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Abstract 
A general approach to transference principles for discrete and continuous 
sequence of operators (semi) groups is described. This allows one to recover 
the classical transference results of Calderon, Coifman and Weiss and of 
Berkson, Gilleppie and Muhly and the more recent one of the author. The 
method is applied to derive a new transference principle for (discrete and 
continuous) the sequence of operators semigroups that need not be grouped. 
As an application, functional calculus estimates for bounded sequence of op-
erators with at most polynomially growing powers are derived, leading to a 
new proof of classical results by Peller from 1982. The method allows for a 

generalization of his results away from Hilbert spaces to ( )1L ε+ -spaces 
and—involving the concept of γ-boundedness—to general spaces. Analogous 
results for strongly-continuous one-parameter (semi) groups are presented as 
well by Markus Haase [1]. Finally, an application is given to singular integrals 
for one-parameter semigroups. 
 

Keywords 
Transference, Operator Semigroup, Functional Calculus, Analytic Besov,  
Peller, γ-Boundedness, γ-Radonifying, γ-Summing, Power-Bounded Operator 

 

1. Introduction 

The purpose of this article is twofold. The short part devotes to a generalization 
of this classical transference principle of Calderon, Coifman and Weiss. The 
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major part gives applications of this new abstract result to discrete and conti-
nuous operator (semi) groups, in particular shall recover and generalize impor-
tant results of Peller. In the classical transference principle(s) the objects under 
investigation are derived from the sequence of operators of the form. 

( ) ( )( )1 1j
j j j

j jG

T T d
µ

ε µ ε= + +∑ ∑∫                (1.1) 

where G is a locally compact group and ( )( )( )
( )

1
1 :j j

G
T T G x

ε
ε

+ ∈
= + →   is a  

strongly bounded continuous representation of G on a Banach space X. The 
integral (1.1) has to be understood in the strong sense, i.e., 

( ) ( )( ) ( )1 1j
j j j

j jG

T x T x d x X
µ

ε µ ε= + + ∈∑ ∑∫  

And jµ  are scalar measure that renders the meaningful expression. Since 
such sequence of operators occurs in a variety of situations, the applications of 
transference principles are manifold, and the literature on this topic is vast. 

Originally, Calder’n [2] considered representations on 1Lε +  induced by a 
G-flow of measure-preserving transformations of the underlying measure space. 
H is considerations that were motivated by ergodic theory and his aim was to obtain 
maximal inequalities. Subsequently, Coifman and Weiss [3] [4] shifted the focus 
to norm estimates and were able to drop Calder’n’s assumption of an underlying 
measure-preserving G-flow towards general G-representations on 1Lε + -spaces. 
Berkson, Gillespie and Muhly [5] were able to generalize the method towards 
general Banach spaces X. However, the representations considered in these 
works were still (uniformly) bounded. In the continuous one-parameter case (i.e., 
G =  ) Blower [6] showed that the original proof method could fruitfully be 
applied also to non-bounded representations. However, his result was in a sense  
“local” and did not take into account the growth rate of the group ( )( )( )1

1jT
ε

ε
+ ∈

+


  

at infinity. In [7] we discovered Blower’s result and in [8] we could refine it towards 
a “global” transference result for strongly continuous one-parameter groups. 

Markus Haase [1] showed a developing method of generating transference 
results and showed that the known transference principles, (the classical Berk-
son-Gillespie-Muhly result and the central results of [8]) are special instances of 
it. The method has three important new features. Firstly, it allows to pass from 
groups to semigroups. More precisely, consider closed sub-semigroups S of a lo-
cally compact group G together with a strongly continuous representation 

( ):jT S X→   on a Banach space, and try to estimate the norms of sequence 
of operators of the form 

( ) ( )( )
( )1

1 1j
j j j

j j
T T d
µ

ε

ε µ ε
+

= + +∑ ∑∫               (1.2) 

by means of the transference method. The second feature is the role of weights 
in the transference procedure, somehow hidden in the classical version. Thirdly, 
the account brings to light the formal structure of the transference argument. in 
the first step one establishes a factorization of the sequence of operators (1.2) 
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over a convolution (i.e., Fourier multiplier) operator on a space of X-valued 
functions on G, then, in a second step, one uses this factorization to estimate the 
series norms, and finally, one may vary the parameters to optimize the obtained 
inequalities, So one can briefly subsume our method under the scheme.  

factorize-estimate-optimize 

where use one particular way of constructing the initial factorization. One rea-
son for the power of the method lies in choosing different weight in the factori-
zation, allowing for the optimization in the last step. The second reason lies in 
the purely formal nature of the factorization: this allows to re-interpret the same 
factorization involving different function spaces. 

Devoted to applications of the transference method. These applications deal 
exclusively with the cases ,S +=   , and ,S +=    which we for short call the 
discrete and the continuous case, respectively. However, let us point out that the 
general transference method works even for sub-semigroups of non-abelian 
groups. 

To clarify what kind of applications we have in mind, let us look at the dis-

crete case first. Here the semigroup consists of the powers ( )( )
0

nj

n
T

∈
 of one  

single bounded sequence of operators jT , and the derived sequence of opera-
tors (1.2) take the form 

( ) ( )
 

0

nj
n

n j
Tβ ε

≥

+∑ ∑  

for some (complex) scalar sequence ( )( ) 0n n
β ε β ε

≥
+ = + . In order to avoid 

convergence questions, suppose that ( )β ε+  is a finite sequence, hence 

( ) ( ) ( ) ( )
 

0

n
n

n
z zβ ε β ε

≥

+ = +∑  

is a complex polynomial. One usually writes 

( ) ( ) ( ) ( )
 

0

nj j
n

j n j
T Tβ ε β ε

≥

+ = +∑ ∑ ∑  

and is interested in continuity properties of the functional calculus 

[ ] ( ) ( ), .j
j jz X f f T→ ↔   

That is, one looks for a function algebra norm ( )jA⋅  on [ ]z  that allows 
an estimates of the form 

( ) [ ]( )j
j j j

j j
f T f f z∈∑ ∑                 (1.3) 

(The symbol   is short for ε<  for some unspecified constant 1ε > − , see 
also the Terminology-paragraph at the end of the introduction). A rather trivial 
instance of (1.3) is based on the estimates 

( ) ( ) ( ) ( ) ( )
   

0 0

n nj j j
j n n

j j n n j
f T T Tβ ε β ε

≥ ≥

= + ≤ +∑ ∑ ∑ ∑ ∑  
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Defining the positive sequence ( ) ( )( )1 1 n n
ε ε+ = +  by ( ) ( )1 :

nj
n

j
Tε =+ ∑ , 

hence have 

( )
( )

( ) ( )
 

01

1j
j j n n

j j n
f T f

ε

β ε ε
≥+

≤ = + +∑ ∑ ∑             (1.4) 

and by the submultiplicativity ( ) ( ) ( )1 1 1n m n mε ε ε
+

+ ≤ + +  one sees that ( )1 ε+
⋅  

is a functional gebra (semi)norm on [ ]z . 

The “functional calculus” given by (1.4) is tailored to the sequence of opera-
tors jT  and uses no other information than the growth of the power of jT . 
The central question is: under which conditions can one obtain better estimates 
for ( )j

jj f T∑  i.e., in terms of weaker function norms? The conditions have  

in mind may involve jT  (or better: the semigroup ( )( )
0

nj

n
T

≥
) or the underlying  

Banach space. To recall a famous example: von Neumann’s inequality [9] states 
that if X H=  is a Hilbert space and 1j

j T ≤∑  (i.e., jT  is a contraction), 
then 

( ) [ ]for everyj
j j j

j j
f T f f z

∞

≤ ∈∑ ∑             (1.5) 

where j jf
∞∑  are the series norms of jf  in the Banach algebra ( )H ∞=   

of bounded analytic functions on the open unit disc  . 
Von Neumann’s result is optimal in the trivial sense that the estimate (1.5) of 

course implies that jT  are contraction, but also in the sense that one cannot 
improve the estimate without further conditions: If ( )2H L=   and  

( )( )( ) ( )jT h z zh z=  is multiplication with the complex coordinate, then  

( )j
j jj jf T f

∞
=∑ ∑  for any [ ]jf C z∈ . A natural question then is to ask 

which sequence of operators satisfy the slightly weaker estimates 

( ) [ ]( )j
j j j

j j
f T f f z

∞

≤ ∈∑ ∑   

(called “polynomial boundedness of jT ”). On a general Banach space this may 
fail even for a contraction: simply take ( )1X =    and jT  the shift sequence 
of operators, given by ( ) 1

j
nn

T X X += , n∈ , ( )1x∈   . On the other hand, 
Lebow [10] has shown that even on a Hilbert space polynomial boundedness of 
sequence of operators jT  may fail if it is only assumed to be power-bounded,  

i.e., if one has merely ( )sup
nj

n j T∈ < ∞∑


 instead of ( ) 1
nj

j T ≤∑ . The  

class of power-bounded sequence of operators on Hilbert spaces is notoriously 
enigmatic, and it can be considered one of the most important problems in se-
quence of operators theory to find good functional calculus estimates for this 
class. 

Let us shortly comment on the continuous case. Here one is given a strongly 
continuous (in short: 0C ) semigroup ( )( )

1?
1jT

ε
ε

≥−
+  of the sequence of oper-

ators on a Banach space X, and one considers integrals of the form 
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( ) ( )( )1 1j j

j
T dε µ ε

+

+ +∑∫


                  (1.6) 

where assume for simplicity that the support of the measure jµ  are bounded. 
Shall use only basic results from semigroup theory, and refer to [11] [12] for further  
information. The sequence of generators of the semigroup ( )( )

1
1jT

ε
ε

>−
+  is in  

general unbounded, closed and densely defined the sequence of operators jA−  
satisfying 

( )( ) ( )( ) ( ) ( )1 1 1

0

1 e 1 1j
j

jj
A T dε εε ε ε

∞
− − + ++ + = + +∑∑ ∫          (1.7) 

for Re ( )1 ε+  large enough. The sequence of generators are densely defined, 
i.e., its domain ( )dom jA  is dense in X. Exclusively deal with semigroups satis-
fying a polynomial growth ( ) ( )1 2j

j T β εε ε ++ +∑   for some ε β> − , and 
hence (1.7) holds at least for all Re 1ε > − . One writes ( ) ( )11 e jAjT εε − ++ =  for 

1ε > −  and, more generally, 

( )( ) ( ) ( )( )1 1j j j
j

j j
A T dµ ε µ ε

+

= + +∑ ∑∫


  

where 

( )( ) ( ) ( )( )1e 1zj j
j

j j
A dεµ µ ε

+

− += +∑ ∑∫


  

is the Laplace transform of jµ . So in the continuous case the Laplace transform 
takes the role of the Taylor series in the discrete case. Asking for good estimates 
for the sequence of operators of the form (1.6) is as asking for functional calcu-
lus estimates for the sequence of operators jA . The continuous version of von 
Neumann’s inequality states that if X H=  is a Hilbert space and if  

( )1 1j
j T ε+ ≤∑  for all 1ε > −  (i.e., if jT  are contraction semigroup), then 

( ) ( )j
j j j jj jf A f f µ

∞
≤ ∈∑ ∑    

where jf
∞

 are the norms of jf  in the Banach algebra ( )H ∞
+

 of bounded 
analytic functions on the open half place { }| R: e 0z z+ ∈ >=  , see ([13], 
Theorem 7.1.7). 

There are similarities in the discrete and in the continuous case, but also cha-
racteristic differences. The discrete case is usually a little more general, shows 
more irregularities, and often it is possible to transfer results from the discrete to 
the continuous case. (However, this may become quite technical, and prefer di-
rect proofs in the continuous case whenever possible.) In the continuous case, 
the role of power-bounded operators is played by bounded semigroups, and 
similar to the discrete case, the class of bounded semigroups on Hilbert spaces 
appears to be rather enigmatic. In particular, there is a continuous analogue of 
Lebow’s result due to Le Merdy [14], cf. also ([13], Section 9.1.3). And there re-
main some notorious open questions involving the functional calculus, e.g., the 
power-boundedness of the Cayley transform of the generator, cf. [15] and the 
references therein. 
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The strongest results in the discrete case obtained so far can be found in there 
markable [16] by Peller from 1982. One of Peller’s results are that if jT  is a 
power-bounded of sequence operators on a Hilbert space H, then 

( ) [ ]( )
0

,1

j
j j j

j j B

f T f f z
∞

∈∑ ∑   

where is ( )0
,1B∞   is the so-called analytic Besov algebra on the disc . 

In 2005, Vitse [17] made a major advance in showing that Peller’s Besov class 
estimate still holds true on general Banach spaces if the power-bounded se-
quence of operators jT  is actually of Tadmor-Ritt type, i.e., satisfies the “ana-
lyticity condition” 

( ) ( )( )1

0sup .
n nj j

n
j

n T T
+

≥ − < ∞∑  

She moreover established in [18] an analogue for strongly continuous bounded 
analytic semigroups. Whereas Peller’s results rest on Grothendieck’s inequality 
(and hence are particular to Hilbert spaces) Vitse’s approach is based on repeated 
summation/integration by parts, possible because of the analyticity assumption. 

Shall complement Vitse’s result by devising an entirely new approach, using 
the transference methods. In doing so, avoid Grothendieck’s inequality and re-
duce the problem to certain Fourier multipliers on vector-valued function spaces. 
By Plancherel’s identity, on Hilbert spaces these are convenient to estimate, but 
one can still obtain positive results on 1L ε+ -spaces or on UMD spaces. The ap-
proach works simultaneously in the discrete and in the continuous case, and 
hence do not only recover Peller’s original result (Theorem 5.1) but only estab-
lish a complete continuous analogue (Theorm 5.3), conjectured in [18]. Moreo-
ver, we establish an analogue of the Besov-type estimates for 1L ε+ -spaces and for 
UMD spaces (Theorem (5.7)). These results, however, are less satisfactory since 
the algebras of Fourier multipliers on the spaces ( )2 ;L X  and ( )2 ;L X  are 
not thoroughly understood if X is not a Hilbert space. 

Show how the transference methods can also be used to obtain “γ-versions” of 
the Hilbert space results. The central notion here is the so-called γ-boundedness 
of sequence of operators family, a strengthening of operator norm boundedness. 
It is related to the notion of R-boundedness and plays a major role in Kalton and 
Weis’ work [19] on the H ∞ -calculus. The “philosophy” behind this theory is 
that to each Hilbert space result based on Plancherel’s theorem there is a cor-
responding Banach space version, when operator norm boundedness is replaced 
by γ-boundedness. 

Give evidence to this philosophy by showing how the transference results 
enables one to prove γ-versions of functional calculus estimates on Hilbert spac-
es. As examples, we recover the γ-version of a result of Boyadzhiev and deLau-
benfels, first proved by Kalton and Weis in [19] (Theorem 6.5). Then derive 
γ-versions of the Besov calculus theorems in both the discrete and the conti-
nuous forms. The simple idea consists of going back to the original factorization 
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in the transference method, but exchanging the function spaces on which the 
Fourier multiplier sequence of operators act from an 2L -space into a γ-space. 
This idea is implicit in the original proof from [19] and has also been employed 
in a similar fashion recently by Le Merdy [20]. 

Finally, discuss consequences of the estimates for full functional calculi and 
singular integrals for discrete and continuous semigroups. For instance, prove  
that if ( )( )( )1

  1jT
ε

ε
>−

+  is any strongly continuous semigroup on a UMD space 

X, then for all 0 a a ε< < +  the principal value integral 

( ) 

0
1

1
lim

1

j
j

a a

T x

aε

ε

< − <

+

−
∑

∫



 

exists for all x X∈ . For 0C -groups this is well-known, cf. [7], but for semi-
groups which are not groups, this is entirely new. 

Terminology: Use the common symbols  , , ,   for the sets of 
natural, integer, real and complex numbers. In our understanding 0 is not a nat-
ural number, and write 

{ } { } ( ){ }: | 0 0 and : 1 | 1 .n n ε ε+ += ∈ ≥ = = + ∈ > −      

Moreover, { }: | 1z z= ∈ <  is the open unit disc, { }: | 1z z= ∈ =  is the 
torus, and { }: | Re 0z z+ = ∈ >   is the open right half plane. 

Use X, Y, Z to denote (complex) Banach spaces, and jA , B, C to denote 
closed possibly unbounded sequence of operators on them. By ( )X  denote 
the Banach algebra of all bounded linear sequence of operators on the Banach 
space X, endowed with the ordinary sequence of operators norm. The domain, 
kernel and range of the sequence of operators jA  are denoted by ( )dom jA , 

( )ker jA  and ( )ran jA , respectively. 
The Bochner space of equivalence classes of 1 ε+ -integrable X-valued func-

tions is denoted by ( ) ( )1 ;L R Xε+ . If Ω  is a locally compact space, then ( )M Ω  
denotes the space of all bounded regular Borel measures on Ω . If ( )j Mµ ∈ Ω  
then sup jµ  denotes its topological support. If Ω ⊂   is an open subset of the 
complex plane, ( )H ∞ Ω  denotes the Banach algebra of bounded holomorphic 
functions on Ω, endowed with the supremum norm  

( )
( ){ }supj jj jH

f f z z∞ Ω
= ∈Ω∑ ∑ . 

Shall need notation and results from Fourier analysis as collected in [13]. In 
particular, use the symbol   for the Fourier transform acting on the space of 
(possibly vector-valued) tempered distributions on  , where agree that 

( ) ( )( ) ( )( )1 11 e 1ij j

j j
dε εµ ε µ ε− + ++ = +∑ ∑∫



  

is the Fourier transform of a bounded measure ( )j M Rµ ∈ . A function 
( )m L∞∈   is called a bounded Fourier multiplier on ( ) ( )1 ;L Xε+

  if there is a 
constant 1ε > −  such that 
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( )
( )

( )
( )

1

1
1

1j j
j j

m f f
ε

ε

ε−

+
+

⋅ ≤ +∑ ∑               (1.8) 

holds true for all ( ) ( ) ( )( )1 1 1; ;jf L X L Xε+ −∈   . The smallest ( )1 ε+  that  
can be chosen in (1.8) is denoted by 

( )1 ,xε+
⋅
 . This turns the space ( ) ( )1 , Xε+   

of all bounded Fourier multipliers on ( ) ( )1 ;L Xε+   into a unital Banach algebra. 

A Banach space X is a UMD space, if and only if the function  
( ) ( )1 sgn 1ε ε+ +  is a bounded Fourier multiplier on ( )2 ;L X . Such spaces 
are the right ones to study singular integrals for vector-valued functions. In par-
ticular, by results of Bourgain, McConnel and Zimmermann, a vector-valued 
version of the classical Mikhlin theorem holds, see ([13], Appendix E.6) as well 
as Burkholder’s article [21]. Each Hilbert space is UMD, and if X is UMD, then 

( ) ( )1 , , ;jL Xε µ+ Ω Σ  is also UMD whenever 1 1 ε< + < ∞  and ( ), , jµΩ Σ  is a 
measure space. 

The Fourier transform of ( )1jµ ∈    are 
 ( ) ( ) ( )j j n

j n j
z n z zµ µ

∈

= ∈∑ ∑∑


  

Analogously to the continuous case, form the algebra ( ) ( )1 , Xε+   of func-
tions ( )m L∞∈   which induce bounded Fourier multiplier sequence of opera-
tors on ( ) ( )1 ; Xε+

  , endowed with its natural norm. 
Finally, given sets jA  and two real-valued functions , :j

j jf g A →   write 

( ) ( ) ( )j
j jf a g a a A∈  

to abbreviate the statement that there is 1ε > −  such that ( ) ( ) ( )1 j
jf a g aε≤ +  

for all ja A∈ . 

2. Transference Identities 

Introduce the basic idea of transference. Let G be a locally compact group with 
left Haar measure ds. Let S G⊆  be a closed sub-semigroup of G and let 

( ):jT S X→   

be a strongly continuous representation of S on a Banach space X. Let jµ  be a 
(scalar) Borel measure on S such that 

( ) ( )( )1 1j j

jS

T dε µ ε+ + < ∞∑∫  

and let the sequence of operators ( )j
jT X
µ
∈  be defined by 

( ) ( )( ) ( )1 1j
j j j

j jS

T x T x d x X
µ

ε µ ε= + + ∈∑ ∑∫           (2.1) 

The aim of transference is an estimate of j
j

j T
µ∑  in terms of a convolution  

sequence of operators involving jµ . The idea to obtain such an estimate is, in a 
first step, purely formal. 

For a (measurable) functions :j Sϕ →   denote by j
jTϕ  the pointwise 
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products 

( ) ( ) ( ) ( ) ( ): , 1 1 1j j
j jT S X Tϕ ε ϕ ε ε→ + + +  

and by j
jϕ µ  the measure 

( ) ( )( ) ( ) ( )( )1 1 1j j
j jT d dϕ ε ϕ ε µ ε+ = + +  

In the following do not distinguish between a function/measure defined on S 
and its extension to G by 0 on G\S. Also, for Banach spaces , ,X Y Z  and se-
quence of operators-valued functions ( ): ,F G Z Y→   and ( ): ,H G Y X→   
define the convolution ( ): ,H F G Z X∗ →   formally by  

( )( ) ( ) ( ) ( )( ) ( ) ( )( )11 1 1 1 1 1
G

H F H F d Gε ε ε ε ε ε−∗ + = + + + + + ∈∫  (2.2) 

in the strong sense, as long as this is well defined. (Actually, as argue purely for-
mally, at this stage do not bother too much about whether all things are well de-
fined.) Instead, shall establish formulate first and then explore conditions under 
which they are meaningful. 

The first lemma expresses the fact that a semigroup representation induces 
representations of convolution algebras on S (see, e.g., [1]). 

Lemma 2.1. Let G, S, jT , X as above and let ( ) ( )1 2j j jϕ ϕ ϕ= + ,  

( ) ( )1 2
:j j j Sψ ψ ψ= + →   be functions. Then, formally,  

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )1 2 1 2 1 2 1 2
    j j j

j j j j j j j jT T Tϕ ϕ ψ ψ ϕ ϕ ψ ψ+ ∗ + = + + . 

Proof. Fix ( )1 Gε+ ∈ . If ( )1 Gε+ ∈  is such that ( ) ( ) 11 1S Sε ε −+ ∉ +  

then ( ) ( )( )( )
1 2

1 0j jψ ψ ε+ + =  (in case ( )1 Sε+ ∉  or  

( ) ( )( ) ( ) ( )( )1

1 2
1 1 0j jψ ψ ε ε−+ + + =  (in case ( ) ( ) 11 1 Sε ε −+ ∉ + ). On the other 

hand, if ( ) ( ) 11 1S Sε ε −+ ∈ +

 then ( )1 ε+ , ( )1 1 Sε ε
ε
+  + ∈ 

 
, which implies 

that ( )1 Sε+ ∈  and ( ) ( ) ( )11 1 1j j jT T Tεε ε ε
ε

 +  + + = +  
  

. Hence, formally 

( ) ( )( ) ( ) ( )( )( )( )

( ) ( )( )( )( ) ( ) ( )( )( ) ( ) ( )

( ) ( )( )( ) ( ) ( )( ) ( )

( ) ( ) ( )

1 2 1 2

1 2 1 2

1 2 1 2

1

11 1 1

11 1

11 1 1

j j
j j j j

j

j j
j j j j

jG

j j j j
jG

j j

T T

T T d

T T d

ϕ ϕ ψ ψ ε

εϕ ϕ ε ψ ψ ε ε
ε

εϕ ϕ ε ψ ψ ε
ε

εε ε ε
ε

+ ∗ + +

 +  = + + + + +  
  

 +  = + + + +  
  

  +  × + + +   
   

∑

∑∫

∑∫

 

( ) ( )( )( ) ( ) ( )( ) ( )
( )

( ) ( ) ( )

1
1 2 1 2

1

11 1

11 1 1

j j j j
jS S

j jT T d

ε

εϕ ϕ ε ψ ψ ε
ε

εε ε ε
ε

−+

 +  = + + + +  
  

  +  × + + +   
   

∑∫
  
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( ) ( )( )( ) ( ) ( )( ) ( )
( )

( ) ( )
1

1 2 1 2
1

11 1

1 1

j j j j
jS S

jd T
ε

εϕ ϕ ε ψ ψ ε
ε

ε ε

−+

 +  = + + + +  
  

× + +

∑∫


 

( ) ( )( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )

( ) ( )( ) ( ) ( )( )( )( )( )

1

1 2 1 2

1 2 1 2

1 1 1

1 1

1

j j j j
jG

j

j
j j j j

j

d T

T

ϕ ϕ ε ψ ψ ε ε

ε ε

ϕ ϕ ψ ψ ε

−= + + + + +

× + +

= + ∗ + +

∑∫

∑

            ∎ 

For a function  :F G X→  and measures jµ  on G let us abbreviate 

( ) ( )( ), 1 1j j
G

j j
F F dµ ε µ ε= + +∑ ∑∫  

Defined in whatever weak sense. Stretch this notation to apply to all cases 
where it is reasonable. For example, jµ  could be a vector measure with values 
in X ′  or in ( )X . 

The reflection F ∼  of F is defined by 

( )~ ~ 1: , 1 : .G X F εε
ε

 +  → + =   
  

   

If ( ):H G X→   is the sequence of operators-valued function, write H F∗  
for the convolution H F∗  is defined also by (2.2). Furthermore, let   

( )( ) ( ) ( ) ( )( )11 1 1 , 1j j
G

F F d Gεµ ε ε µ ε ε
ε

 +  + + + + ∈  


∗
 

∫  

which is in coherence with the definitions above if jµ  has density and scalars 
are identified with their induced dilation sequence of operators.            ∎ 

The next lemma is almost a trivially. 
Lemma 2.2. Let ( ):H G X→  , :F G X→  and jµ  a measure on G. 

Then , ,j jH F H Fµ µ ∼∗ = ∗  formally. 
Proof. Writing out the brackets into integrals, it is just Fubini’s theorem: 

( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

1

,

11 1 1 1

11 1 1 1 1

11 1 1 1

1 1 1 ,

j

j

j

jG G

j

jG G

j

jG

j j

jjG

H F

H F d d

H F d d

H F d d

H F d H F

µ

εε ε ε µ ε
ε

εε ε ε µ ε ε
ε

εε ε µ ε ε
ε

ε µ ε ε µ

−

∼

∼ ∼

∗

 +  = + + + +  
  
  +   = + + + +      
 +  = + + + +  
  

= + ∗ + + = ∗

∑

∑∫ ∫

∑∫ ∫

∑∫ ∫

∑∑∫

    ∎ 

If combine Lemmas 2.1 and 2.2 obtain the following. 
Proposition 2.3. Let S be a closed sub-semigroup of G and let ( ):jT S X→   

be a strongly continuous representation. Let , :j j Sϕ ψ →   and let jµ  be a 
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measure on S. Then, writing : j jη ϕ ψ= ∗ , 

( ) ( )~
, ,j

j j j j j j
j j j jT T T T

ηµ
ϕ ψ µ ϕ µ ψ= ∗ = ∗  

formally. This result can be interpreted as a factorization of the sequence of op-
erators j

jT
ηµ

 as 

( ) ( )Φ ; Ψ ;
 

L

T

G X G X
l P

X X

µ

ηµ

↑


↓
→

→

                   (2.3) 

j j
jT P L

ηµ µ
ι=   , where 

1) ι  maps x X∈  to the weighted orbit 

( )( ) ( )( )1 11 : 1j
jx T x Gε ει ε ψ ε

ε ε
+ +   + = + ∈   

   
 

2) jL
µ

 are the convolution sequence of operators with jµ  

: ;j
jL F F

µ
µ= ∗  

3) P maps an X-valued function on G back to an element of X by integrating 
against j

jTϕ : 

( ) ( ) ( ) ( ), 1 1 1 1 ,j j
j j

j jG

PF T F T F dϕ ϕ ε ε ε ε= = + + + +∑ ∑∫  

4) ( );G XΦ , ( );G XΨ  are function spaces such that ( ): ;X G Xι → Φ  
and ( ): ;P G X XΨ →  are meaningful and bounded. 

Call a factorization of the form (2.3) a transference identity. It induces a 
transference series estimates 

( )
( ) ( )( ), , ,

j j
j

Xj j G X G X

T P L l
ηµ µ

Φ Ψ

≤∑ ∑




             (2.4) 

3. Transference Principles for Groups 

Shall explain that the classical transference principle of Berkson-Gillespie-Muhly 
[5] for uniformly bounded groups and the recent one for general C0-groups [8] 
are instances of the explained technique (see, e.g., [1]). 

3.1. Unbounded C0-Groups 

Take G S= =   and let ( )( )( ) ( )1
1 :U U X

ε
ε

+ ∈
= + →


  . 

Be a strongly continuous representation on the Banach space X. Then U is 
exponentially bounded, i.e., its exponential type  

( ) ( ) ( ) ( )( ){ }1 (1 ): inf 1 | 0 : 1 e 1U M U M ε εθ ε ε ε+ += > − ∃ ≥ + ≤ + ∈  

is finite. Choose ( ) ( )1 Uβ ε ε θ+ > + >  and take a measure jµ  on   such 
that 
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( )( )
( )( ) ( )

1
cosh 1:j j M

ε
µ ε µ

+
+ ⋅ ∈=    

is a finite measure. Then ( )j
j

j jU
µ

µ=∑ ∑∫  is well-defined. It turns out [8] 

that one can factorize 

( )( )
1

cosh 1 j jη ϕ ψ
ε

= =
+

∗
⋅

 

where ( )( )1 coshjψ β ε= + ⋅  and ( )( ) ( )cosh 1 1j Oε ϕ+ ⋅ = . Obtain  

( )1
j

εµ ηπ +=  and, writing ( )( )1

j

ε
µ

+
 for jµ  in Proposition 2.3, 

( )( )
( )( ) ( ) ( )( )1 1

1
,j j j

j
j jU U U U P L

ε ε
µ η µ µε

ϕ µ ϕ ι
+ +

∼

+
∗= = =       (3.1) 

If jiA−  is the sequence generators of U and j
jf Fµ=  is the Fourier trans-

form of jµ , one writes 

( ) ( ) ( ) ( )( )1 1j
j

j j
j j j

f A U U d
µ

ε µ ε= = + +∑ ∑ ∑∫


 

which is well-defined because the Fourier transform is injective. Applying the 
transference estimate (2.4) with ( ) ( ) ( ) ( )1; ; : ;X X L Xεφ += Ψ =    as the func-
tion spaces as in [8] leads to the series estimates 

( ) ( )( )
( ) ( )

( )( )
( ) ( )1 , 1 ,

1 1 1
2

X X

j j j j
j j j

f A f i f i
ε ε

ε ε
+ +

 
 ≤ ⋅+ + + ⋅− +
 
 

∑ ∑ ∑
  

 

where ( ) ( )1 , Xε+   denotes the space of all (scalar-valued) bounded Fourier 
multipliers on ( )1 ;L Xε+  . In the case that X is a UMD space one can use the 
Mikhlin type result for Fourier multipliers on ( )1 ;L Xε+   to obtain a generali-
zation of the Hieber Pruss theorem [22] to unbounded groups, see ([8], Theo-
rem 3.6). 

If 1ε =  and X H= , this Fourier multiplier norm coincides with the 
sup-norm by Plancherel’s theorem, and by the maximum principle one obtains 
the H ∞ -series estimates 

( )
( )( )1

,j j j
j j H St

f A f
ε∞ +

≤∑ ∑                  (3.2) 

where 

( ) ( ){ }1 : | Im 1St z zε ε+ = ∈ < +  

Is the vertical strip of height ( )2 1 ε+ , symmetric about the real axis. This re-
sult is originally due to Boyadzhiev and De Laubenfels [23] and is closely related 
to McIntosh’s theorem on H ∞ -calculus for sectorial operators with bounded 
imaginary powers from [24], see ([8], Corollary 3.7) and ([13], Chapter 7). 

3.2. Bounded Groups: The Classical Case  

The classical transference principle, in the form put forward by Berkson, Gilles-
pie and Muhly in [3] read as follows Let G be a locally compact amenable group,  
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let ( )( )( )1
1

G
U U

ε
ε

+ ∈
= +  be a uniformly bounded, strongly continuous repre-

sentation of G on a Banach space X, and let 0 ε< < ∞ , 0ε > . Then 

( ) ( )( ) ( ) ( ) ( )( )1

2

,

1 1 j
j

j jG L G X

U d M L
ε

µ
ε µ ε

+

+ + ≤∑ ∑∫


 

for every bounded measures ( )j M Gµ ∈ . (Here ( ) ( )1: sup 1G Uε ε+ ∈= + .) 
Shall review its proof in the special case of G =   (but the general case is 

analogous using Følner’s condition, see ([3], p.10)). First, fix , 0n N >  and sup-
pose that ( ) [ ]supp ,j N Nµ ⊂ − . Then 

[ ] [ ] [ ], ,
1 1 on ,
2j j n n N n N n N N

n
η ϕ ψ − − − +∗ ∗= = = −1 1  

So j jηµ µ= ; applying the transference estimate (2.4) with the function space 
( ) ( ) ( ) ( )1; ; ;X X L Xεφ += Ψ ⋅    together with Holder’s inequality yields 

( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( )( )

1

1

1

2
1 1

,

1 1
2 1 1

  ,

1
12

,

2 2 2

1

j j

j

j

j
j j

j L X

L X

j L X

T M L

M n N n L

NM L
n

ε

ε

ε

εµ µε
ε

ε ε
µ

ε

µ

ϕ ψ
+

+

+

+
+

   −   + +   

 
 + 

≤

= +

 = + 
 

∑

∑

∑













 

Finally, let n →∞  and approximate a general ( )j Mµ ∈   by measures of 
finite support. 

Remark 3.1. This proof shows a feature to which pointed already in the in-
troduction, but which was not represent in the case of unbounded groups treated 
above. Here, an additional optimization argument appears which is based on some 
freedom in the choice of the auxiliary functions jϕ  and jψ . Indeed, jϕ  and 

jψ  can vary as long as ( )j j
j jµ ϕ ψ µ∗=  which amounts to 1j jϕ ψ∗ =  on 

( )supp jµ . 
Remark 3.2. A transference principle for bounded cosine functions instead of 

groups was for the first time established and applied in [25]. 

4. A Transference Principle for Discrete and Continuous  
Operator Semigroup 

Shall apply the transference method to the sequence of operators semi groups, 
i.e., strongly continuous representations of the semigroup +  (continuous case) 
or +  (discrete case) (see, e.g., [1]). 

4.1. The Continuous Case  

Let ( )( )
1

1j jT T
ε

ε
>−

= +  be strongly continuous (i.e. C0-) one-parameter semi-

group on a (non-trivial) Banach space X. By standard semigroup theory [12], 
jT  is exponentially bounded, i.e., there exists 1ε > −  such that  

( ) ( ) ( )( )1 11 1 ej
j T ε εε ε − + ++ ≤ +∑   
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for all 1ε > − . Consider complex measures jµ  on [ )0,:  + ∞=  such that 

( ) ( )( )
0

1 1j j

j
T dε µ ε

∞

+ + < ∞∑∫  

If jµ  are Laplace transformable and if j
jf µ=   are its Laplace (-Stieltjes) 

transform 

( ) ( ) ( )( )1

0

e 1zj j

j j
z dεµ µ ε

∞
− += +∑ ∑∫  

then use (similar to the group case) the abbreviation 

( ) ( ) ( )( )
0

1 1j
j j j

j j
j j j

f A T T d
µ

ε µ ε
∞

= = + +∑ ∑ ∑∫  

where jA−  are the sequence of generators of the semigroup jT . The mapping 

( )j j jf f A  are well-defined since the Laplace transform is injective, and is 
called the Hille-Phillips functional calculus for jA , see ([13], Section 3.3) and 
([26], Chapter XV). 

Theorem 4.1. Let ( )0 ε< < ∞ , 0ε > . Then there is a constant   1ε > −  such 
that 

( ) ( )( )( )( )
( ) ( )( )1

2

,

1 1 log 1j j
j

j j L X

T a a a L
ε

µ µ
ε ε ε ε

+

≤ + + + + +∑ ∑


  (4.1) 

whenever the following hypotheses are satisfied: 
1) ( )( )

1
1j jT T

ε
ε

>−
= +  is a C0-semigroup on the Banach space X; 

2) 0 a a ε< < + < ∞ ; 0ε > ; 
3) ( )( ) ( ) ( )0 11 : sup 1j

a ja Tε εε ε ε≤ + ≤ ++ + = +∑ ; 

4) ( )( )1jµ ε +∈ +   such that ( ) [ ]supp ,j a aµ ε⊂ + . 

Proof. Take ( )
1

0,j L a
ε
εϕ ε
+

∈ + , ( )1 0,j L aεψ ε+∈ +  such that 1j jϕ ψ∗ =  

on [ ],a a ε+ , and let : j jη ϕ ψ= ∗ . Then j jηµ µ=  and Proposition 2.3 yields 

( ), .j j
j j j j j

j jT T T T
µ ηµ

ϕ µ ψ
∼

∗= =  

Holder’s inequality leads to series norm estimates 

( )( ) ( ) ( )( )1

2

11 ,

1j j
j

j j
j j L X

T a L
εµ µεε

ε

ε ε ϕ ψ
+++

≤ + +∑ ∑


 

Hence, to prove the theorem it suffices to show that 

( ) [ ]

( ) ( )

1 1
, inf : 1 on ,

1 og

,

l 1

j j j jC a a a a

a a

ε ε
ε

ε ϕ ψ ϕ ψ ε

ε ε

+
+

 
+ = = + 

 
≤ + + +

 

with ( )1 ε+  independent of a and a ε+ . This is done in Lemma A.1.      ∎ 
Remarks 4.2. The conclusion of the theorem is also true in the case 0ε =  or 

1 ε+ = ∞ , but in this case 
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( ) ( )( ) ( )1 ,

 j
j

j Mj L X

L
εµ

µ
++

=∑ ∑ 


 

is just the total variation norm of jµ . And clearly  

( )( )1j
j j

Mj jT a
µ

ε ε µ≤ + +∑ ∑   

which is stronger than (4.1). 
2) In functional calculus terms, (4.1) takes the form 

( ) ( ) ( )( ) ( )
( ) ( )1 ,

21 1 log
X

j jj j jf A a a M a f
ε

ε ε ε
+ +

≤ + + + +∑ ∑



   

where j
jf µ=   and 

( ) ( ) ( ) ( ) ( ) ( ){ }1 , 1 ,: |j jX Xf H f iε ε
∞

+ ++ += ∈ ⋅ ∈      

is the (scalar) analytic ( )1 ;L Xε+  -Fourier multiplier algebra, endowed with the 
series norms 

( ) ( )
( )

( ) ( )1 , 1 ,
:

X X
j j

j j
f f i

ε ε+ ++

= ⋅∑ ∑


 
 

Let us state a corollary for semigroups with polynomial growth type. 
Corollary 4.3. Let ( 0 ε< < ∞ ), 0ε > . Then there is a constant 1ε > −  such 

that the following is true. If jA−  sequence of generates a 0C -semigroup  
( )( )

1
1j jT T s

ε >−
= +  on a Banach space X such that there is 1ε > − , ε β> −  

with 

( ) ( )( ) ( )1 1 1 , 1j
j T s β εε ε ε++ ≤ + + > −∑   

Then 

( ) ( )( ) ( )( ) ( )

( ) ( )1 ,

221 1 1

1 log
X

j j

j

j

j

f A a

a f
a ε

β ε
ε ε ε

ε
++

+
≤ + + + +

  + +  


×
 

∑

∑


         (4.2) 

for 0 a a ε< < + < ∞ , j
jf µ=   and ( )[ ]1 ,j a aµ ε ε∈ + + . 

The case that ε β= − , i.e., the case of a bounded semigroup, is particularly 
important, hence state it separately. 

Corollary 4.4. Let ( )0 ε< < ∞ , 0ε > . Then there is a constant 1ε > −  such 
that the following is true. If jA−  sequence of generates uniformly bounded 0C  
-semigroup ( )( )

1
1j jT T

ε
ε

>−
= +  on a Banach space X then, with  

( )1: sup 1j
jM Tε ε>−= +∑  

( ) ( ) ( )( )
( ) ( )1 ,

2  1 1 log
X

j jj j jf A M a a f
ε

ε ε
++

≤ + + +∑ ∑


    (4.3) 

for 0 a a ε< < + < ∞ , j
jf µ=   and [ ],j M a aµ ε∈ + . 

Remark 4.5. If X H=  is a Hilbert space and 1ε = , by Plancherel’s theo-
rem and the maximum principle, Equation (4.3) becomes 

( ) ( )( )
( )

2  1 logj
j j

j j
H

f A M a a fε
∞

+

+ +∑ ∑


          (4.4) 
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where j
jf µ=   is the Laplace-Stieltjes transform of jµ . A similar estimate 

has been established by Vitse ([18], Lemma 1.5) on a general Banach space X, 
but with the semigroup being holomorphic and bounded on a sector. 

4.2. The Discrete Case 

Turn to the situation of a discrete operator semigroup i.e., the powers of a 
bounded operator. Let ( )jT X∈  be bounded sequence of operators and  

( )( )nj j

n
T T

+∈
=


 the corresponding semigroup representation. If ( )1jµ +∈    

is such that ( ) ( )0 j

nj j
n n Tµ∞

=
< ∞∑∑  then (2.1) takes the form such that 

( )( )0j

nj j j
n

j j
T n T
µ

µ∞

=
=∑ ∑∑  

Denoting  ( ) ( )0:j j n
nz n zµ µ∞

=
= ∑  for 1z ≤  also write  ( ) : j

j j jT T
µ

µ = . 

Theorem 4.6. Let ( )0 ε< < ∞ , 0ε > . Then there is a constant 1ε > −  such 
that 

 ( ) ( ) ( )( ) ( )
( )( )1

2

,
1 1 log j

j j

Lj Xj T a a M a L
εµ

µ ε ε ε
+

≤ + + + +∑ ∑


  

whenever the following hypotheses are satisfied: 
1) jT  are bounded sequence of operators on a Banach space X; 
2) ,a a ε ++ ∈  with 0ε > ; 
3) ( ) ( )0sup:

n

n j
j

aM a Tεε ≤ ≤ ++ = ∑ ; 
4) ( )1jµ +∈    such that ( ) [ ]supp ,j a a εµ ⊂ + . 
Proof. This is completely analogous to the continuous situation. Take  

( )
1

j

ε
εϕ
+ 

 
 

+∈   , ( )1
j

εψ +
+∈    such that 1j jϕ ψ∗ =  on [ ],a a ε+ , and let 

: j jη ϕ ψ= ∗ . Then j jηµ µ=  and Proposition 2.3 yields 

 ( ) ( ),j j
j j j j j j j

j jT T T T T
µ ηµ

µ ϕ µ ψ
∼

= ∗= = . 

Holder’s inequality leads to series norms estimate 

( )
( )( )1

2

1 ,1
j j

j
j j

l Xj j
T M a L

εµ µεε
ε

ε ϕ ψ
+++

≤ +∑ ∑∑


 

So, similar to the continuous case, one is interested in estimating 

( ) ( ) ( )

[ ]

1
1

1 1
, inf : , ,

1 on ,

j j j j

j j

j
c a a L L

a a

ε
εε

ε ε
ε

ε ϕ ψ ϕ ψ

ϕ ψ ε

+
+

+ + ++
+ = ∈ ∈





∗ = + 


∑  

 

Applying Lemma A.2 concludes the proof.                           ∎ 
Remarks 4.7. As in the continuous case, the assertion remains true for 0,ε = ∞ ,  

but is weaker than the obvious series estimates  ( ) 

1

j j
j j

e
M aµ ε µ≤ +∑ ∑   
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2) If write j
jf µ= , (4.5) takes the form 

( ) ( ) ( )( ) ( )
( ) ( )1 ,

21 1 log
X

j j
j

j jf T a a M a f
ε

ε ε ε
+

≤ + + + +∑ ∑


  

Here 

( ) ( ) ( ) ( ) ( ) ( ){ }1 , 1 ,: ?j jX Xf H fε ε∞+ += ∈ ∈


      

is the (scalar) analytic ( )1 ;L Xε+
 -Fourier multiplier algebra, endowed with 

theorem 

( ) ( )
( )

( ) ( )
1 ,

1 ,
X

X
j

j
j

jf f
ε

ε
+

+

=∑ ∑







 

Similar to the continuous case state sequence for operators with polynomially 
growing powers. 

Corollary 4.8. Let ( )0 ε< < ∞ , 0ε > . Then there is a constant 1ε > −  such 
that the following is true. If jT  are bounded sequence of operators on a Ba-
nach space X such that there is 1ε > −  with 

( ) ( )( ) ( )1 1 , 0 ,j

njT n nβ εε +≤ + + ≥∑   

then 

( ) ( ) ( ) ( )

( ) ( )1 ,

2 2    1 1 1 log
X

j
j

j j
jf T n a f

a
ε

β ε εε
+

+   ≤ + + + +  
  

∑ ∑


    (4.6) 

for j
jf µ= , [ ]( )1 ,j a aµ ε∈ +  , ,a a ε+ ∈  with 1 a a ε≤ ≤ + . 

Remark 4.9. For the applications to Peller’s theorem in the next section the 
extract asymptotics of ( ),c a a ε+  is irrelevant, and one can obtain an effective 
estimate with much less effort. In the continuous case, the identity  

( ) ( ), 1,c a a c a aε ε+ = +   

already shows that ( ),c a a ε+  only depends on ( )a aε+ . For the special 
choice of functions  

[ ] [ ]0,1 0,,j j a εϕ ψ += =1 1  

one has 1 1j j ε
ε

ϕ + =∑  and ( )
1

1
1jj a ε
ε

ϕ ε
 
 + 

+
= +∑  and symmetrizing yields 

( ) ( )( ) ( )
( ) ( )1 ,

12 1 max 1 ,1
X

j j
j

jf A a a a f
ε

εε
εε ε ε

+

+ + 
 + + + ∑



 

In the discrete case take η as in the proof of Lemma A.2 and factorize 

 

( )
1ˆ
1 1

a

j j
z z
z a z

η ϕ ψ −
= ⋅ = ⋅

− −
 

Then  

( ) [ ]

1

0, 1j aj a
ε
ε

ε ε
ε

ϕ
+ 

 
 

+ + 
 
 

=∑ 1  and ( ) [ ]
( )( )1 1

0, 1j aj a a
ε ε

ε ε
ψ ε

+ +
+ +

= +∑ 1  hence 

RETRACTED

https://doi.org/10.4236/apm.2019.92009


S. Joseph et al. 
 

 

DOI: 10.4236/apm.2019.92009 181 Advances in Pure Mathematics 
 

( ) ( ) [ ] ( ) [ ]

( ) ( )

0, 0, 11

1 1
11 1 1

, j ja a
j

c a a

a a a a a

ε ε εε
ε

ε
ε ε ε

ε ϕ ψ

ε ε

+ + ++

 
  −+  + +

+ ≤

= + = +

∑ 1 1
 

( ) ( ) ( )
( ) ( )1 ,

12 1 max 1 ,

 
1

X

j j j
j

f A a a f
ε

εε
εε ε

+

+ + 
 ≤ + +∑ ∑



 

similar to the continuous case. 

5. Peller’s Theorems 

The results can be used to obtain a new proof of some classical results of Peller’s 
about Besov class functional calculi for bounded Hilbert space operators with 
polynomially growing powers from [16]. In providing the necessary notions es-
sentially follow Peller’s original work, changing the notation slightly (cf. also 
[17]) (see, e.g., [1]). 

For an integer n ≥ 1 let 

( ) ( )
( )

( )

1

1 1
1

1 1

1

0, 2
1 2 , 2 2

2
1   2 , 2 2
2
0, 2

n

n n n
n

j n
n n n

n

n

k

k k
k

k k

k

ϕ

−

− −
−

+ +

+

 ≤

 ⋅ − ≤ ≤


= 
 ⋅ − ≤ ≤

 ≤

 

That is, ( )j n
ϕ  are supported in 1 12 , 2n n− +   , zero at the endpoints, 

( ) ( )2 1j n
nϕ =  and linear on all of the intervals 12 , 2n n−    and 12 , 2nn +   . Let 

( ) ( )
0

1,1,0,:jϕ =  , then 

( )
0

j n
n j

ϕ
+

∞

=

=∑∑ 1  

the sum being locally finite. For 1ε > −  the Besov class ( ) ( )1
0nB ε+

=   is defined as 
the class of analytic functions jf  on the unit disc   satisfying 

( )
( ) ( )

( )
1
,1

1

0
2n

j j jB n Hnj
f fε

ε ϕ+
∞∞

∞
+

=

= ∗ < ∞∑ ∑∑


 

That is, if ( ) ( )( )0 0
,k

j k k k k
f zβ ε β ε β ε

≥ ≥
= + + = +∑ , then 

( )
( ) ( ) ( )

( )
1
,1

1

0
2n

j jB n Hj n j
f ε

ε ϕ β ε+
∞∞

∞
+

=

= + < ∞∑ ∑ ∑


 

Following Peller ([16], p.347), one has 

( ) ( ) ( )
( )

1
21

,1
0

1 dm m
j j L r

j
f B r f rεε

∞

− −+
∞∈ ⇔ − < ∞∑∫ 

  

where m is an arbitrary integer such that ( )1m ε> + . Since only consider 1ε > − , 
have 

( ) ( ) ( )1
,1B Hε+ ∞

∞ ⊆   
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and it is known that ( ) ( )1
,1B ε+

∞   is a Banach algebra in which the set of polyno-
mials is dense. The following is essentially ([16], p.354, bottom line); give a new 
proof. 

Theorem 5.1. (Peller 1982). There exists a constant 1ε > −  such that the 
following holds: Let X be a Hilbert space, and let ( )jT X∈  such that 

( ) ( ) ( )1 0
nj

j T M n nβ ε+≤ + ≥∑   

with ε β> −  and 1ε > − . Then 

( ) ( ) ( ) ( )
( ) ( )2
,1

2  1 9 1j
j j

j j B

f T f
β ε

β εε ε
+

∞

+≤ + +∑ ∑


 

for every polynomial jf . 
Proof. Let 

0
ˆ n

j nkf v v z
≥

= = ∑ , and ν  has finite support. If 1n ≥ , then 

( )j n
vϕ  has support in 1 12 , 2n n− +   , so can apply Corollary 4.8 with 1ε =  to 

obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )2,

22 1
21 1 1 2 1 log 4

X

j n
j jn n

j j j
T

β ε
ϕ ν ε ε ϕ ν

++≤ + + + +∑ ∑ ∑


 

Since X is a Hilbert space, Plancherel’s theorem (and standard Hardy space 
theory) yields that ( ) ( )2, X H ∞=   with equal norms. Moreover,  

11 2 3 2 ,n n++ ≤ ⋅  

and hence obtain 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )
( )

2 2
21 9 1 2nj

j jn n
j j H

T β εβ εϕ ν ε ε ϕ ν
∞

++≤ + + ⋅∑ ∑


 

Summing up, arrive at 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

 

0

 
2 2

0 1 2
1

   

1 2 1 9 1 2

j j
j j n

j n j

n

n

f T T

β εβ ε β ε

ϕ ν

υ ν ε ε ε

≥

++ +

≥

≤

≤ + + + + +

∑ ∑ ∑

∑
 

( ) ( ) ( )

( ) ( )2
,1

21 9j jn
j j j B

M f
β ε

β εϕ ν ε
+

∞

+

∞
≤ +∑ ∑ ∑



 

For some constant 1ε > − .                                        ∎ 
Remark 5.2. N. Nikolski has observed that Peller’s Theorem 5.1 is only inter-

esting if ( ) 1 2β ε+ ≤ . Indeed, define 

( )( )
( ) ( )( )

( )( )
0

0
1|

j

k
j j k j kkA

k
A f a z f a k

β ε

β ε

β ε
+

+

≥+
≥

 
= = = + < ∞ 
 

∑∑  

Then ( )( )
( )

j
jA

β ε+
  is a Banach algebra with respect to the norm ( )( )

.
jA

β ε+
 

and one has the obvious series estimates 

( ) ( )
( )( )

( )( )
( )( )    1

j
j j

j
j j j jA

f T f f A
β ε

β ε
ε

+
+

∈≤ +∑ ∑   
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If ( ) ( )( )( )1 1
kjT k β εε ++ +≤ , k ∈ . This is the “trivial” functional calculus for 

jT  mentioned in the Introduction, see (1.4). For ( )1 2
,1jf Bβ ε+ +

∞∈   have 

( )( )

( )( )

( )( )

( )( )

( ) ( ) ( ) ( ) ( )

( ) ( )
( )

1

1

1 2 2
,1

1
0

0

1
0

0 2 2
1 2

21 2
0

0 2 2

1 2
0 1 12 2 20

1 2

0

2

2

2 2

2 2

2

j

k k

k k

k
j A

j k

k
n

k n

k k
n

k n

k
j j j j j jk k k

k j

k
j j jk

k j j B

f a

a a

a a

a f f f

f f

β ε

β ε

β ε

β ε

β ε

β ε β ε

β ε

ϕ ϕ ϕ

ϕ

+

+

+

+ +
∞

+ +

≥

+ +

≥ ≤ <

+ +

≥ ≤ <

+ + +

− +
≥

∞
+ +

∞=

= +

≤ +

 
≤ +  

 
 ≤ + ∗ + ∗ + ∗ 
 

∗ =

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑ ∑

 

by the Cauchy-Schwarz inequality, Plancherel’s theorem and the fact that 

( ) ( )2H H∞ ⊂  . This shows that ( ) ( ) ( )( )
( )1 2

,1 jB Aβ ε

β ε

+ +
∞ +

⊆  . Hence, if 

1 2ε β≥ − , then ( ) ( )2 1 2β ε β ε+ ≥ + + , and therefore  

( ) ( ) ( ) ( ) ( )( )
( )2 1 2

,1 ,1 jB B Aβ ε β ε

β ε

+ + +
∞ ∞ +

⊆ ⊆   ,  

and the Besov calculus is weaker than the trivial ( )( )jA
β ε+

-calculus. 

On the other hand, for ε β> − , the example 

( ) ( ) ( )( )
( ) ( ) ( )2 22

,1
0
2 /

nn
j j

j n
f z z A Bβ ε β ε

β ε

∞
− + +

∞+
=

= ∈∑ ∑    

shows that ( )( )
( )jA

β ε+
  is not included into ( ) ( )2

,1B β ε+
∞  , and so the Besov 

calculus does not cover the trivial calculus. (By a straightforward argument one 

obtains the embedding ( )( )
( ) ( ) ( ),1jA B β ε

β ε

+
∞+

⊆  . 

5.1. An Analogue in the Continuous Case 

Peller’s theorem has an analogue for continuous one-parameter semigroups. The 
role of the unit disc   is taken by the right half-plane + , the power-series 
representation of a function on   is replaced by a Laplace transform represen-
tation of a function on  . However, a subtlety appears that is not present in the 
discrete case, namely the possibility (or even necessity) to consider also dyadic 
decompositions “at zero”. This leads to so-called “homogeneous” Besov spaces, 
but due to the special form of the estimate (4.2) we have to treat the decomposi-
tion at 0 different from the decomposition at ∞ . 

To be more precise, consider the partition of unity 

( ) ( )

( )

( )( ) ( )

( )( ) ( )

( )

1

1 1
1

1 1

1

0, 0 1 2
1 1 2 , 2 1 2

2
1   2 1 , 2 1 2
2
0, 2 1

n

n n n
n

j n
n n n

n

n

k

ε

ε ε
ϕ

ε ε

ε

−

− −
−

+ +

+

 ≤ + ≤

 ⋅ + − ≤ + ≤

= 
 ⋅ − + ≤ + ≤

 ≤ +
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for n∈ . Then ( ) ( )0,jn n
ϕ ∞∈

=∑  1 , the sum being locally finite in ( )0,∞ . For 
1ε > − , an analytic functions :jf + →   is in the (mixed-order homogene-

ous) Besov space ( ) ( )0, 1
,1B ε+

∞ +  if ( ) ( ) ( )1lim 1j jf fε ε+ →∞∞ = +  exists and 

( ) ( ) ( )
( )

( ) ( )
( )

0, 1
,1 0

1

0
2

j j j jB n Hj j n j

n
j jn Hn j

f f f

f

ε

ε

ϕ

ϕ

+ ∞
∞ +

∞
+

<

+

≥

= ∞ + ∗

+ ∗ < ∞

∑ ∑ ∑∑

∑ ∑








 

Here   denotes (as before) the Laplace transform 

( )( ) ( ) ( )( ) ( ) ( )1

0

e 1 1 Re 0z
j j

j j
z d zεϕ ϕ ε ε

∞
− += + + >∑ ∑∫  

Since dealing with 1ε > −  only, it is obvious that ( ) ( ) ( )0, 1
,1B Hε+ ∞

∞ + +⊆  . 
Clearly, definition of ( ) ( )0, 1

,1B ε+
∞ +  is a little sloppy, and to make it rigorous 

would need to employ the theory of Laplace transforms of distributions. However, 
shall not need that here, because shall use only functions of the form j

jf µ=  , 
where jµ  are bounded measure with compact support in [ ]0,∞ . In this case 

( ) ( ) ( )( ) j j
j j j jn n n

j j j
fϕ ϕ µ ϕ µ∗ ∗ =∑ ∑ ∑     

by a simple computation. 
Theorem 5.3. There is an absolute constant 1ε > −  such that the following 

holds: Let X be a Hilbert space, and let jA−  be the sequence of generators of a  
strongly continuous semigroup ( )( )( )1

1j jT T
ε

ε
++ ∈

= +


 on X such that 

( ) ( )( ) ( )1 1 1 , 0j

j
T s nβ εε ε ++ + + ≥∑  

with ε β> −  and 1ε > − . Then 

( ) ( ) ( ) ( )
( ) ( )0,2

,1

21 9 1j j j
j j B

f A f
β ε

β εε ε
+

+∞

+≤ + +∑ ∑


 

for every j
jf µ=  , jµ  being a bounded measure on +  of compact support. 

Proof. The proof is analogous to the proof of Theorem 5.1. One has 

( ) ( ) ( )
   

0
0 0

j j j
j j jn n

n n
fµ δ ϕ µ ϕ µ

< ≥

= ∞ + +∑ ∑  

where the first series converges in ( )1 ε+  [0, 1] and the second is actually finite. 
Hence 

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )
( )( )

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )
( )

2

 

  22 1

,

  22 1

  22 1

1 1 2

1 1 2

1 1 2

j
j j j j jn

j j j n

n
j j jn L Xj n j

n
j j jn Hj n j

n
j j jn Hj n j

f A f A

f f

f f

f f

β ε

β ε

β ε

ϕ

ε ϕ

ε ϕ

ε ϕ

µ

∞
+

∞
+

∈

++

∈

++

∈

++

∈

 ≤ ∞ +  

∞ + + + ∗

= ∞ + + + ∗

∞ + + + ∗

∑ ∑ ∑∑

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑




























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( ) ( ) ( ) ( )
( )

( ) ( )

( )0,2
,1

  22

0
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by Plancherel’s theorem and Corollary 4.3.                             ∎ 
Remark 5.4. The space ( )0,0

,1B∞ +  has been considered by Vitse in [18] under 
the name ( )0

,1B∞ + , and refer to that section for more information. In particu-
lar, Vitse proves that ( )0,0

,1jf B∞ +∈   if and only if ( ) jf H ∞
+∈   and 

( ) ( ) ( )( ) ( )1
0

sup 1 1 1
j

jf i dε ε ε ε
∞

+ ∈ ′ + + + + < ∞∑∫ 

 

Let us formulate the special case ε β= −  as a corollary, with a slight genera-
lization.  

Corollary 5.5. There is a constant 1ε > −  such that the following is true. 
Whenever jA−  the sequence of generates a strongly continuous semigroup  

( )( )
1

1jT
ε

ε
>−

+  on a Hilbert space such that ( )1j
j MT ε+ ≤∑  for all 1ε > − , 

then 

( ) ( )
( )0,0

0,1

2  1j jj Bj jf A M fε
+

≤ +∑ ∑


           (5.1)  

for all j
jf µ=  , ( )j Mµ +∈  . 

Proof. It is easy to see that the Laplace transform ( ) ( )0,0
0,1: M B+ +→   is 

bounded. Since (5.1) is true for measures with compact support and such meas-
ures are dense in ( )M + , a approximation argument proves the claim.     ∎ 

Remarks 5.6. 
1) Vitse ([18], Introduction, p.248) in a short note suggests to prove corollary 

5.5 by a discretization argument using Peller’s Theorem 5.1 or ε β= . This is 
quite plausible. But no details are given in [18] and it seems that further work is 
required to make this approach rigorous. 

2) (Cf. Remark 4.9.) To prove Theorem 5.1 and 5.3 did not make full use of 
the logarithmic factor ( )( )log 1 a aε+ +  but only of the fact that it is constant 
in n if [ ] 1 1, 2 , 2n na a ε − ++ =    . However, as Vitse notes in ([18], Remark 4.2), 
the logarithmic factor appears a fortiori, indeed. If [ ]supp ,j a aµ ε⊆ +  then if 
we write  

( )j j
j n

j j n
µ ϕ µ

∈

=∑ ∑∑


 

the number ( ){ } | 0j
j n

N card n ϕ µ= ∈ ≠  of non-zero terms in the sum is  

proportional to ( )( )log 1 a aε+ + . Hence, for the purposes of functional calcu-
lus estimates neither Lemma A.1 nor A.2 is necessary. 

3) (Cf. Remark 5.2.) Different to the discrete case, the Besov estimates are not 
completely uninteresting in the case ( )1 2ε β> − , because ( )β ε+  affects 
only the decomposition at ∞ . 
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5.2. Generalizations for UMD Spaces 

The proofs of Peller’s theorems use essentially that the underlying space is a 
Hilbert space. Indeed, have applied Plancherel’s theorem in order to estimate the 
Fourier multiplier norm of a function by its L∞ -norm Hence do not expect Pel-
ler’s theorem to be avoid on other Banach spaces without modifications. Show 
that replacing ordinary boundedness of sequence of operators families by the 
so-called γ-boundedness, Peller’s theorems carry over to arbitrary Banach spaces. 
Here suggest a different path, namely to replace the algebra ( )H ∞

+  in the con-
struction of the Besov ( )0, 1

,1B ε+
∞  by the analytic multiplier algebra ( ) ( )1 , Xε ++  , 

introduced in Remark 4.2(2).  
To simplify notation, let us abbreviate ( ) ( ) ( )1 1 , Xε ε ++ +=   . For 1ε > −  

and :jf + →   we say ( )
( )

0, 1
1 1jf B ε

ε
+

+
 ∈    if ( )jf H ∞

+∈  ,  

( ) ( ) ( )1lim 1j jf fε ε+ →∞∞ = +  exists and  

( )
( )

( ) ( )
( )

( ) ( )
( )
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+
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= ∞ +
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∑ ∑ ∑∑
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
 

Then the following analogue of Theorem 3.5 holds, with a similar proof.  
Theorem 5.7. ( )0 , 0ε ε< < ∞ > . Then there is a constant 1ε > −  such that  

the following holds: Let jA−  be the sequence of generators of a strongly conti-

nuous semigroup ( )( )( )
 

1
1j jT T

ε
ε

++ ∈
= +


 on a Banach space X such that 

( ) ( )( ) ( )1 1 2 0j

j
T nβ εε ε ε ++ ≤ + + ≥∑  

with ε β> −  and 0ε > . Then 

( ) ( ) ( ) ( )
( )

( )
0,2

11

2  1 9 1j j j
j j B

f A f
β ε

ε

β εε ε
+

+

+

 
 

≤ + +∑ ∑


 

for every j
jf µ=  , jµ  bounded measure on +  of compact support. 

For X = H is a Hilbert space and 1ε =  one is back at Theorem 5.3. For spe-
cial cases of X-typically if X is an 1L —or a ( )C K -space—one has  

( ) ( )( )0,0
1 1 1B M ε ε ++

 = +
  . 

But if X is a UMD space, one has positive results. To formulate them let 

( ) ( ) ( ) ( ){ }1 : | jjB f H zf z H∞ ∞ ∞
+ + +′= ∈ ∈     

be the analytic Mikhlin algebra. This is a Banach algebra with respect to the se-
ries norms 

( ) ( )
1

sup supj z j zH
j j

j
j

f f z zf z∞ + +∈ ∈ ′= +∑ ∑ ∑
 

 

If X is a UMD space then the vector-valued version of the Mikhlin theorem 
([13], Theorem E.6.2) implies that one has a continuous inclusion 

( ) ( ) ( )1 1 , XH ε
∞

+ ++⊆   
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where the embedding constant depends on ( )1ε +  and (the UMD constant of) 
X. If one defines ( )0, 1

1 1B Hε+ ∞    analogously to ( )
( )

0, 1
1 1B ε

ε
+

+
 
   above, then 

obtain the following. 
Corollary 5.8. If X is a UMD space, then Theorem 5.7 is still valid when 

( ) ( )1 , Xε ++   is replaced by ( )1H ∞
+  and the constant ( )1 ε+  is allowed 

to depend on (the UMD-constant of) X. 
Fix ( )π 2, πθ ∈  and consider the sector 

{ }{ }Σ : \ 0 | arg .z C zθ θ= ∈ <  

Then ( ) ( )1ΣH Hθ
∞ ∞

+⊂  , as follows from an application of the Cauchy 
integral formula, see [13]. Hence, if define ( ) ( )0, 1

,1 ΣB ε
θ

+
∞  by replacing the space 

( )H ∞
+  in the definition of ( )1H ∞

+  by ( )ΣH θ .  
Corollary 5.9. Let ( )π 2, πθ ∈ , let X be a UMD space, and let ( )0 ε< < ∞ , 

0ε > . Then there is a constant ( ) ( )1 , ,1c Xε θ ε+ = +  such that the following 
holds. Let jA−  be the sequence of generators of a strongly continuous semi-
group ( )( )1  1j jT T

ε
ε

++ ∈
= +   on X such that 

( ) ( )( )( ) ( )1 1 1 0j

j
T s nβ εε ε ++ ≤ + + ≥∑  

with ε β> −  and 0ε > . Then 

( ) ( ) ( ) ( )
( ) ( )0,2

,1

2  1 9 1
s

s
j j j

j j B

f A f
β

θ

βε ε
+

∞

+

Σ

≤ + +∑ ∑  

for every j
jf µ=  , jµ  a bounded measure on +  of compact support. 

Note that Theorem 5.3 above simply says that if X is a Hilbert space. One can 
choose π 2θ =  in Corollary 5.9. 

Remark 5.10. It is natural to ask whether ( )0, 1
1 1

sB H+ ∞    or ( ) ( )0,2
,1 ΣB β ε

θ
+

∞  
are actually Banach space algebras. This is probably not true, as the underlying 
Banach algebras ( )1H ∞

+  and ( )ΣH θ
∞  are not true invariant under shifting 

along imaging axis, and hence are not ( )1L  -convolution modules. 

6. Generalizations Involving γ-Boundedness 

Discuss one possible generalization of Peller’s theorem, involving still an as-
sumption on the Banach space and a modification of the Besov algebra, but no 
additional assumption on the semigroup. Here follow a different path, streng-
thening the requirements on the semigroups under consideration. Vitse has 
shown in [17] [18] that the Peller-type results remain true without any restric-
tion on the Banach space if the semigroup is bounded analytic (in the conti-
nuous case), or the sequence of operators is a Tadmor-Ritt operator (in the dis-
crete case). (These two situations correspond to each other in a certain sense, see 
e.g. ([13], Section 9.2.4)). 

The approach here is based on the ground-breaking work of Kalton and Weis 
of recent years, involving the concept of γ-boundedness. This is a stronger no-
tion of boundedness of a set of the sequence of operators between two Banach 
spaces in. The “philosophy” of the Kalton-Weis approach is that every Hilbert 
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space theorem which rests on Plancherel’s theorem (and no other result specific 
for Hilbert spaces) can be transformed into a theorem on general Banach spaces, 
when the sequence of operators norm boundedness is replaced by γ-boundedness. 

The idea is readily sketched. In the proof of Theorem 5.3 used the transference 
identity (2.3) with the function space ( )2 ;L X  and factorized the sequence of 
operators j

jT
µ

 over the Fourier multiplier jL
µ

. If X is a Hilbert space, the  
2-Fourier multiplier norm of jL

µ
 are just jµ

∞
  and this led to the Besov  

class estimate. Replace the function space ( )2 ;L X  by the space ( ); Xγ  ; in 
order to make sure that the transference identity (2.3) remains valid, need that 
the embedding ι and the projection P from (2.3) are well defined. And this is 
where the concept of γ-boundedness comes in. Once have established the trans-
ference identity, can pass to the transference estimate; and since ( )L∞   is also 
the Fourier multiplier algebra of ( ); Xγ  , recover the infinity norm as in the 

( )2 ;L H -case from above. 
Shall pass to more rigorous mathematics, starting with a (very brief) introduc-

tion to the theory of γ-spaces. For a deeper account refer to [27] (see, e.g. [1]). 

6.1. γ-Summing and γ-Radonifying Operators 

Let H be a Hilbert space and X a Banach space. The sequence of operators 
:jT H X→  is called γ-summing if 

1 22

supj j
F e

j j e F X

T T e
γ

γ
∈

 
 = ⊗ < ∞
 
 

∑ ∑ ∑  

where the supremum is taken over all finite orthonormal systems F H⊆  and 
( )e e F
γ

∈
 is an independent collection of standard Gaussian random variables on 

some probability space. It can be shown that in this definition it suffices to con-
sider only finite subsets F of some fixed orthonormal basis of H. Let 

( ) { }; : : | is -summingj jH X T H X Tγ γ∞ = →   

the space of γ-summing sequence of operators of H into X. This is a Banach 
space with respect to the norm 

γ
⋅ . The closure in ( );H Xγ∞  of the space of 

finite rank sequence of operators are denoted by ( );H Xγ , and its elements 

( );jT H Xγ∈  are called γ-radonifying. By a theorem of Hoffman-Jørgensen 
and Kwapie’, if X does not contain 0c  then ( ) ( ); ;H X H Xγ γ∞= , see ([27], 
Thm.6.2). 

From the definition of the γ-norm the following important ideal property of 
the γ-spaces is quite straightforward [27]. 

Lemma 6.1. (Ideal Property). Let Y be another Banach space and K another 
Hilbert space, let :L X Y→  and :R K H→  be bounded linear sequence of 
operators, and let ( );jT H Xγ∞∈ . Then 

( ) ( ) ( ), ,, andj j j
X Y K H

j j
LT R K Y LT R L T R

γ
γ

γ ∞∈ ≤∑ ∑ 
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If ( ),jT H Xγ∈ , then ( ),jLT R K Yγ∈ . 
If jg H∈  we abbreviate : ,j jg g= ⋅ , i.e., j jg g→ s the canonical conju-

gate-linear bijection of H onto its dual H . Every finite rank sequence of opera-
tors  :jT H X→  has the form 

( )
1

   
n

j j
jn

j j j
T g x

=

= ⊗∑ ∑∑  

and one can view ( );H Xγ  as a completion of the algebraic tensor product 
H X⊗  with respect to the γ-series norms. Since 

j j j
X XH

j Hj j
g x g x g x

γ
⊗ = =∑ ∑ ∑  

for every jg H∈ , x X∈ , the γ-series norms are cross-norm. Hence every 

nuclear the sequence of operators  :jT H X→  is γ-radonifying and  

nucj
j

j
jT T

γ
≤∑ ∑ . (Recall that jT  are nuclear the sequence operators if 

( )0
j j

nn n
T g X

≥
= ⊗∑  for some ( )j

n
g H∈ , nx X∈  with  

( )0 j
j

nn Xn H
g x

≥
< ∞∑ ∑ ). The following application turns out to be quite 

useful. 
Lemma 6.2. Let H, X as before, and let ( ), , jµΩ Σ  be a measure space. Sup-

pose that :jf HΩ→  and :jg XΩ→  are (strongly) jµ -measurable and 

( ) ( ) ( )( )
 

1 1 1j j
j H X

j
f g dε ε µ ε

Ω

+ + + < ∞∑∫  

Then  ( )( )1 , ,j
jf g L H Xγ⊗ ∈ Ω  and  

( ) ( ) ( )
 

  ,j j j
j

j j
T f g d H Xγµ

Ω

= ⊗ ∈∑ ∑∫  

satisfies 

( ) ( ) ( )( ) ( )
 

, 1 1 1j j j
j

j
T h h f g d h Hε ε µ ε

Ω

= + + + ∈∑∫  

And 

( ) ( ) ( )( )
 

1 1 1j j j
H X

j j
T g d

γ
ε ε µ ε

Ω

≤ + + +∑ ∑∫  

Suppose that ( )2 , , jH L µ= Ω Σ  for some measure space ( ), , jµΩ Σ . Every 
function ( )2 ;u L X∈ Ω  defines the sequence of operators j

uT : ( )2L XΩ →  
by integration: 

( ) ( ) ( ) ( )
 

2 ,j j j
u u

j j
T L X T h h u d µ

Ω

= Ω → =∑ ∑∫  

(Actually, one can do this under weaker hypotheses on u, but shall have no 
occasion to use the more general version.) Identify the operator j

uT  with the 
function u and write ( );u Xγ∈ Ω  in place of ( )( )2 ;j

uT L Xγ∈ Ω . 
Extending an idea of ([19], Remark 3.1) can use Lemma 6.2 to conclude that 
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certain vector-valued functions define γ-radonifying operators. Note that a = −∞  
or a ε+ = ∞  are allowed, moreover employ the convention that 0 0∞⋅ = . 

Corollary 6.3. Let ( ),a a ε+ ⊆  , let ( )( )1,1 , ;Iocu W a a Xε∈ +  and let  
( ): ,j a aϕ ε+ →  . Suppose that one of the following two conditions are satisfied: 

1) 
( )

( )
( )

( ) ( )2 2, 1 ,
and 1 1

a
j jj jX aL a a L a

X

'u a u d
ε

ε ε ε
ϕ ϕ ε ε

+

+ + +
< ∞ + + < ∞∑ ∑∫  

2) 
( )

( )
( )( ) ( ) ( )2 2, , 1

and 1 1
a

j jj jX aL a a L a
X

'u a u d
ε

ε ε
ϕ ε ϕ ε ε

+

+ +
+ < ∞ + + < ∞∑ ∑∫  

Then ( )( ), ;j u a a Xϕ γ ε∈ +⋅  with respective estimates for j j u
γ

ϕ ⋅∑ . 

Proof. In case 1) use the representation  

( ) ( ) ( ) ( )( )1
1 1 1

a
'u u a u d

ε
ε ε ε

+
+ = + + +∫  

Leading to 

( ) ( ) ( ) ( ) ( )1 ,    1 1
a

j j jaa
j j j

'u u a u d
ε

ε εϕ ϕ ϕ ε ε
+

+ +

 
⋅ ⊗= + ⊗ + + 

 
∑ ∑ ∑∫ 1  

Then apply Lemma 6.2. In case 2) start with 

( ) ( ) ( )( )( )1
1 1

a 'u u a u d
ε

ε
ε ε ε

+

+
+ = + + +∫  

and proceed similarly.                                              ∎  
The space ( )( )2 ;L Xγ Ω  can be viewed as space of generalized X-valued 

functions on Ω . Indeed, if Ω =   with the Lebesgue measure, ( )( )2 ;L Xγ∞   
is a Banach space of X-valued tempered distributions. For such distributions 
their Fourier transform is coherently defined via its adjoint action:  :j jT T=   , 
and the ideal property mentioned above shows that   restricts to almost iso-
metric isomorphisms of ( )( )2 ;L Xγ∞   and ( )( )2 ;L Xγ  . Similarly, the mul-
tiplication with some function ( )m L∞∈   extends via adjoint action cohe-
rently to ( )( )2 ;L L X , and the ideal property above yields that ( )( )2 ;L Xγ∞   
and ( )( )2 ;L Xγ   are invariant. Furthermore, 

 

j j

j
T mT m

γ γ∞ ∞ ∞→
=∑ 

 

for every ( )m L∞∈  . Combining these two facts obtain that for each ( )m L∞∈   
the Fourier multiplier sequence of operators with symbol m 

( ) ( ) ( )( )( )1 2 : ;j j j
mF T m T T L X−= ∈      

is bounded on ( )( )2 ;L Xγ∞   and ( )( )2 ;L Xγ   with series norms estimates 

( ) ( ) j j
m L

j j
F T m Tγ

γ

∞≤∑ ∑  

Similar remarks apply in the discrete case Ω =  . 
An important result in the theory of γ-radonifying sequence of operators is the 

multiplier theorem. Here one considers a bounded sequence of operators-valued 
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functions ( ): ;jT X YΩ→   and asks under what conditions the multiplier se-
quence of operators 

( ) ( ) ( ) ( )2 2: ; ; ,j j
j

j jT T
L X L Y f T fΩ → Ω = ⋅ ⋅     

are bounded for the γ-norms. To formulate the result, one needs new notion. 
Let X, Y be Banach spaces. Collections ( );j X Y⊂   is said to be γ-bounded 

if there is a constant 1ε > −  such that 

( )
1 2 1 22 2

  1j j j j
j j j j

T T T T
' 'j jT TX

j

X

T x xγ ε γ
∈ ∈

   
   ≤ +
   
   

∑ ∑ ∑ ∑ 
 

     (6.1) 

for all finite subsets j j' ⊆  , ( )j j j'T T
x X

∈
⊂


. (Again, ( )j j j'T T

γ
∈

 is an inde-

pendent collection of standard Gaussian random variables on some probability  
space.) If j  is γ-bounded, the smallest constant c such that (6.1) holds, is 
denoted by ( )jγ   and is called the γ-bound of j . Ready to state the result, 
established by Kalton and Weis in [19]. 

Theorem 6.4 (Multiplier theorem). Let ( )2H L= Ω  for some measure space 

( ), , jµΩ Σ  and let X, Y be Banach spaces. Let ( ): ;jT X YΩ→   be a strongly 
jµ -measurable mapping such that 

( ) ( ){ }: 1 | 1j jT ε ε= + + ∈Ω   

is γ-bounded. Then the multiplication sequence of operators 

( ) ( ) ( ) ( )2 2: ; ,j
j

j jT
L X L Y f x f T xΩ ⊗ → Ω ⊗ ⋅ ⋅   

extends uniquely to a bounded sequence of operators 

( )( ) ( )( )2 2: ; ;jT
L X L Yγ γ ∞Ω → Ω  

with 

( ) ( )( )( )2, ; .j
j

T
j j

S S S L X
γγ

γ γ≤ ∈ Ω∑ ∑   

It is unknown up to now whether such a multiplier jT
  always must have 

its range in the smaller class ( )( )2 ;L Yγ Ω . 

6.2. Unbounded C0-Groups 

Have applied the transference identities to unbounded C0-groups in Banach 
spaces. In the case of a Hilbert space this yielded a proof of the Boyadzhiev-de 
Laubenfels theorem, i.e., that all sequence of generators of a C0-group on a Hil-
bert space has bounded H ∞ -calculus on vertical strips, if the strip height ex-
ceeds the exponential type of the group. The analogue of this result for general 
Banach spaces but under γ-boundedness conditions is due to Kalton and Weis 
([19], Thm.6.8). Give a new proof using the transference techniques (see, e.g., 
[1]). 

Recall that the exponential type of a C0-group on a Banach space X is 

( ) ( ) ( ) ( ) ( ) ( )( ){ }1 1: inf 1 | 1: 1 1 e 1U U ε εθ ε ε ε ε ε+ += > − ∃ > − + ≤ + + ∈ . 
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Let us call the number 

( ) ( ) ( ) ( ) ( ){ }{ }1 1: inf 1 | e 1 | 1 is -boundedU Uε ε
γθ ε ε ε γ− + += > − + + ∈  

the exponential γ-type of the group U. If ( )Uγθ < ∞  call U exponentially 
γ-bounded. The following is the γ-analogue of the Boyadzhiev de-Laubenfels 
theorem, see Equation (3.2). 

Theorem 6.5. (Kalton-Weis). Let jiA−  be the sequence of generators of a  
C0-group ( )( )( )1

1U
ε

ε
+ ∈

+


 on a Banach space X. Suppose that U is exponen-

tially γ-bounded. Then jA  has a bounded ( )( )1H St ε∞ + -calculus for every 

( ) ( )1 Uγε θ+ > . 

Proof. Choose ( ) ( ) ( )1Uγθ ε β ε< + < + . By usual approximation techniques 
([8], Proof of Theorem 3.6) it suffices to show an estimate 

( )
( )( )1

j j j
j j H St

f A f
ε∞ +

∑ ∑  

only for j
jf µ=   with jµ  a measure such that ( )( )

( )( )
1

1j

ε
µ ε

+
∈ +  . (Recall 

the ( )( )
( )( ) ( )( )( ) ( )( )

1
1 cosh 1 1 1j jd d

ε
µ ε ε ε µ ε

+
+ = + + + , so that j

jf µ=   

has a bounded holomorphic extension to ( )1St ε+ ). By the transference identi-

ty (3.1) the sequence of operators ( )j jf A  factorizes as 

( ) ( )( )1

  jj jf A P L
ε

µ
ι

+

=   . 

Here ( )( )1
jL

ε
µ

+

 is convolution with ( )( )1

j

ε
µ

+
, 

( ) ( )( ) ( )( ) ( )( )11 1 , 1
cosh 1

lx U x x Xε ε ε
β ε ε

+ = − + ∈ + ∈
+ +

  

and 

( ) ( ) ( ) ( )
 

1 1 1 1j
j

PF U F dψ ε ε ε ε= + + + +∑∫


 

this factorization was considered to go via the space ( )2 ;L X , i.e., 

( ) ( )2 2: ; , : ; .X L X P L X Xι → →   

However, the exponential γ-boundedness of U will allow us to replace the  
space ( )2 ;L X  by ( )( );L Xγ  . Once this is ensured, the estimate is imme-

diate, since convolution with ( )( )1

j

ε
µ

+
 are the Fourier multiplier with symbol 

( )( )1

j

ε
µ

+
 . Know that this is bounded on ( )( )2 ;L Xγ   with a norm not ex-

ceeding ( )( ) ( )1  

j

L
j ∞ε

µ
+∑


 , which by elementary computations and the 

maximum principle can be majorized by 
( )( )1

j
H stj ε

µ ∞ +∑  .  

To see that indeed ( )( )2: ;X L Xι γ→  , write 
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9) 

( ) ( )( ) ( )( )

( ) ( ) ( )( )( )
( ) ( )

( )( )

1 1
1 1

11 1
cosh 1

ee 1
cosh 1

U x

U x
ε ε

ε ε

ε ε
β ε ε

ε
β ε ε

+ +
− + +

+ = − +
+ +

 
= − +   + + 

  

and use the Multiplier Theorem 6.4 to conclude that ( ): ;X Xι γ∞→   is 
bounded. To see that ( ) ( );ran Xι γ⊂   we employ a density argument. If 

( )dom jx A∈ , write jx uι ψ= ⋅  with ( ) ( )( )( )1 cosh 1 1jψ ε β ε ε+ = + + −  and 
( ) ( )( ) ( )( )1 1 1u U xε ε ε+ = − + + ∈ . 
Then ( ) ( ) ( )( ) ( )1 2; , 1 1 ,j ju C X u iU A x Lε ε ψ′∈ + = − + ∈  , and, 

( )( ) ( ) ( )

( )( ) ( ) ( )

2

2

1 ,
0

0

, 1

1 1 ,

1 1

j L
j X

j L
j X

'

'

u d

u d

ε

ε

ψ ε ε

ψ ε ε

∞

+ ∞

−∞ +
−∞

+ +

+ + < ∞

∑∫

∑∫
 

Hence, 

( )( ) ( ) ( )

( )( ) ( ) ( ) ( )

, 1
0

0

, 1

  1 1

  1 1 ,

j j j
j j j

j
j

'

'

lx u x u d

u d X

ε

ε

ψ ψ ψ ε ε

ψ ε ε γ

∞

−∞ +

−∞ +
−∞

 
⋅  


= = ⊗ + ⊗ + +

− ⊗ + +



∈

∑ ∑ ∑∫

∑∫ 

1

1
 

by Corollary 6.3 (One has to apply (1)) to the part of juϕ  on +  and (2) (to 
the part on − ) Since ( )dom jA  is dense in X, conclude that  

( ) ( )( )2 ;ran L Xι γ⊆   as claimed. 
Finally, show that ( )( )2: ;P L X Xγ →  is well-defined. Clearly  

( ) ( )( ) ( ) ( )( )1 1integrate against e 1 multiply with e 1jP Uθ ε θ εϕ ε ε+ − += + +  

where ( ) ( )  1Uγθ θ ε< < + . Know that ( ) ( ) ( )( )1 11 ej O ε εϕ ε − + ++ = , so by the 
Multiplier Theorem 6.4, every things works out fine. Note that in order to be 
able to apply the multiplier theorem, have to start already in ( )( )2 ;L Xγ  . And 
this is why had to ensure that ι maps there in the first place.                ∎ 

Remark 6.6. Independently of us, Le Merdy [20] has recently obtained a 
γ-version of the classical transference principle for bounded groups. The method 
is similar, by re-reading the transference principle with the γ-space in place of a 
Bochner space.  

6.3. Peller’s Theorm-γ-Version, Discrete Case 

Turn to the extension of Peller’s theorems from Hilbert spaces to general spaces. 
Begin with the discrete case. 

Theorem 6.7. There is an absolute constant 1ε > −  such that the following 
holds: Let X be a Banach space, and let ( )jT X∈  such that the set 

( )( ) ( )( ){ }: 1 | 0
nj jn T nβ ε+= + ≥  

is γ-bounded. Then 
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( ) ( ) ( ) ( )
( ) ( )2
,0

 
2

1 9j j
j j

j j B

f T f
β ε

β εε γ
+

∞

+≤ +∑ ∑


  

for every polynomial jf . 
The theorem is a consequence of the following lemma, the arguments being 

completely analogous to the proof of Theorem 5.1. 
Lemma 6.8. There is a constant 1ε > −  such that 

 ( ) ( ) ( )( ) ( ) 

( )
1 1 logj j

j j j

H
T a a M aµ ε ε ε µ

∞
≤ + + + +∑ ∑


  

whenever the following hypotheses are satisfied: 
1) jT  are bounded sequence of operators on a Banach space X; 
2) ,a a ε+ ∈  with 1 a a ε≤ ≤ + ; 

3) ( ) ( ){ } : | 0
njM a T n aε γ ε+ = ≤ ≤ + ; 

4)  ( )1  jµ +∈    such that ( ) [ ]supp ,j a baµ ε⊂ + . 
Proof. This is analogous to Theorem 4.6 Take ( )2,j j Lϕ ψ +∈   such that 

1j jψ ϕ∗ =  on [ ],a a ε+  and [ ]supp sup, p 0,j j aϕ ψ ε⊂ + . Then 
 ( ) ( ), ,j

j j j j j
j jT T T P L

µ
µ ϕ µ ψ ι

∼
=∗=     

see (2.3). Note that only functions of finite support are involved here, so 
( ) ( )2ran L Xι ⊂ ⊗ . Hence can take γ-norms and estimate 

 ( ) ( )( ) ( )( )2 2, ,j
j j

L X X X L X
j j

T P L l
γ γµ

γ γ

µ
→ →

→

≤∑ ∑   

Note that 

( ) [ ] ( )( ),0
j

jax T xει ψ
∼ ∼

− += ⊗1   

so the multiplier theorem yields 

( ) ( ) ( )
2j j

j j
x M a x M a x

γ
γ

ι ε ψ ε ψ
∼

≤ + ⊗ = +∑ ∑  

Similarly, P can be decomposed as 

( ) [ ]( )0,integrate against multiply with j
j aP Tεϕ +=  1   

and hence the multiplier theorem yields 

( )
2jX

j
P M a

γ
ϕ ε

→
≤ +∑  

Finally note that 


( )
j

j

Hj j
L
µ γ γ

µ
∞→

=∑ ∑


 

since—similar to the continuous case—all bounded measurable functions on   
define bounded Fourier multipliers on ( )( )2 ;L Xγ  . Putting the pieces togeth-
er obtain 

 ( ) ( ) 

( )

2
22j j j

j j
Hj j

T M aµ ε ϕ ψ µ
∞

≤ +∑ ∑

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and an application of Lemma A.2 concludes the proof.                    ∎ 

6.4. Peller’s Theorem-γ-Version, Continuous Case 

Turn to the continuous version(s) of Peller’s theorem. 
Theorem 6.9. There is an absolute constant 1ε > −  such that the following 

holds: Let jA−  be the sequence of generators of a strongly continuous semigroup  
( )( )

1
1j jT T

ε
ε

≥−
= +  on a Banach space X. Suppose that ε β> −  is such that 

the set 

( ) ( ) ( ){ }: 2 1 | 1j jTβ εε ε ε− += + + > −  

is γ-bounded. Then 

( ) ( ) ( ) ( )
( ) ( )0,2

,1

2
1 9 j

j j j
j j B

f A f
β ε

β εε γ
+

+∞

+≤ +∑ ∑


  

for every j
jf µ=  , ( )j Mµ +∈   with compact support. 

Corollary 6.10. There is an absolute constant 1ε > −  such that the following  
holds: Let jA−  be the sequence of generators of a strongly continuous semi-

group ( )( )
1

1j jT T
ε

ε
>−

= +  on a Banach space X such that  

( ){ }1 |: 1j jT ε ε+= > −  

is γ-bounded. Then 

( ) ( ) ( )
( )0,0

,1

2
1 j

j j j
j j B

f A fε γ
+∞

≤ +∑ ∑


  

for every j
jf µ=  , jµ  bounded measure on + . 

The theorem is a consequence of the following lemma, the arguments being. 
The proofs are analogous to the proofs in the Hilbert space case, based on the 
following lemma.  

Lemma 6.11. There is a constant 1ε > −  such that 

( ) ( ) ( )( ) ( )
( )

 
21 1 logj j j

j j H

f A a a M a fε ε ε
∞

+

≤ + + + +∑ ∑


  (6.2) 

whenever the following hypotheses are satisfied: 
1) ( )( )

1
1j jT T

ε
ε

>−
= +  is a C0-semigroup on the Banach space X; 

2) 0 a a ε< < + < ∞ ; 0ε > ; 
3) ( ) ( ){ }: 1 | 0 1jM a T aε γ ε ε ε+ = + ≤ + ≤ + ; 

4) j
jf µ=  , where ( )j Mµ +∈   such that ( ) [ ]supp ,j a aµ ε⊆ + . 

Proof. Examine the proof of Theorem 4.1 Choose ( )2 ,,j j L a aϕ ψ ε∈ +  such 
that 1j jϕ ψ∗ =  on [ ],a a ε+ . Then 

( ) ( ) ,j j
j

j jf A T P L
µ µ

ι= =    

where for x X∈  and :F X→  
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( ) ( ) ( ) ( ) ( ) ( )
0

, 1 1 1 1
aj j

j j
j

ix T x PF T F d
ε

ψ ϕ ε ε ε ε
∼∼ +

= = + + + +∑∫  

Claim that ( ): ;X Xι γ→   with 

( )
( )2 0,

jX
j L a

l M a
γ

ε

ε ψ
→

+

≤ + ∑  

As in the case of groups, the estimate follows from the multiplier theorem; 
and the fact that ( ) ( );ran Xι γ⊂   (and not just ( ); Xγ∞  ) comes from a 
density argument. Indeed, if ( )dom jx A∈  then ( )~

jx uι ψ= ⋅  with  

( ) ( )( )1 1ju T xε ε+ = − +  for   1ε > − . 

Since ( )1 ,0u C a ε∈ − +    and ( ) ( )( )2 ,0j L aψ ε
∼
∈ − + , Corollary 6.3 and 

the ideal property yield that  

( ) ( )( )( ) ( ),0 ; ;jx u a X Xι ψ γ ε γ
∼

∈⋅= − + ⊆  .  

Since ( )dom jA  is dense in X, ( ) ( );ran Xι γ⊆  , as claimed. 
Note that P can be factorized as 

( ) ( )( )integrate against multiply with 0, j
jP b Tϕ=  1  

and so ( )
( )2 0,jX L a

P M a
γ ε

ε ϕ
→ +

≤ +  by the multiplier theorem. Combine these 

results to obtain 

( ) ( )
( )

( ) ( )2
2

22
0,

0,
j j j j jL a H

j j L a

f A M a f
ε

ε

ε ϕ ψ ∞
++

+

≤ +∑ ∑


 

and an application of Lemma A.1 concludes the proof.                    ∎ 

7. Singular Integrals and Functional Calculus 
7.1. Functional Calculus 

Provided series estimates of the form 

( )
( )

( )0,2
,1

j j j
j j B

f A f
β ε

β ε
+

+

∑ ∑  

Under various conditions on the Banach space X, the semigroup jT  is on 
the angle θ . However, to derive these estimates required j

jf µ=  , jµ  some 
bounded measure of compact support. It is certainly natural to ask whether one 
can extend the results to all ( )

( ) ( )0,2
,1jf B β ε

θβ ε
+

+∈ Σ , i.e., to a proper Besov class 
functional calculus (see, e.g., [1]). 

The major problem here is not the norm estimate, but the definition of 
( )j jf A  in the first place. (If j

jf µ=   for the measure jµ  with compact 
support, this problem does not occur). Of course one could pass to a closure 
with respect to the Besov norm, but this yields a too small function class in gen-
eral. And it does not show how this definition of ( )j jf A  relates with all the 
others in the literature, especially, with the functional calculus for sectorial se-
quence of operators [13] and the one for half-plane type operators [28]. 
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7.2. Singular Integrals for Semigroups 
A usual consequence of transference estimates is the convergence of certain sin-

gular integrals. It has been known for a long time that if ( )( )( )1
1U

ε
ε

+ ∈
+


 is a  

C0-group on a UMD space X then the principal value integral  

( ) ( )
( )

1

1

1
1

1
d

U x
ε

ε
ε−

+
+

+∫  

exists for every x X∈ . This was the decisive ingredient in the Dore-Venni 
theorem and in Fattorini’s theorem, as discussed in [7]. For semigroups, these 
proofs fail and this is not surprising as one has to profit from cancellation effects 
around 0 in order to have a principal value integral converging. The results 
imply that if one shifts the singularity away from 0 then the associated singular 
integral for a semigroup will converge, under suitable assumptions on the Ba-
nach space or the semigroup, for groups gave a fairly general statement in ([8], 
Theorem 4.4). 

Theorem 7.1. Let ( )( )
1

1jT
ε

ε
>−

+  be a C0-semigroup on a UMD Banach  

space X, let ( )0 a a ε< < + , 0ε >  and let [ ], 2jg BV aε ε∈ +  be such that 
( ) jg a ε⋅+ +  are even. Then the principal value integral 

( ) ( )
( )0 1

1
lim 1

1
j

a a a
j

d
g x

aε ε

ε
ε

≤ − ≤

+
+

−∑∫

                (7.1) 

converges for every x X∈ . 
Proof. Define 

( ) ( ) ( ) ( ) ( )
( ) ( )( )

 
1

1

1
1 e 1

1
zj

j
j ja a a

d
f z g

a
ε ε

ε ε− +

≤ − ≤

+
= + + ∈

−∑ ∑∫ 




 

Then, since jg  are even about the singularity ( )a ε+ . 

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )( ) ( )
( )

 

1

 

1

1
1 1

1

1
1 1

1

j j
j

j ja a a

j j j

ja a a

d
f z g T f z

a

d
g T x T a x

a

ε
ε ε

ε
ε ε ε

≤ − ≤

≤ − ≤

+
= + + =

−

+
= + + − +

−

∑ ∑∫

∑∫


 


 

If ( )dom jx A∈  then ( )jT x⋅  are continuously differentiable and since jg  
are even about the singularity ,a aε+  well-known argument shows that the limit  

(7.1) exists Hence, by density, one only has to show that ( ) ( )0 1sup j jf A< < < ∞ 
.  

In order to establish this, define ( ) ( )jh x g ax a ε= + +  and 

( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( )1 1

( 0 (( 1)

1
1 e ,

1
j

j a a
j j

d
f z g z

a
ε ε

ε

ε
ε

ε ε
− + +

≤ ≤ +

+
≤ + ∈

+ − +∑ ∑∫ 


 

Use Theorem 4.1 to estimate 

( ) ( ) ( ) ( )
( )1 )

21 log
X

j j j j
j j

af A f A
ε

ε
ε

+

 +  +  
  

∑ ∑
 



 

By a change of variables, 
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( ) ( )( ) ( )( ) ( )( ) ( )
( ) ( )

( )( )

( ) ( )( )

1 1 1

1 1

1

1
1 e e 1

1

  e 1
1

i a ia
j

j

i a

h
f i d

hPV a

ε ε ε ε

ε

ε ε

ε
ε ε

ε

ε
ε

− + + − + +

≤ + ≤

− + +

+
+ = +

+

 
= − +  + 

∑ ∫

 

 

where ( ) ( ){ }1 1
h h

ε≤ + ≤
=

 1 . It is a standard fact from Fourier multiplier theory 
that the exponential factor in front and the dilation by a in the argument do not 
change Fourier multiplier norms. So one is reduced to estimate the ( )1 , Xε+
-norms of the functions 

( ) ( ), 0 1
1

hm PV
ε

 
= − < <  + 


   

Remark 7.2. The result is also true on a general Banach space if  
( ) ( ){ }1 | 0 1 1jT ε ε+ ≤ + ≤  is γ-bounded. The proof is analogous, but in place of 

Theorem 4.1 one has to employ Lemma 6.11. 
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Appendix A. Two Lemmata 

Provide two lemmata concerning an optimization problem for convolutions on 
the halfline or the positive integers. 

Lemma A.1. (Haase-Hytonen) Let ( )0 ε< < ∞ , 0ε > , For 0 a a ε< < + , let 

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )( ) [ ]

11 2 1 2 1

1
1

1 2 1 2

21 1 2

, inf :

0, , 0, ,

1 on ,

j j j j

j j j j

j j j

c a a

L a L a

a a

ε ε
ε

ε
εε

ε ϕ ϕ ψ ψ

ϕ ϕ ε ψ ψ ε

ϕ ϕ ψ ψ ε

+
+

+
+

+ = + + +


+ ∈ + + ∈ +

+ ∗ + = + 


 

Then there are constants 1ε > −  such that 

( ) ( )( ) ( ) ( ) ( )( )1 1 log , 1 1 loga a c a a a aε ε ε ε ε+ + + ≤ + ≤ + + +  

for all 0 a a ε< < + . 

Proof. Fix ( )0 ε< < ∞ , 0ε >  Suppose that ( )
1

j L
ε
εϕ
+

+∈   and  

( ) ( ) ( )1
1 2j j L εψ ψ +

++ ∈   with ( ) ( )( ) ( ) ( )( )1 2 1 2
1j j j jϕ ϕ ψ ψ+ ∗ + =  on  

[ ],a a ε+ . Then, by Hӧlder’s inequality, 

( ) ( ) ( )( )( )( ) ( ) ( ) ( ) ( )1 2 11 2 1 2 1 2 1
1 j j j j j ja ε ε

ε

ϕ ϕ ψ ψ ϕ ϕ ψ ψ+
+

= + ∗ + ≤ + +  

which implies 0ε > . Secondly, 

( ) ( ) ( )( ) ( ) ( )( )( ) ( )
( )

( ) ( )( )( ) ( ) ( )( )( ) ( )
( )

( )

( ) ( )( )( )
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )( )( ) ( ) ( )( )( )
( )

( ) ( ) ( ) ( ) ( )

1 2 1 2

1

0 1 2 1 2

1 2

0 1 1 2

1 2 1 2

0 0

1 2 1 2 11

1
log 1

1

1
0 1

1

0
1 1 1

1

1 1

2 1

sin 1

a
j j j ja

j

a
j j j ja

j

j j

j j
j

j j j j

j

j j j j
j

d
a a

d

d d

ε

ε ε

ε

εε
ε

ε
ε ϕ ϕ ψ ψ ε

ε

ε
ϕ ϕ ψ ψ ε

ε

ϕ ϕ
ε ψ ψ ε ε

ε

ϕ ϕ ε ψ ψ ε

ε

π ϕ ϕ ψ ψ
π ε

+

+ +

∞ ∞

+

∞ ∞

++

+
+ = + + +

+

+
≤ + + +

+

 + ≤ + + + + + 
 

+ + + +
=

+

≤ + +
+

∑∫

∑∫ ∫

∑∫ ∫

∑∫ ∫

∑

 

(This is “Hilbert’s absolute inequality”, see ([29], Chapter 5.10).) This yields 

( ) ( )sin 1
1 log a

a
π ε εε
π

+ + + ≥  
 

 

Taking both we arrive at 

( ) ( )
sin 1

log ,a c a a
a

π ε ε ε
π

+ + ∨ ≤ + 
 

1  

Since ( )sin 1 0π ε+ ≠ , one can find 1ε > −  such that 
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( ) ( )( )
sin

11 1 log 1 log aa a
a

π
εεε ε

π

 
  ++   + + + ≤ ∨  

 
 

and the lower estimate is established. 
To prove the upper estimate note first that without loss of generality we may 

assume that 1a = . Indeed, passing from ( ) ( ) ( ) ( )( )1 2 1 2
,j j j jϕ ϕ ψ ψ+ +  to  

( ) ( ) ( )( ) ( ) ( )( )( ) ( )( ) ( ) ( ) ( )( ) ( )( )1 11
1 2 1 2 1 2

,j j j j j ja a a a
ε

εε ϕ ϕ ψ ψ ψ ψ+
+

 + + + ⋅ + ⋅ 
 

  

reduces the ( ),a a ε+ -case to the ( )1, a aε+ -case and shows that  

( ) ( ), 1,c a a c a aε ε+ = + .  

The idea is to choose ( ) ( )1 2j jϕ ϕ+ , ( ) ( )1 2j jψ ψ+  in such a way that 

( ) ( ) ( ) ( )( )( ) ( )
1 2 1 2

1 , 0 1 1
1

1 1
,

,j j j j

ε ε
ϕ ϕ ψ ψ ε

ε
 + ≤ + ≤+ + + = 

> −
 

and cut them after ( )a ε+  Taking Laplace transforms, this means 

( ) ( )( )( ) ( ) ( )( )( ) ( ) 21 2 1 2

1 e z

j j j j z
z

ϕ ϕ ψ ψ
−− + + =  

   

for Re 0z > . Fix ( )0,1θ ∈  and write 

( )( ) ( )1

2

1 e 1 e1 e
z zz

z zz

θ θ−− −− − −−
= ⋅  

by the binomial series, 

( )( )
( )( )( ),2

0 0

1 e ez kz

kk
k k

z
zz

θβ ε
− −∞ ∞

∞
= =

−
= + =∑ ∑ 1  

and writing ( ) ( ), , 1k j jj k
∞

∞ +=
= ∑1 1  see that can take 

( ) ( ) ( )( )
( ) ( )( )

( ), 1 , 11 2
0 0 0

j

j j j j j jk k
j k j k j k

θ θψ ψ β ε β ε
∞ ∞ ∞

+ +
= = = =

   
+ = + = +   

  
∑ ∑ ∑ ∑ ∑1 1  

and likewise 

( ) ( ) ( )( )
( )

1
, 11 2

0 0
1

j

j j j jk
j j j k

θϕ ϕ β ε
∞

−
+

= =

 
+ = + 

 
∑ ∑∑ ∑  

Let ( ) ( )( )
0

j
k K

θθβ β ε
=

= +∑  By standard asymptotic analysis 

( )( ) ( )

( )1

1 10 and 0
1k k j

θ θ
θ θβ ε β+

    + = =     + 
 

It is clear that 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )0, 0,1 2 1 21 11
1, j j j ja ac a ε ε

ε ε
ε

ε ϕ ϕ ψ ψ+ +
+ +

+ ≤ + +∑ 1 1  

Now, 

( ) ( )( ) ( )

1

0,1 2 1
j j a

j

ε

ε
ε

ϕ ϕ
+

+
+

+∑ 1  
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( ) ( )( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( )

1

0 1 2

1 1
, 1

0
0 ,
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1 1

1 1 1

a
j j

j

a

j j j a
j j

d

d j

εε

ε ε θ εθ
ε

ψ ψ ε ε

β ε ε γ
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∞ ∞+ + − +
+ +

= =

= + + +

= + + +

∑∫

∑ ∑∫ 1 
 

with 

( )

( )
( ) ( )

( )
,

1, 1

, 1

0,
j a

j a

a j j a j

a j
ε

ε

γ ε ε

ε
+

≤ + −


= + − ≤ + ≤ +
 + ≤

 

with ( ): 1 1θ ε= +  this yields 

( ) ( )( ) ( )

( )

( ) ( )

1

0,1 2 1

1
1

1
1

1

2 log 2 1 log

j j a
j

a
j

j
j

a adx
x a

a a

ε

ε
ε

ε

ψ ψ

ε ε
ε

ε ε

+

+
+

+ −   +

=

+

+ − +  ≤ + +
+ +  

≤ + + ≤ + +      

∑

∑ ∫

1

 

Analogously, noting that ( ) 11 1 1 1 1 εθ ε
ε

 +  − = − + =     
, 

( ) ( )( ) ( ) ( )( )
1

0, 11 2
2 1 logj j a

j
a

ε
ε

ε ε
ε

ψ ψ ε
+ 

 
 

+ + 
 
 

+ + +∑ 1  

which combines to 

( ) ( )( )1, 2 1 logc a aε ε+ + +  

as was to prove.                                                   ∎ 
Lemma A.2. Let ( )0 ε< < ∞ , For 0 a a ε≤ ≤ + ,  

( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( ) [ ]

1

11 2 1 2 1 21

1 2 1 2

,

inf : ,

1 on ,

j j j j j j

j j j j

c a a

L

a a

ε
ε

ε ε
ε

ε

ϕ ϕ ψ ψ ϕ ϕ

ϕ ϕ ψ ψ ε

+

++
+

+

= + + + ∈


+ ∗ + = + 


  

Then there are constants 1ε > −  such that 

( ) ( )( ) ( ) ( ) ( )( )1 1 log , 1 1 loga a c a a a aε ε ε ε ε+ + + ≤ + ≤ + + +  

for all 0 a a ε< < + . 
Proof. The proof is similar to the proof of Lemma A.1. The lower estimate is 

obtained in a totally analogous fashion, making use of the discrete version of 
Hilbert’s absolute inequality ([29], Thm. 5.10.2) and the estimate 

( )1 1 log
1 2

a

n a
a a

n

ε

ε
+

=

  ≥ + + 
∑  

For the upper estimate let 

( )
( )

( )
, 0,1, ,

1, 1

j a j a
j

j a
η

== 
≥ +


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and look for factorizations ( ) ( )( ) ( ) ( )( )1 2 1 2j j j jϕ ϕ ψ ψ η+ ∗ + = . Considering 

the Fourier transform find 

( ) ( )
( )

( )2

1ˆ
1

az zz
a z

η −
=

−
 

and so try (as in the continuous case) the “Ansatz” 

( ) ( )
( )

( )( ) ( ) ( )
( )

( )( )1
11 2 1 2

1 11and
1 1

a a

j j j j
j

z zz
z za a

θ θ

θ θψ ψ ϕ ϕ

−

−

− −
+ = + =

− −∑  

for ( ): 1 1θ ε= + . Note that 

( ) ( )( )( )
( ) ( )

( )( ) ( )

( ) ( )1 2
0 0

   
1 1

ka j z
j j j

j j j k

z zz z k
a z a z

θ
θ θψ ψ β ε γ

∞ ∞

= =

+ = + =
− −

∑ ∑∑ ∑  

where 

( ) ( )( ) if
,

0 else
k a a k

k k a
θβ ε

γ γ θ
 += = 


 

Consequently, 

( ) ( )( )( )
( ) ( )

( )
1 2

0 1 0

n
n

j j n a
j n k n

z zz k z
a a

θ
θ θψ ψ γ β

∞ ∞

  
= = =

 
+ = = 

 
∑ ∑ ∑ ∑  

and, likewise, 

( ) ( ) ( )
( )

( )1
11 2

0
nzj j

n aj n

zz
a

θ
θϕ ϕ β

∞
−

−
  =

+ =∑ ∑  

As in the continuous case, it suffices to cut off ( ) ( )1 2j jϕ ϕ+  and ( ) ( )1 2j jψ ψ+  

after a ε+ , so 

( ) ( ) ( )( ) [ ] ( ) ( )( ) [ ]0, 0,1 2 1 2 11
, j j j ja a

j
c a a ε ε

εε
ε

ε ϕ ϕ ψ ψ+ +
++

+ ≤ + +∑ 1 1  

write ( )a k a rε+ = +  with 0 r a≤ <  and :k a aε= +   ; then 

( ) ( )( ) [ ]

( ) ( )
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1

0,1 2 1

1 1

0 0

1

1

1

1

1 1 1

1 1
1 2 1

1 1 log 1 2 1 log
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k

j

k
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a a a r
a k k j

dx k a a
x

ε

ε
ε

ε εεθ

ψ ψ

β

ε

+

+
+

+ ++ −
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+

=

+

+
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 = + + + + ≤ + 

≤ + = + + ≤ + +

∑ ∑

∑ ∑
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



1

 

A similar estimate holds for ( ) ( )( ) [ ]

1

0, 11 2j j aj

ε

ε ε
ε

ϕ ϕ
+

+ ++∑ 1 . 
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