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Abstract

One of the most frequently applied bioelectromagnetic effects is the deep
heating of the living species with EMF energy. Despite its long history,
hyperthermia is a rarely applied oncotherapy. The reason is its controversial
results and complicated control. One of the solutions is concentrating the
electromagnetic energy nanoscopically on the parts of the malignant cells in-
stead of heating up the complete tumor-mass. This approach is a kind of
non-uniform energy absorption, providing energy liberation only in the se-
lected regions. The energy-absorption of the malignant cells targets the
membranes and creates a situation far from thermal equilibrium. The selec-
tion of the malignant cells is based on their decided differences from their
healthy counterparts. The distinguishing parameters are the electromagnetic
properties of the components of the malignant tissue which are the physi-
ologic differences between the malignant cells and their healthy counterparts.
The targets realize nano-range heating, using natural nanoclusters on the
cell-membrane without artificially implementing them. This energy absorp-
tion generates consequent reactions, like programmed cell-death (apoptosis)
continued by immunogenic cell-death involving extended immune reactions.

The applied radiofrequency current is amplitude modulated by time-fractal
modulation pattern. The accurately matched impedance realizes the
self-selective mechanisms which are promoted by stochastic resonances. This
complex method is a new kind of hyperthermia, named mEHT. Our objective
is to analyze the problems of the selective, non-equilibrium energy absorp-
tion, and present a solution by the electromagnetic mechanisms for an effec-
tive and controllable hyperthermia in oncology.
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1. Introduction-Hyperthermia Challenges

Modern hyperthermia treatments in oncology use electromagnetic effects over-
heating the living object completely (whole body) or partly (regionally or local-
ly). Oncological hyperthermia is intended to be an ideal combination therapys; it
provides synergies with most of the conventional treatment modalities, boosts
their efficacy and helps to desensitize the previously non-effective treatments.

The history of hyperthermia in oncology has been hectic and controversial
[1]. In consequence, the general professional skepticism blocked its application
for a long time. Hyperthermia is a constrain energy-delivery, forcing the ho-
meostatic equilibrium to change. From this point the control of the processes
became complicated. The adequate dose and protocol of the method and the re-
producibility of the results are a complex task; its thermal status is far from equi-
librium.

There are multiple physiologic feedbacks trying to re-establish the lost ho-
meostasis. The main correction factors in the thermal control are the blood-flow
and the surface regulation processes, like the sweating, orientation control of the
hair in the skin, etc. The local heating immediately activates the physiological
controls, first of all, the blood-flow, creating intensive heat-exchange conditions
to construct a local out-of-equilibrium situation.

The locally or systemically increased blood-flow tries to compensate the
growing temperature and cools down the target volume. The blood-flow drasti-
cally modifies the specific absorption rate (SAR), irrespective of how accurately
it was focused on the tumor-mass. In consequence, the SAR and the temperature
mapping of the targeted volume could be significantly different. Therefore,
competition starts between the cell-killing potential of the heat and the can-
cer-supporting potential of the gained blood-supply by higher temperature of
the targeted volume.

The focus of the RF-energy is not an easy task, but not impossible. However,
the focus of the energy does not mean the focus of the temperature. The temper-
ature is naturally spread by the convective and conductive heat-flow, derived
from the temperature gradient and controlled by the physiologic constrains.
Temperature-spread is a natural process, its termination is impossible. The time
limit is only the heated volume. This is how the ablation techniques work. Also,
the isotherms of the heating can be defined only with the help of the time-factor.

Following the temperature distribution is a safety issue, it is important to
block the local burn of the healthy tissue, while allowing the temperature for ne-

crosis in the tumor. The temperature control shows the temperature spreading
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well, as well as the formation of the unwanted and uncontrolled hot-spots [2],
[3].

Together with the problems of the temperature measurement in depth of the
body to control the target, the technical solutions of the energy delivery are also
challenging, due to the fact that the deep-heating needs complicated bioelectro-
magnetic considerations. The energy has to be delivered in depth without over-
heating the healthy layers between and has to be focused in depth on the hetero-
geneous and non-regular form of the tumor. The penetration depth of the bio-
logical material has frequency dispersion, quickly shortened by the growing fre-
quency, and so contradicting with the demand of high frequency for precise
beaming. The bolus-transmitters have to be constructed and non-absorbing but
well transferring of the applied electromagnetic effects and the temperature of
the body surface has to be limited under the blistering threshold.

To provide enough energy in depth, it needs power of >20 W/kg [4], which is
far over the surface tolerance. Usually intensive cooling of the surface is applied
to avoid the blisters on the skin. This method has also various physiological
feedbacks. When the cooling is too large, the feedback isolates the skin from the
deeper cooling, reducing the blood-flow in the subcutane layer under the cooled
area. The extra impedance requests higher voltage to provide the same power in
the depth as before, increasing the skin jump of the electric field vector perpen-
dicular to the surface. The increased potential will increase the risk of burn.

Due to the challenges, many prospective clinical trials of conventional hyper-
thermia are questioned [5]. A recognized specialist of hyperthermia formulated a
long time ago [6]: “The mistakes made by the hyperthermia community may
serve as lessons, not to be repeated by investigators in other novel fields of can-
cer treatment.”

The modulated electro-hyperthermia (mEHT, trademark: oncothermia) offers
a new paradigm with nanoscopic heating having adequate answer to the present

complex challenges.

2. Method-Selection Parameters in Nanoscopic Range

During conventional hyperthermia applications the macroscopic heating con-
centrates on the equal (homogeneous) temperature of the entire targeted volume
or at least it constructs isothermal (isodose) patterns. The above described phy-
siological feedbacks and the very inhomogeneous malignant target make this
aim impossible. mEHT as new paradigm of hyperthermia technology declares
the non-equal heating, it does not try to reach any macroscopic “isotherm” ac-
tionsas usual goal in ionizing radiation. The isotherms are consequences of the
“bad reflex” of the equilibrium effects. Due to its heterogeneity, heating in bio-
systems are anyway far from equilibrium, when the physiological feedback as
well as the normal thermodynamical rules are contracting of the macroscopic
equilibrium. The method, mEHTdoes not heat the complete tissue in the tar-

geted volume equally [7]. It concentrates the liberation of the absorbed energy
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on the cellular membranes and on the extracellular electrolytes of malignant
cells [8]. The microscopically inhomogeneous heating is far from the thermal
equilibrium [9]. MEHT applies cellular approach selectively, heating up the ma-
lignant cells individually liberating the incident energy in nanoscopic range at
the cell-membrane [10]. The energy-absorbers are the membrane rafts, which
are clusters of transmembrane proteins, populating the membrane of malignant
cells more densely than of the cells of the healthy counterparts. This method
does not need any artificially implemented nanomaterials into the target, it uses
natural nanoscopic clusters of membrane rafts [11]. Experimental verification of
this method shows the significant inducement of apoptosis by this method on
lower average temperatures than the isothermal heating does, [12].

The heating energy is not liberated in a sudden single step but is regulated in
multiple small energy-absorption processes. This makes it possible to control the
energy-liberation and to avoid the overheating the healthy parts. The accurate
selection of malignant cells is a key step in the proper mEHT. There are robust
electromagnetic differences between the malignant and healthy cells in vivo. The
biological processes and structures of the healthy cells are distinguishably dif-
ferent from the malignant ones. These differences make it possible to accurately
select the cancer-cells by their electromagnetic behaviors and actively destroy
them without damages on their healthy neighborhood.

The main physiological differences between malignant cells and their healthy
counterparts are:

1) Differences in the metabolic rate of the malignant and healthy cells
(Warburg effect, [13]), which create higher conductivity of tumor than its
neighborhood. The increase of the current density in the tumor could be visu-
alized by the measurements of real processes by radiofrequency current density
image (RF-CDI), [14] [15] [16] [17]. The Electric Impedance Tomography (EIT)
measures and images the tumor based on the impedance differences [18]. This
effect could be applied in prophylactics like mammography [19]. Further in-
crease of the conduction selectivity is the positive feedback by growing temper-
ature, [20]. The measured gain of selectivity is active [21], which means 14% in-
crease by heating of 36°C — 43°C.

2) Differences in the dielectric constant of the extracellular electrolyte and
membrane-bound water of the malignant and healthy cells (Szent-Gyorgyi effect,
[22]); which allows the selection of malignant cells by their autonomy caused
higher dielectric permittivity. The cell-cell adhesion is decreased by the increas-
ing permittivity, [23], which harmonizes with the autonomic malignant cells
(disorder in extracellular matrix [24]) and their decreased membrane potential,
[25]. The order-disorder phase-transition indicates two different states of the
cells: their autonomy status (called alpha-state) and their connected collective
status (beta-state), [26].

3) The above two are combined with delta/beta dispersion (Schwan effect) [27]);
to select the transmembrane protein clusters (rafts) of malignant cells. There are
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various forms of frequency dependent energy-absorption mechanisms exist,
[28], creating variation of the dielectric properties, [29]. The S-dispersion [30]
(known as interfacial polarization effect) is between 0.1 - 100 MHz, it is charac-
teristically determined by the membrane capacities of the cell and the intracellu-
lar organelles, bound-water to membrane etc. Responses in this interval are
well-connected to the cell-membrane changes. The bound water to the mem-
brane has the upper frequency part of the f-dispersion, denoted by 4, [31], and
so this part is well-selective for the various cell-membrane states. Selective
treatments have to be chosen in range of S-dispersion, [32]. Especially, the dif-
ference between the malignant and healthy tissue is that all the electrolyte and
membrane properties differ, [33] [34]. The proper selection uses the dipole re-
laxation of beta-dispersion connected to the membrane bounded water, [35].

4) Structural differences (pathological pattern recognizing) between the ma-
lignant and healthy tissues (fractal physiology effect, [36]). The morphology is
an important factor of the cellular organization, [37], and varies by kind of tis-
sues. Cellular structures have coordination constrains preferring special coordi-
nation arrangements [38], and form self-organized collectivity [39] [40]. The
tendency of proliferation is low in the population having small number of cells
[41]. A critical cell density is necessary when starting significant cell division,
similarly to the observed self-synchronization of chemical oscillators [42]. Do-
minantly, a favorable topological position (cyclic symmetry of the coordination
number) chooses the actual division [43]; justified experimentally too, [44].
Healthy cells work collectively, their energy-consumption, as well as their
life-cycles and the availability of resources are controlled in collective way by the
various forms of the self-organizing, [45]. The organization process is governed
by special “social” signals [46] commonly regulating and controlling the system.
The self-organizing in topology is connected to a fractal-structure, which also
appears in the dynamic self-similar stochastic behavior of the system, [47].

The special selection effects described above are accurately applied in mEHT,
briefly summarized in Figure 1. However, the dose of energy is crucial for all the
selection steps. Applying too much energy realizes the classical hyperthermia, it
heats up all components of the target, the treatment loses its selection ability.
The popular wisdom is valid: the difference between the medicine and poison is

only the applied dose.

3. Results-Technical Realization of Nano-Heating

MEHT uses the above selection factors targeting the malignant cells with high
efficacy, heating it to high temperature very locally (nanoscopic range) and sti-
mulating the immune reactions against the malignant metastases. While the
conventional hyperthermia focuses on and targets a macro region, the nano-
heating of mEHT process, is similar to the ionizing radiation concept, which also
acts nanoscopically on the DNA of the cells. Radiotherapy destroys the DNA

strands, nanotherapy of mEHT destroys the cell-membrane of the malignant cell
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Figure 1. Main selection factors of modulated electrothermia (nanothermia, mEHT) me-
thod (to be clear, only those details are shown, which have role in the processes) {Adapted
from [48]}.

or at least induces apoptotic cell death from there, due to the energy-absorption
on the clusters of transmembrane proteins, as nanounits.

The electric effects are shown on a schematic impedance figure (Figure 2).
The various actions are not independent, effects are overlapping and synergetic.

Heating of the ECM more intensively than the cytoplasm provides a spherical
thermal gradient and consequently creates heat-flow through the membrane of
all the selected individual cells. This centrally symmetric effect avoids the ther-
mal limit of the external field application [49].

This nanoheating is far from thermal equilibrium. According to the Onsager’s
reciprocity relations [50], the induced heat-flow is coupled to charge current too,
as well as the kinetics of the processes is also coupled, [51]. This current is ~150
pA/um?, [52]. This ionic current creates a zero-mode electric current, which in
turn induces a zero-mode electric field in the cell membrane. Therefore, even
small fields with zero-th mode components could elicit biological effects.

The temperature gradient through the cellular membrane pumps the
non-equilibrium thermal processes. The gradient is quite large (~0.01°C /nm [=
107°C/m)]), [46], creating a considerable heat-flow (~1.5 pW/um?). One of the
actions is the change of the intracellular pressure (1320 kPa; [46]); by the elec-
tro-osmotic conditions. Due to the rigid cell membrane of the cancerous cells
[53], the pressure could be fatal for the cell which has maximal tolerable lateral
tensile stress of omax = (2 — 10)105 Pa [54]. The high pressure (when it is not
enough to explode the cell) increases the membrane permeability, allowing the
internal HSP chaperones to be expressed on the outer membrane to ignite im-
mune reactions. This process is promoted by the temperature effect on the

membrane permeability.
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Figure 2. Action of the various selection factors in nanothermia shown in the impedance
schematics of a malignant cell {Adapted from [48]}.
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Figure 3. Summary of mEHT selection effects on malignant cell {Adapted from [48]}.

The RF-current anyway has special effects characteristically acting on the
membrane of the cells. Its ohmic component directly affects the membrane,
while the displacement current (imaginary component) deflects it, causing vari-
ous mechanical effects on the outer membrane. The effect of the ohmic compo-
nent is proportional with the square of the RF-current (Joule heat) while the ca-
pacitive component simply depends on the current itself. The summary of the
effects is shown on Figure 3.

The synergy of electric field with the thermal effects selectively acts on the
malignant cells and could be well followed from laboratory to the patient’s bed,
[55]. The certain differences between the mEHT and other hyperthermia with
the same temperature are clearly shown by in vitro [56] and in vivo [57] mea-
surements. The immune-simulative effect of the method is also proven [58]. The
method has wide and successful clinical applications in various cancer types, like
gliomas [59], colorectal cancers, [60] [61]; lung cancers [62] [63], in carcinoma
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of uterine cervix [64], malignant ascites [65], sarcomas [66] [67], pancreas car-

cinoma [68] [69]; prostate cancer [70] [71].

4. Conclusion

Bioelectric explanation of heterogeneric heating of mEHT method is discussed.
The method uses nanoheating technology to select and effectively heat the rafts
of transmembrane proteins on the membrane of the malignant cells. The bio-
electromagnetic selection focuses the electromagnetic absorption on the
cell-membranes. The nano-range energy-liberation could be precisely controlled
without considerable wasted energy and without having disadvantages because
of the heating of the tumor-environment on average. MEHT results and its gen-
eral benefits open a new kind of local heating to destroy the primary and metas-

tatic tumor lesions.
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