain, a supplier usually offers a permissible delay in payment 
to retailers to encourage them to buy more products, and a retailer in turn 
provides a downstream trade-credit period to its customers. Therefore, this 
paper focus on 1) ramp-type demand rate and 2) the upstream and down-
stream trade credit financing linked to order quantity for retailer is consi-
dered. The objective is to find the optimal replenishment cycle and order 
quantity to keep the total relevant cost per unit time as minimum as possible. 
The study shows that in each case discussed, the optimal solution not only 
exists but also is unique. Numerical examples are provided to illustrate the 
proposed model. Finally, some relevant managerial insights based on the re-
sults are characterized. 
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1. Introduction 
1.1. Inventory Models with Ramp-Type Demand Rate 

In present, high-tech manufacturing is the backbone to the Taiwan economy. 
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During the growth and maturity stages of a high-tech product life cycle, the de-
mand rate increases significantly with linear or exponential in the growth stage 
and then remains near constant in the maturity stage. The term “ramp type” is 
used to represent such a demand pattern. Wu [1] developed an EOQ inventory 
model for Weibull distribution deterioration items with ramp type demand rate 
and partial backlogging. Manna and Chaudhuri [2] also developed an EOQ 
model with ramp type demand rate in which time dependent deterioration rate 
and shortages were considered. Agrawal et al. [3] provided an inventory model 
with deteriorating items, ramp-type demand and partially backlogged shortages 
for a two-warehouse system. Other related research articles on this field can be 
found in Deng [4], Deng et al. [5], Panda et al. [6] [7], Skouri et al. [8] [9] and 
their references. 

1.2. Inventory Models with Permissible Delay in Payment 

The traditional inventory economic order quantity (EOQ) model assumes that a 
buyer must pay for items immediately after receiving them. However, to stimu-
late sales quantity a supplier often offers a retailer a permissible delay in pay-
ment. Thus, to offer a certain fixed credit period for his/her retailer is an alterna-
tive incentive policy to quantity discount. In early research work, Goyal [10] de-
veloped an EOQ model under conditions of permissible delay in payments, and 
ignored the difference between the selling price and the purchase cost. Shah [11] 
considered a stochastic inventory model when delays in payments are permissi-
ble. Aggarwal and Jaggi [12] extended Goyal’s model to consider the deteriorat-
ing items. Jamal et al. [13] further generalized Aggarwal and Jaggi’s model to al-
low for shortages. Teng [14] amended Goyal’s model by considering the differ-
ence between unit price and unit cost, and found that it makes economic sense 
for a well-established buyer to order less quantity and take the benefits of the 
permissible delay more frequently. Skouri et al. [15] proposed an inventory 
model with ramp type demand rate under permissible delay in payment. Teng et 
al. [16] established an economic order quantity model with trade credit financ-
ing for non-decreasing demand. Similarly, there are also many related articles 
published in such field with different practical consideration. 

1.3. Inventory Models with Two-Level Trade Credit 

Huang [17] extended Goyal’s model to develop an EOQ model in which the 
supplier offers the retailer a permissible delay period (i.e., an upstream trade 
credit), and the retailer in turn provides a trade credit period (i.e., a downstream 
trade credit) to its customers. Teng and Goyal [18] complemented the short-
coming of Huang’s model and proposed a generalized formulation. Teng et al. 
[19] obtained the retailer’s optimal ordering policy when the supplier offers a 
progressive permissible delay in payments. Chen and Teng [20] provided a re-
tailer’s optimal ordering policy for deteriorating items with maximum lifetime 
under supplier’s trade credit. Cheng and Teng [21] proposed an inventory and 
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credit decision for time-varying deteriorating items with up-stream and down- 
stream trade credit financing by discounted cash flow analysis. Shah [22] pro-
vided a three-layered integrated inventory model for deteriorating items with 
quadratic demand and two-level trade credit financing. Rameswari and Uthaya-
kumar [23] proposed an integrated inventory model for deteriorating items with 
price-dependent demand under two-level trade credit policy. Several related ar-
ticles can be found in Goyal et al. [24], Huang and Hsu [25], Min et al. [26] and 
their references. 

1.4. Inventory Models with Trade Credit Linked to Order Quantity 

Sometimes, to encourage more sales, supplier offer retailers a trade credit period 
with conditional permission, if a retailer orders more than a predetermined quan-
tity. Chang et al. [27] developed an EOQ model for deteriorating items under sup-
plier credits linked to ordering quantity. Chung and Liao [28] provided lot-sizing 
decisions under trade credit depending on the ordering quantity. Ouyang et al. [29] 
proposed an economic order quantity for deteriorating items with partially per-
missible delay in payments linked to order quantity. Kreng and Tan [30] proposed 
an inventory model under two levels of trade credit depending on the order quan-
tity. Teng et al. [31] provided an inventory model for increasing demand under 
two levels of trade credit linked to order quantity, Recently, Sash and Carde-
nas-Barrón [32] provided an inventory model which is a retailer’s decision for or-
dering and credit policies with deteriorating items when a supplier offers or-
der-linked credit or cash discount. Ting [33] provided some comments on the 
EOQ model for deteriorating items with conditional trade credit linked to order 
quantity. Similarly, other related research articles can be found in their references. 

In contrast to the above papers mentioned, this paper is extended in the fol-
lowing two ways: 1) a constant demand (or increasing demand) is extended to a 
ramp-type demand function, in which the demand increases linearly and then 
stays constant at the end, and 2) the supplier provides its retailer with a per-
missible delay link to order quantity while the retailer also offers a downstream 
trade credit period to its customers. We establish several fundamental theoretical 
results and obtain its optimal solution. We then provide several numerical ex-
amples to illustrate the proposed model and present some important and rele-
vant managerial insights. 

The rest of the paper is structured as follows. Section2 introduces the notation 
and assumption needed to develop the proposed inventory model. Section 3 for-
mulates the model. Section 4 discusses some theoretical results and provides an 
algorithm to find the optimal solutions. Section 5 provides numerical examples to 
illustrate the proposed model. Section 6 concludes the results and presents some 
managerial insights. Further, provides some future research directions. 

2. Notation and Assumptions 

The mathematical model of the inventory problem here is based on the follow-
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ing notation and assumptions: 

2.1. Notation 

The following notation is used throughout this paper. 
D(t) = the demand rate at time t, we here assume that D(t) is deterministic at 

a constant rate after a period of time µ , at initial the demand rate is increasing. 
i.e., 

( )
( )
( )

,       

,      

f t t
D t

f t

µ

µ µ

<= 
≥

, where ( )f t a bt= + , 0a > , 0b > . 

dQ  = the minimum order quantity at which the delay is permitted by the 
supplier. 

dT  = the time interval that dQ  units are depleted to zero due to demand. 
M = the retailer’s upstream credit period offered by supplier in years. 
N = the retailer’s downstream credit period offered to its buyers in years. 
T = the length of replenishment cycle in years. 
Q = the order quantity. 
A = the replenishment cost per order. 
h = the holding cost per unit per unit of time excluding interest charge. 
p = the unit selling price. 
c = the unit purchasing cost. 

eI  = the interest earned per dollar per year by the retailer. 

pI  = the interest paid per dollar per year by the retailer. 
( )I t  = the inventory level at time t. 

( )ijTC T  = the total relevant cost per unit time for Case i and subcase j, 
1,2,3,4i =  and 1,2j =  or 3, which is a function of T. 

*
ijT  = the optimal replenishment cycle time of ( )ijTC T  for Case i and sub-

case j, 1,2,3,4i =  and 1,2j =  or 3. (i.e., *T ). 
*
ijQ  = the optimal order quantity for Case i and subcase j, 1,2,3,4i =  and 
1,2j =  or 3. (i.e., *Q ). 

2.2. Assumptions 

Next, the following assumptions are made to establish the mathematical inven-
tory model. 

1) Replenishment rate is instantaneous. 
2) Shortages are not allowed to occur. 
3) In today’s global competition, many retailers have no pricing power. As a 

result, the selling price is hardly changed for many retailers. In addition, to avoid 
lasting price competition, we may assume without loss of generality that the 
selling price is constant in today’s global competition and low inflation envi-
ronment. 

4) The objective here is to minimize the total relevant cost per unit of time 
until the demand is no longer increasing. 

5) When 0M N− > , the buyer deposits sales revenue into an interest bearing 
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account from time N to M. At the end of the permissible delay, the buyer pays 
off all units sold by time M N− , uses uncollected and unsold items as collateral 
to apply for a loan, and pays the bank a certain amount of money periodically 
until the loan is paid off at time T N+ . 

3. Mathematical Formulation 

Based on the above assumptions, the inventory system here is as follows. At the 
beginning (i.e., at time t = 0), the retailer orders and receives Q units of a single 
product from the supplier. The inventory level is depleted gradually in the in-
terval [0, T] due to increasing demand from customers. At time t = T, the in-
ventory level reaches zero. Hence, the inventory level at time t, I(t), can be de-
scribed by the following differential equation: 

( ) ( )

( ) ( )

d
, 0

d
d

,
d

I t
f t t

t
I t

f t T
t

µ

µ µ

= − ≤ ≤

= − ≤ ≤
                   

 (1) 

with the boundary condition ( ) 0I T = . The solution to (1) is 

( ) ( ) ( ) ( )( )
( )( )

2 2 2 , 0

,

I t a t b t a b T t

a b T t t T

µ µ µ µ µ

µ µ

= − + − + + − ≤ ≤

= + − ≤ ≤
      (2) 

Thus, the retailer’s order quantity per cycle is 

( ) ( )( )20 2Q I a b a b Tµ µ µ µ= = + + + −               (3) 

From Equation (3), we can obtain the time interval dT  by using the following 
equations: 

( )( )2 2d dQ a b a b Tµ µ µ µ= + + + −                 (4) 

Next, based on whether the order quantity larger than the predetermined 
quantity or not, we have the following two cases: 1) dT T<  2) dT T≥ . 

3.1. dQ Q<  (i.e., dT T< ) 

In this case, the retailer’s order quantity is less than dQ . Hence, the permissible 
delay in payment is not allowed (i.e., M = 0). Meanwhile, the retailer offers a 
permissible delay of N to its buyers. Consequently, the retailer must fiancé all 
items ordered at time 0, and start to payoff the loan after time N. For details, 
please see Figure 1. Thus, the interest paid by the retailer is as follows. There are 
two cases to be discussed. 1) 0 N Tµ< < <  2) 0 N Tµ< < <  

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0

0

0

0 d d

0 d 0 d d ,                if 0

0 d d d ,         if 0

N T N
p N

N T N
p N

N T N
p N

cI I t I t N t

cI I t I t I t N t N T

cI I t I t N t I t N t N T

µ

µ

µ

µ

µ

µ

+

+

+

 + −  
  + + − < < <   = 

  + − + − < < <  

∫ ∫

∫ ∫ ∫

∫ ∫ ∫

 (5) 

Hence, the retailer’s total relevant cost per unit time is 
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Figure 1. Graphical representation for dT T< . 
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  (6.2) 

3.2. dQ Q≥  (i.e., dT T≥ ) 

In this case, based on the supplier’s trade credit M, and the last customer’s pay-
ment time T + N, we discuss the following three cases: 1) 0 M N< <  2)  
M N≥  and M T N≤ +  3) M N≥  and M T N> + . 

3.2.1. The Case of 0 M N< <  
Since 0 M N< < , there is no interest earned for the retailer. In addition, the 
retailer has to finance all items ordered after time M at an interest charged pI  
per dollar per year, and start to pay off the loan after time N as shown in Figure 2. 
Consequently, the interest charged is given by 

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 d d

0 d d ,                            if 0

0 d 0 d d ,        if 0

0 d d d ,   if 0
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µ
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µ

µ
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+

+
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 = + + − < < < <  
 + − + − <  

∫ ∫

∫ ∫

∫ ∫ ∫

∫ ∫ ∫ N Tµ






 < < <


 (7) 
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Figure 2. Graphical representation for dT T≥  and M N< . 
 

Hence, the retailer’s total relevant cost per unit time is 
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 (8.3) 

3.2.2. The Case of M N≥  and M T N≤ +  
When M T N≤ + , the retailer cannot receive the last payment before the per-
missible delay time M. As a result, the retailer must finance all items sold after 
time ( M N− ) at time M, and pay off the loan until T + N at an interest rate of 

pI  per dollar per year as shown in Figure 3. Therefore, the interest paid is given 
by 
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Figure 3. Graphical representation for dT T≥ , 0 N M< ≤  and M T N≤ + . 
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On the other hand, the retailer starts selling products at time 0, and receiving 
the money at time N. Consequently, the retailer accumulates sales revenue in an 
account that earns eI  per dollar per year starting from N through M as shown 
in Figure 3. Therefore, the interest earned is given by 
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As a result, the retailer’s total relevant cost per unit time is 
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 (11.3) 

3.2.3. The Case of M N≥  and M T N> +  
Since the order quantity is larger than or equal to dQ  (due to dT T≤ ), the re-
tailer receives the permissible delay in payment. If T N M+ < , then the retailer 
receives all payments from its customers by the time T + N which is before the 
permissible delay time M. Hence, the retailer has the money to pay the supplier at 
time M, and does not have the interest charges. In the meantime, the retailer rece-
ives the revenue and deposits into a bank to earn interest as shown in Figure 4. 
The interest earned by the retailer is 
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 (12) 

Hence, the retailer’s total relevant cost per unit time is 
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Figure 4. Graphical representation for dT T≥ , 0 N M< ≤  and M T N> + . 
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4. Theoretical Results 

To minimize the total relevant cost, taking the first and second order derivatives 
of ( )ijTC T , 1,2,3,4i = , 1,2j =  or 3 with respect to T and let  

( )d d 0ijTC T T = , we obtain the following results. 
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Theorem 1. For each i, j, there exists a unique optimal cycle length ijT  which 
minimizes ijTC , 1,2,3,4i = , 1,2j =  or 3. 

Proof: See Appendix. 
It is not easily to find the closed-form of T from the equation of each first de-

rivative which is equal to zero. However, we can use numerical method to find 
the solution. From Theorem 1, we know that the solution minimizes the total 
relevant cost function is also a global minimum. By ensuring the solution satis-
fies the condition in each case, the following theoretical result is obtained. 

Corollary 1. For dQ Q< , 
(a) if 11 dT T<  and 110 N Tµ< < < , then *

11T T= . 
(b) if 12 dT T<  and 120 N Tµ< < < , then *

12T T=  
Corollary 2. For dQ Q≥ , 
(a) 0 M N< < , 
(i) if 21 dT T≥  and 210 M N Tµ< < < < , then *

21T T= . 
(ii) if 22 dT T≥  and 220 M N Tµ< < < < , then *

22T T= . 
(iii) if 23 dT T≥  and 230 M N Tµ< < < < , then *

23T T=  
(b) 0 N M< ≤  and M T N≤ + , 
(i) if 31 dT T≥  and 310 N M T Nµ< ≤ < ≤ + , then *

31T T= . 
(ii) if 32 dT T≥  and 320 N M T Nµ< < < ≤ + , then *

32T T= . 
(iii) if 33 dT T≥  and 330 N M T Nµ< < < ≤ + , then *

33T T= . 
(c) 0 N M< ≤  and M T N> +  
(i) if 41 dT T≥  and 410 N T N Mµ< < < + < , then 

*
41T T= . 

(ii) if 42 dT T≥  and 420 N T N Mµ< < < + < , then 
*

42T T= . 
Summarizing the results in Corollary 1 and 2, we propose the following algo-

rithm to find the optimal solution. 
Algorithm 
Step 0. Input parameter values. 

Step 0.1. By (4), calculate dT  
Step 0.2. Compare the values of M and N. If M N< , then go to Step 1. 

Otherwise, go to Step 4. 
Step 1. By (14.1), (14.2), (16), calculate T, let it be 11T , 12T , 21T , 22T , 23T . 
Step 2. Compare the values of ijT , 1, 2i = , 1,2j =  or 3, and dT . 

Step 2.1. If 11 dT T<  and 110 N Tµ< < < , then *
11T T= , and calcu-
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late ( )*
11TC T . Otherwise, set ( )11 11TC T = ∞ . 

Step 2.2. If 12 dT T<  and 120 N Tµ< < < , then *
12T T= , and calcu-

late ( )*
12TC T . Otherwise, set ( )12 12TC T = ∞ . 

Step 2.3. If 21 dT T≥  and 210 M N Tµ< < < < , then *
21T T=  and 

calculate ( )*
21TC T , Otherwise, set ( )21 21TC T = ∞ . 

Step 2.4. If 22 dT T≥  and 220 M N Tµ< < < < , then *
22T T= , and 

calculate ( )*
22TC T . Otherwise, set ( )22 22TC T = ∞ . 

Step 2.5. If 23 dT T≥  and 230 M N Tµ< < < < , then *
23T T=  and 

calculate ( )*
23TC T . Otherwise, set ( )23 23TC T = ∞ . 

Step 3. Set ( ) ( ){ }* min 1,2,  1, 2 or 3ij ijTC T TC T i j= = = , then *
ijT T=  is the 

optimal solution, for a certain i, j and stop. 
Step 4. By (18.1), (18.2), (20.1), (20.2), calculate T, let it be 31T , 32T , 33T , 41T , 

42T . 
Step 5. Compare the values of ijT , 3,4i = , 1,2j =  or 3, and dT . 

Step 5.1. If 31 dT T≥  and 310 N M T Nµ< ≤ < ≤ + , then *
31T T=  

and calculate ( )*
31TC T . Otherwise, set ( )31 31TC T = ∞ . 

Step 5.2. If 32 dT T≥  and 320 N M T Nµ< < < ≤ + , then *
32T T=  

and calculate ( )*
32TC T , Otherwise, set ( )32 32TC T = ∞ . 

Step 5.3. If 33 dT T≥  and 330 N M T Nµ< < < ≤ + , then *
33T T=  

and calculate ( )*
33TC T , Otherwise, set ( )33 33TC T = ∞  

Step 5.4. If 41 dT T≥  and 410 N T N Mµ< < < + < , then 
*

41T T= .and calculate ( )*
41TC T . Otherwise, set 

( )41 41TC T = ∞ . 
Step 5.5. If 42 dT T≥  and 420 N T N Mµ< < < + < , then 

*
42T T=  

and calculate ( )*
42TC T . Otherwise, set ( )42 42TC T = ∞ . 

Step 6. Set ( ) ( ){ }* min  3,4,  1, 2 or 3ij ijTC T TC T i j= = = , then *
ijT T=  is the 

optimal solution, for a certain i, j and stop. 

5. Numerical Examples 

In this section, we provide two numerical examples to illustrate several distinct 
theoretical results for M > N and M < N. Let the demand rate ( ) 100 50f t t= +  
per year, A = $10 per order, h = $3/unit/year, c = $5/unit, p = $10/unit, Ip = 
0.06/year, and Ie = 0.05/year. 

5.1. M < N 

Let M = 1/12 years, and N = 1/6 years. 
1) Let 30dQ =  units. 
Example 1.1. Let 0.1µ =  years, we know that Nµ < . By (4), we have  

0.28810dT =  years and by the above algorithm, we have 

11 12 21 22 230.23986, 0.24614, 0.23995, 0.23993, 0.23998T T T T T= = = = =  

and 
( )11 11 88.36124TC T = , ( )12 12TC T = ∞ , ( )21 21TC T = ∞ , ( )22 22TC T = ∞ , 
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( )23 23TC T = ∞ . Since 11 dT T<  and 11N Tµ < < , by Corollary 1(a), we know 
that the optimal solution is *

11 0.23986T T= =  years, and then  

( ) ( )*
11 11 88.36124TC T TC T= = . Furthermore, by (3), we have  

*
11 24.93522Q Q= =  units. 

Example 1.2. Let 0.2µ =  years, we know that N µ< . By (4), we have 
0.28182dT =  years and by the above algorithm, we have 

11 12 21 22 230.23165, 0.24440, 0.23237, 0.23195, 0.23197T T T T T= = = = =  

and 
( )11 11TC T = ∞ , ( )12 12 88.71856TC T = , ( )21 21TC T = ∞ , ( )22 22TC T = ∞ ,  

( )23 23TC T = ∞ . Since 12 dT T<  and 12N Tµ< < , by Corollary 1(b), we know 
that the optimal solution is *

12 0.24440T T= =  years, and then  

( ) ( )*
12 12 88.71856TC T TC T= = . By (3), we have *

12 25.88441Q Q= =  units. 
2) Let 20dQ =  units. 
Example 1.3. Let 0.05µ =  years, we know that M Nµ < < . By (4), we have 

0.19573dT =  years and by the above algorithm, we have 

11 12 21 22 230.24311, 0.24632, 0.24312, 0.24313, 0.24324T T T T T= = = = =  

and 
( )11 11TC T = ∞ , ( )12 12TC T = ∞ , ( )21 21 84.79927TC T = , ( )22 22TC T = ∞ ,  

( )23 23TC T = ∞ . Since 21 dT T>  and 21M N Tµ < < < , by Corollary 2(a)(i), we 
know that the optimal solution is *

21 0.24312T T= =  years, and then  

( ) ( )*
21 21 84.79927TC T TC T= = . By (3), we have *

21 24.85773Q Q= =  units. 
Example 1.4. Let 0.1µ =  years, we know that M Nµ< < . By (4), we have 

0.19286dT =  years and by the above algorithm, we have 

11 12 21 22 230.23986, 0.24614, 0.23995, 0.23993, 0.23998T T T T T= = = = =  

and 
( )11 11TC T = ∞ , ( )12 12TC T = ∞ , ( )21 21TC T = ∞ , ( )22 22 85.76229TC T = ,  

( )23 23TC T = ∞ . Since 22 dT T>  and 22M N Tµ< < < , by Corollary 2(a)(ii), we 
know that the optimal solution is *

22 0.24440T T= =  years, and then  

( ) ( )*
22 22 85.76229TC T TC TC= = . By (3), we have *

22 24.94312Q Q= =  units. 
Example 1.5. Let 0.2µ =  years, we know that M N µ< < . By (4), we have 

0.19091dT =  years and by the above algorithm, we have 

11 12 21 22 230.23165, 0.24440, 0.23237, 0.23195, 0.23197T T T T T= = = = =  

and 
( )11 11TC T = ∞ , ( )12 12TC T = ∞ , ( )21 21TC T = ∞ , ( )22 22TC T = ∞ ,  

( )23 23 86.95530TC T = .. Since 23 dT T>  and 23TNM <<< µ , by Corollary 2(a) 
(iii), we know that the optimal solution is *

23 0.23197T T= =  years, and then 

( ) ( )*
23 23 86.95530TC T TC T= = . By (3), we have *

23 24.51676Q Q= =  units. 

5.2. M N≥  

In this subsection, let 20dQ =  units, 
1) Let M = 1/6 years, and N = 1/12 years. 
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Example 2.1. Let 0.05µ =  year, we know that N Mµ < ≤ . By (4), we have 
0.19573dT =  years and by the above algorithm, we have 

31 32 33 41 420.23967, 0.23960, 0.26351, 0.23611, 0.23360T T T T T= = = = =  

and 
( )31 31 81.06808TC T = , ( )32 32TC T = ∞ , ( )33 33TC T = ∞ , ( )41 41TC T = ∞ ,  

( )42 42TC T = ∞ . Since 31 dT T>  and 31N M T Nµ < < < + , by Corollary 2(b)(i), 
we know that the optimal solution is *

31 0.23967T T= =  years, and then  

( ) ( )*
31 31 81.06808TC T TC T= = . By (3), we have *

31 24.50358Q Q= =  units. 
Example 2.2. Let 0.1µ =  years, we know that N Mµ< < . By (4), we have  

0.19286dT =  years and by the above algorithm, we have 

31 32 33 41 420.23654, 0.23658, 0.25808, 0.23311, 0.23435T T T T T= = = = =  

and 
( )31 31TC T = ∞ , ( )32 32 81.97423TC T = , ( )33 33TC T = ∞ , ( )41 41TC T = ∞ ,  

( )42 42TC T = ∞ . Since 32 dT T>  and 32N M T Nµ< < < + , by Corollary 2(b)(ii), 
we know that the optimal solution is *

32 0.23658T T= =  years, and then  

( ) ( )*
32 32 81.97423TC T TC T= = . By (3), we have *

32 24.59067Q Q= =  units. 
Example 2.3. Let 0.2µ =  years, we know that N M µ< < . By (4), we have 

0.19091dT =  years and by the above algorithm, we have 

31 32 33 41 420.22922, 0.22946, 0.24603, 0.22611, 0.23447T T T T T= = = = =  

and 
( )31 31TC T = ∞ , ( )32 32TC T = ∞ , ( )33 33 82.41147TC T = , ( )41 41TC T = ∞ ,  

( )42 42TC T = ∞ . Since 32 dT T>  and 33N M T Nµ< < < + , by Corollary 2(b) 
(iii), we know that the optimal solution is *

33 0.24603T T= =  years, and then 

( ) ( )*
33 33 82.41147TC T TC T= = . By (3), we have *

33 26.06367Q Q= =  units. 
2) Let M = 1/3 years, and N = 1/12 years. 
Example 2.4. Let 0.05µ =  years, we know that N Mµ < < . By (4), we have 

0.19573dT =  years and by the above algorithm, we have 

31 32 33 41 420.20977, 0.20953, 0.22573, 0.23617, 0.23366T T T T T= = = = =  

and 
( )31 31TC T = ∞ , ( )32 32TC T = ∞ , ( )33 33TC T = ∞ , ( )41 41 71.91272TC T = ,  

( )42 42TC T = ∞ . Since 41 dT T>  and 41N T N Mµ < < + < , by Corollary 2(c)(i), 
we know that the optimal solution is *

41 0.23617T T= =  years, and then 

( ) ( )*
41 41 71.91272TC T TC T= = . By (3), we have *

41 24.14471Q Q= =  units. 
Example 2.5. Let 0.1µ =  years, we know that N Mµ< < . By (4), we have 

0.19286dT =  years and by the above algorithm, we have 

31 32 33 41 420.20641, 0.20653, 0.21635, 0.23336, 0.23459T T T T T= = = = =  

and 
( )31 31TC T = ∞ , ( )32 32TC T = ∞ , ( )33 33TC T = ∞ , ( )41 41TC T = ∞ ,  

( )42 42 73.05178TC T = . Since 42 dT T>  and 42N T N Mµ< < + < , by Corollary 
2(c)(ii), we know that the optimal solution is *

42 0.23459T T= =  years, and 
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then ( ) ( )*
42 42 73.05178TC T TC T= = . By (3), we have *

42 24.38186Q Q= =  
units. 

From Table 1, some managerial insights can be obtained. In the case of  
M N< , 

a) The retailer’s total relevant cost ( )*TC T  increases as the predetermined 
order quantity dQ  increase, and the constant rate of a period time µ  increase. 
That is, if the predetermined order quantity ( dQ ) is larger and the period time 
( µ ) is longer, then the total relevant cost ( )*TC T  for the retailer will be large. 

b) As the order quantity is less than the predetermined quantity, ( *
dT T< ), the 

optimal replenishment cycle *T  and the optimal order quantity *Q  increase 
as the time point ( µ ) increases, while in the case, the order quantity is larger 
than the predetermined quantity ( *

dT T> ), the optimal replenishment cycle *T  
decreases as the time point ( µ ) increases. 

In this case, if the upstream trade credit period is less than the downstream 
trade credit period, ( M N< ), then the retailer need to pay more interest than 
earned, thus, the larger dQ , and µ  will cause the larger total relevant cost. 

From Table 2, some managerial insights can be obtained. In the case of M N≥ , 
a) The retailer’s total relevant cost ( )*TC T  and the optimal order quantity 

*Q  increase as the constant rate of a period time ( µ ) increases. That is, if the 
period time ( µ ) is longer, then it will cause the retailer’s total relevant cost and 
the optimal order quantity to be larger. 

b) The retailer’s total relevant cost ( )*TC T  decreases as the upstream trade 
credit period M increases, since the retailer may earn more interest than paid. 

c) The larger the difference of M N− , (i.e., the shorter downstream trade 
credit period, and the longer upstream trade credit period), the less the retailer’s 
total relevant cost is. That is, it’s more profitable for the retailer. 

 
Table 1. Summary on optimal solutions for Examples 1.1-1.5. 

M N<  

Example 1.1 1.2 1.3 1.4 1.5 

M 1/12 

N 1/6 

dQ  30 20 

µ  0.1 0.2 0.05 0.1 0.2 

dT  0.28810 0.28182 0.19573 0.19286 0.19091 

*T  0.23986 0.24440 0.24312 0.23993 0.23191 

*Q  24.93522 25.88441 24.8573 24.94312 24.51676 

( )*TC T  88.36124 88.71856 84.79927 85.76229 86.95530 

Case 

3.1 
*

dT T<  
*N Tµ < <  

3.1 
*

dT T<  
*N Tµ< <  

3.2.1 
*

dT T>  
*M N Tµ < < <  

3.2.1 
*

dT T>  
*M N Tµ< < <  

3.2.1 
*

dT T>  
*M N Tµ< < <  

Corollary 1(a) 1(b) 2(a)(i) 2(a)(ii) 2(a)(iii) 
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Table 2. Summary on optimal solutions for Examples 2.1-2.5. 

M N≥  

Example 2.1 2.2 2.3 2.4 2.5 

M 1/6 1/3 

N 1/12 

dQ  20 

µ  0.05 0.1 0.2 0.05 0.1 

dT  0.19573 0.19286 0.19091 0.19573 0.19286 

*T  0.23967 0.23658 0.24603 0.23617 0.23459 

*Q  24.50358 24.59067 26.06367 24.14471 24.38186 

( )*TC T  81.06808 81.97423 82.41147 71.91272 73.05178 

Case 

3.2.2 
*

dT T>  
N Mµ < <  

*M T N< +  

3.2.2 
*

dT T>  
N Mµ< <  

*M T N< +  

3.2.2 
*

dT T>  
N M µ< <  

*M T N< +  

3.2.3 
*

dT T>  
N Mµ < <  

*M T N> +  

3.2.3 
*

dT T>  
N Mµ< <  

*M T N> +  

Corollary 2(b)(i) 2(b)(ii) 2(b)(iii) 2(c)(i) 2(c)(ii) 

 
In summary, the longer the upstream trade credit period M, the less the pre-

determined order quantity dQ , and the less the constant rate of a period time 
µ , will cause the less the retailer’s total relevant cost. However, the larger the 
downstream trade credit period N, will cause the larger the retailer’s total rele-
vant cost. 

6. Conclusions 

In this study, we develop an inventory model in a supply chain with ramp-type 
demand and trade credit financing linked to order quantity. The supplier offers a 
permissible delay linked to order quantity, while the retailer also provides a 
downstream trade credit period to its customers. We have obtained some theo-
retical results to characterize the optimal solutions and presented several nu-
merical examples to illustrate the proposed models. The results reveal that 1) 

*
dT T<  will cause more retailer’s total relevant cost than other cases, since there 

is no upstream trade credit period allowed, the retailer need to pay more interest 
than earned. 2) *

dT T>  and N M< , *M T N> +  will cause less retailer’s 
total relevant cost than the others, since the retailer can earn more interest than 
paid. It’s more profitable for the retailer in such case. 3) The retailer’s total rele-
vant cost increase as any one of the parameter values µ , dQ , N increases, while 
decreases as M increases. Thus, if upstream trade credit period is longer, then 
the retailer’s total relevant cost will be less, it’s more benefit for the retailer. 

The model can be extended in several ways, for example, we may consider the 
item with a constant deterioration rate. Also, we can extend the model to allow 
for shortages and partial backlogging. Finally, we could add the pricing, adver-
tising and quality strategies into consideration. 
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Appendix: Proof of Theorem 1 

For 11TC , from (14.1), let 

( ) ( ) ( )( ){ }11
11

d
0

d p
TCF T h a b T cI a b T N TC T

T
µ µ= = + + + + − = . 

Differentiating ( )F T  with respect to T, we have 

( ) ( )( )
1 1

2
1

2d d0 0d d

dd
0

d dj j

j
p

TC TC
T T

TCF T
h cI a b T

T T
µ

= =

= = + + > . 

This implies that ( )F T  is an increasing function of T. Furthermore, 

( ) ( ) ( )( ){ } 110 0 0
lim lim lim 0pT T T

F T h a b T cI a b T N T TC Tµ µ
→ → →

= + + + + − = −∞ < , 

since 110
lim
T

TC T
→

= ∞ . And 

( ) ( )( ) ( )( )11lim lim 2 0p pT T
F T h cI a b TC T h cI a bµ µ

→∞ →∞
= + + − = + + > , 

since 

( )( )

( )( )

( ) ( )( ){ } ( ) ( )

( )( )

11

2 22 3

2
2 2 2

lim

lim
2 3 2

2 2

lim 2 By L Hospital s Rule

2

T

T

p

pT

p

TC T

a b Ta bA h

b a bcI a a b TN T T

h a b T cI a b T N T

h cI a b

µ µµ µ

µ µµ µ µ µ

µ µ

µ

→∞

→∞

→∞

  + −  = + + +
   

   + + + + + − +   
   

= + + + +

= + +

’ ’

 

Therefore, there exists an unique solution such that ( ) 0F T = . From (15), we 
know that the solution which minimizes 11TC . The other cases can also be 
proved by the similar way. Thus, the Theorem is proved. 
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