N-Expansive Property for Flows

Le Huy Tien, Le Duc Nhien
Department of Mathematics, Mechanics and Informatics, Vietnam National University at Hanoi, Hanoi, Vietnam
Email: tienlh@viasm.edu.vn, nhien0610@gmail.com

How to cite this paper: Tien, L.H. and Nhien, L.D. (2019) N-Expansive Property for Flows. Journal of Applied Mathematics and Physics, 7, 410-417.
https://doi.org/10.4236/jamp.2019.72031

Received: January 28, 2019
Accepted: February 23, 2019
Published: February 26, 2019

Copyright © 2019 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Abstract

In this paper, we discuss the dynamics of n-expansive homeomorphisms with the shadowing property defined on compact metric spaces in continuous case. For every $n \in \mathbb{N}$, we exhibit an n-expansive homeomorphism but not $(n-1)$-expansive. Furthermore, that flow has the shadowing property and admits an infinite number of chain-recurrent classes.

Keywords

Expansive, Flow, N-Expansive, Shadowing

1. Introduction and Preliminaries

The classical terms, expansive flows on a metric space are presented by Bowen and Walters [1] which generalized the similar notion by Anosov [2]. Besides, Walters [3] investigated continuous transformations of metric spaces with discrete centralizers and unstable centralizers and proved that expansive homeomorphisms have unstable centralizers; other result was studied in [4]. In discrete case, this concept originally introduced for bijective maps by Utz [5] has been generalized to positively expansiveness in which positive orbits are considered instead [6]. Further generalizations are the pointwise expansiveness (with the above radius depending on the point [7]), the entropy-expansiveness [8], the continuum-wise expansiveness [9], the measure-expansiveness and their corresponding positive counterparts. However, as far as we know, no one has considered the generalization in which at most n companion orbits are allowed for a certain prefixed positive integer n. For simplicity we call these systems n-expansive (or positively n-expansive if positive orbits are considered instead). A generalization of the expansiveness property that has been given attention recently is the n-expansive property (see [10] [11] [12] [13] [14]).

In this paper, we introduce a notion of n-expansivity for flows which is generalization of expansivity, and show that there is an n-expansive flow but not $(n-1)$-expansive flow. Moreover, that flow is shadowable and has infinite number of chain-recurrent classes.

Let (X, d) be a metric space. A flow on X is a map $\phi: X \times \mathbb{R} \rightarrow X$ satisfying $\phi(x, 0)=x$ and $\phi(\phi(x, s), t)=\phi(x, s+t)$ for $x \in X$ and $t, s \in \mathbb{R}$. For convenience, we will denote

$$
\phi(x, s)=\phi_{s}(x) \text { and } \phi_{(a, b)}(x)=\left\{\phi_{t}(x): t \in(a, b)\right\} .
$$

The set $\phi_{\mathbb{R}}(x)$ is called the orbit of ϕ through $x \in X$ and will be denoted by $\operatorname{Orb}_{\phi}(x)$. We have the following several basis concepts (see [1] [15] [16]).

Definition 1.1. Let ϕ be a flow in a metric space (X, d). We say that ϕ is n-expansive $(n \in \mathbb{N})$ if there exists $c>0$ such that for every $x \in X$ the set

$$
\Gamma(x, c):=\left\{y \in X ; d\left(\phi_{t}(x), \phi_{t}(y)\right) \leq c, \forall t \in \mathbb{R}\right\},
$$

contains at most n different points of X.
We say that ϕ is finite expansive if there exists $c>0$ such that for every $x \in X$ the set $\Gamma(x, c)$ is finite.
Definition 1.2. Let $x \in X$. We say that x is a period point if there exists $T>0$ such that $\phi_{t+T}(x)=\phi_{t}(x), \forall t \in \mathbb{R}$. Denote that $\pi(x)$ is the period of x, which is the smallest non-negative number satisfying this equation.
Definition 1.3. Give $\delta, T \geq 0$. We say that a sequence of pairs $\left(x_{i}, t_{i}\right)_{i \in \mathbb{Z}} \subset X \times \mathbb{R}$ is a (δ, T)-pseudo orbit of ϕ if $t_{i} \geq T$ and $d\left(\phi_{t_{i}}\left(x_{i}\right), x_{i+1}\right) \leq \delta, \forall i \in \mathbb{Z}$.

We define

$$
s_{i}= \begin{cases}\sum_{j=0}^{i-1} t_{j}, & i>0 \\ 0, & i=0, \\ -\sum_{j=i}^{-1} t_{j}, & i<0,\end{cases}
$$

and $x_{0} \star t=\phi_{t-s_{i}}\left(x_{i}\right)$ whenever $s_{i} \leq t<s_{i+1}$.
Definition 1.4. We say that ϕ is shadowing property if for each $\epsilon>0$ there is $\delta>0$ such that for any $(\delta, 1)$-pseudo orbit $\left(x_{i}, t_{i}\right)_{i \in \mathbb{Z}}$, there exists $x \in X$ and an orientation preserving homeomorphism $h: \mathbb{R} \rightarrow \mathbb{R}$ such that $h(0)=0$ and $d\left(x_{0} \star t, \phi_{h(t)}(x)\right) \leq \epsilon$.
Denote by Rep the set of orientation preserving homeomorphism $h: \mathbb{R} \rightarrow \mathbb{R}$ such that $h(0)=0$.

Definition 1.5. Give two points p and q in X. We say p and q are (δ, T) -related if there are two (δ, T)-chains $\left(x_{i}, t_{i}\right)_{i=0}^{m}$ and $\left(y_{i}, s_{i}\right)_{i=0}^{n}$ such that $p=x_{0}=y_{n}$ and $q=y_{0}=x_{m}$. We say that p and q are related $(p \sim q)$ if they are (δ, T)-related for every $\delta, T>0$. The chain-recurrent class of a point $p \in X \quad$ is the set of all points $q \in X$ such that $p \sim q$.

Theorem 1.1. For every $n \in \mathbb{N}$, there is an n-expansive flow, define in a compact metric space, that is not $(n-1)$-expansive, has the shadowing property and admits an infinite number of chain-recurrent classes.

2. Proof of the Main Theorem

Consider a flow ϕ defined in a compact metric space $\left(M, d_{0}\right)$, and ϕ has 1-expansive, and has the shadowing property. Further, suppose it has an infinite number of period points $\left\{p_{k}\right\}_{k \in \mathbb{N}}$, which we can suppose belong to different orbits. Let E be an infinite set, such that there exists a bijection $r: \mathbb{R} \rightarrow E$. Let

$$
Q=\bigcup_{k \in \mathbf{N}}\{1, \cdots, n-1\} \times\{k\} \times\left[0, \pi\left(p_{k}\right)\right),
$$

and note that there exists a bijection $s: Q \rightarrow \mathbb{R}$. Consider the bijection $q: Q \rightarrow E$ defined by

$$
q(i, k, j)=r \circ s(i, k, j)
$$

Let $X=M \cup E$. Thus, any point $x \in E$ has the form $x=q(i, k, j)$ for some $(i, k, j) \in Q$. Define a function $d: X \times X \rightarrow \mathbb{R}^{+}$by

$$
\begin{aligned}
& d(x, y) \\
& = \begin{cases}0, & x=y, \\
d_{0}(x, y), & x=y \in M, \\
\frac{1}{k}+d_{0}\left(y, \phi_{j}\left(p_{k}\right)\right), & x \in M, y=q(i, k, j), \\
\frac{1}{k}+d_{0}\left(x, \phi_{j}\left(p_{k}\right)\right), & x=q(i, k, j), y=q(l, k, j), i \neq l, \\
\frac{1}{k}, & x=q(i, k, j), y=q(l, m, r), k \neq m \text { or } j \neq r \\
\frac{1}{k}+\frac{1}{m}+d_{0}\left(\phi_{t}\left(p_{k}\right), \phi_{r}\left(p_{m}\right)\right),\end{cases}
\end{aligned}
$$

Now we prove that function d is a metric in X. Indeed, we see that $d(x, y)=0$ iff $x=y$, and that $d(x, y)=d(y, x)$ for any pair $(x, y) \in X \times X$. We shall prove that the triangle inequality $d(x, z) \leq d(x, y)+d(y, z)$ for any triple $(x, y, z) \in X \times X \times X$. When $(x, y, z) \in M \times M \times M$ we have that $d_{\mid M \times M}=d_{0}$, and d_{0} is a metric in M. When $(x, y, z) \in M \times M \times E$ then $z=q(i, k, j)$ and

$$
d(x, z)=\frac{1}{k}+d_{0}\left(x, \phi_{j}\left(p_{k}\right)\right) \leq d_{0}(x, y)+\frac{1}{k}+d_{0}\left(y, \phi_{j}\left(p_{k}\right)\right)=d(x, y)+d(y, z)
$$

Therefore, when $(x, y, z) \in E \times M \times M$, changing the role of x and z in the previous case, we obtain this result. When $(x, y, z) \in M \times E \times M$, we have $y=q(i, k, j)$ and

$$
d(x, z)=d_{0}(x, z) \leq \frac{2}{k}+d_{0}\left(x, \phi_{j}\left(p_{k}\right)\right)+d_{0}\left(z, \phi_{j}\left(p_{k}\right)\right)=d_{0}(x, y)+d_{0}(y, z)
$$

When $(x, y, z) \in M \times E \times E$, we have $y=q(i, k, j)$ and $z=(l, m, r)$. If
$k \neq m$ or $j \neq r$ then

$$
\begin{aligned}
d(x, z) & =\frac{1}{m}+d_{0}\left(x, \phi_{r}\left(p_{m}\right)\right) \\
& <\frac{2}{k}+\frac{1}{m}+d_{0}\left(x, \phi_{j}\left(p_{k}\right)\right)+d_{0}\left(\phi_{j}\left(p_{k}\right), \phi_{r}\left(p_{m}\right)\right) \\
& =d(x, y)+d(y, z)
\end{aligned}
$$

If $k=m, j=r$ and $i \neq l$ then

$$
d(x, z)=\frac{1}{m}+d_{0}\left(x, \phi_{r}\left(p_{m}\right)\right)<\frac{1}{k}+\frac{1}{m}+d_{0}\left(x, \phi_{j}\left(p_{k}\right)\right)=d(x, y)+d(y, z)
$$

So if $(x, y, z) \in E \times E \times M$, change the role of x and z in previous case, and we get the result. If $(x, y, z) \in E \times M \times E$ then $x=q(i, k, j)$ and $z=q(l, m, r)$. Hence,

$$
d(x, y)+d(y, z)=\frac{1}{k}+\frac{1}{m}+d_{0}\left(y, \phi_{j}\left(p_{k}\right)\right)+d_{0}\left(y, \phi_{r}\left(p_{m}\right)\right)
$$

and

$$
d(x, z)= \begin{cases}\frac{1}{k}+\frac{1}{m}+d_{0}\left(\phi_{j}\left(p_{k}\right), \phi_{r}\left(p_{m}\right)\right) & \text { if } k \neq m \text { or } j \neq r \\ \frac{1}{k} & \text { if } k=m, j=r \text { and } i \neq l\end{cases}
$$

Thus, we always get the result $d(x, z)<d(x, y)+d(y, z)$ for both of 2 cases. When $(x, y, z) \in E \times E \times E$, we let

$$
x=q\left(i_{1}, k_{1}, j_{1}\right), y=q\left(i_{2}, k_{2}, j_{2}\right), z=q\left(i_{3}, k_{3}, j_{3}\right)
$$

Case 1. If $k_{1}=k_{3}$ and $j_{1}=j_{3}$ we have $d(x, z)=\frac{1}{k_{1}}$, and

$$
\begin{aligned}
& d(x, y)+d(y, z) \\
& = \begin{cases}\frac{2}{k_{1}}, & k_{1}=k_{2}=k_{3} \text { and } j_{1}=j_{2}=j_{3}, \\
\frac{2}{k_{1}}+\frac{2}{k_{2}}+d_{0}\left(\phi_{j_{1}}\left(k_{1}\right), \phi_{j_{2}}\left(k_{2}\right)\right)+d_{0}\left(\phi_{j_{2}}\left(k_{2}\right), \phi_{j_{3}}\left(k_{3}\right)\right), & k_{1}=k_{3} \neq k_{2} \text { or } j_{1}=j_{3} \neq j_{2} .\end{cases}
\end{aligned}
$$

It means that $d(x, z)<d(x, y)+d(y, z)$ for both of 2 cases.
Case 2. If $k_{1} \neq k_{3}$ or $j_{1} \neq j_{3}$, we have

$$
d(x, z)=\frac{1}{k_{1}}+\frac{1}{k_{3}}+d_{0}\left(\phi_{j_{1}}\left(k_{1}\right), \phi_{j_{3}}\left(k_{3}\right)\right),
$$

and

$$
\begin{aligned}
& d(x, y)+d(y, z) \\
& = \begin{cases}\frac{2}{k_{1}}+\frac{1}{k_{3}}+d_{0}\left(\phi_{j_{2}}\left(k_{2}\right), \phi_{j_{3}}\left(k_{3}\right)\right), & k_{1}=k_{2} \text { and } j_{1}=j_{2}, \\
\frac{1}{k_{1}}+\frac{2}{k_{3}}+d_{0}\left(\phi_{j_{1}}\left(k_{1}\right), \phi_{j_{2}}\left(k_{2}\right)\right), & k_{2}=k_{3} \text { and } j_{2}=j_{3}, \\
\frac{1}{k_{1}}+\frac{2}{k_{2}}+\frac{1}{k_{3}}+d_{0}\left(\phi_{j_{1}}\left(k_{1}\right), \phi_{j_{2}}\left(k_{2}\right)\right)+d_{0}\left(\phi_{j_{2}}\left(k_{2}\right), \phi_{j_{3}}\left(k_{3}\right)\right), & k_{1} \neq k_{2} \neq k_{3} \text { or } j_{1} \neq j_{2} \neq j_{3} .\end{cases}
\end{aligned}
$$

Hence, $d(x, z)<d(x, y)+d(y, z)$.
It implies d is a metric in X.
Next, we prove that (X, d) is a compact metric space. Let any sequences $\left(x_{n}\right)_{n \in \mathbb{N}} \in X$. We prove that this sequence has a convergent subsequence. If $\left(x_{n}\right)_{n \in \mathbb{N}}$ has infinite elements in M, then the compactness of M and the fact $d_{\mid M \times M}=d_{0}$, so $\left(x_{n}\right)_{n \in \mathbb{N}}$ has a convergent subsequence. We consider $\left(x_{n}\right)_{n \in \mathbb{N}}$ has finite elements in M; therefore, it has infinite elements in E. We can assume that $\left(x_{n}\right)_{n \in \mathbb{N}} \subset E$ then $x_{n}=q\left(i_{n}, k_{n}, j_{n}\right)$. If there is $N \in \mathbb{N}$ such that $k_{n}<N, \forall n \in \mathbb{N}$ then the set $\left\{x_{n} ; n \in \mathbb{N}\right\}$ is finite, so at least one point of $\left(x_{n}\right)_{n \in \mathbb{N}}$ appears infinite times, forming a convergent subsequence. Now suppose $\left(k_{n}\right)_{n \in \mathbb{N}}$ is unbounded, therefore, $\lim _{n \rightarrow \infty} k_{n}=\infty$. We choose $y_{n}=\phi_{j_{n}}\left(p_{k_{n}}\right)$, so $\left(y_{n}\right)_{n \in \mathbb{N}} \subset M$ and $d\left(x_{n}, y_{n}\right)=\frac{1}{k_{n}}, \forall n \in \mathbb{N}$. Since $\left(y_{n}\right)_{n \in \mathbb{N}}$ is a subset of compact set $M,\left(y_{n}\right)_{n \in \mathbb{N}}$ has a subsequence $\left(y_{n_{l}}\right)_{l \in \mathbb{N}}$ converging to $y \in M$. Thus, we have

$$
d\left(x_{n_{l}}, y\right)<d\left(x_{n_{l}}, y_{n_{l}}\right)+d\left(y_{n_{l}}, y\right)=\frac{1}{k_{n_{l}}}+d\left(y_{n_{l}}, y\right) \rightarrow 0 \text { when } l \rightarrow \infty
$$

It implies that $\left(x_{n}\right)_{n \in \mathbb{N}}$ has a subsequence $\left(x_{n_{l}}\right)_{l \in \mathbb{N}}$ which converges to y. Thus, (X, d) is a compact metric space.

For all $t \in \mathbb{R}$, we define a map ψ_{t} by

$$
\psi_{t}(x)= \begin{cases}\phi_{t}(x) & \text { if } x \in M \\ q\left(i, k,(j+t) \bmod \pi\left(p_{k}\right)\right) & \text { if } x=q(i, k, j)\end{cases}
$$

We can see that $j, t, j+t$ cannot be in \mathbb{N}, but we can define a real number: $t \bmod \pi\left(p_{k}\right):=r$, when

$$
t=m \pi\left(p_{k}\right)+r, m \in \mathbb{Z}, 0 \leq r<\pi\left(p_{k}\right)
$$

By definition of flow, it's easy to see that ψ is a flow of X. Indeed, we can prove that $\psi_{t+s}=\psi_{t} \circ \psi_{s}, \forall t, s \in \mathbb{R}$. If $x \in M$, we get

$$
\psi_{t+s}(x)=\phi_{t+s}(x)=\phi_{t} \circ \phi_{s}(x)=\psi_{t} \circ \psi_{s}(x), \forall t, s \in \mathbb{R} .
$$

If $x=q(i, k, j)$, we have

$$
\psi_{t+s}(x)=q\left(i, k,(j+t+s) \bmod \pi\left(p_{k}\right)\right)=\psi_{t} \circ \psi_{s}(x)
$$

Therefore, ψ is the flow with the previous properties.
In order to prove that ψ is n-expansive, first we see that ϕ is 1-expansive; so there is $a>0$ such that if $d\left(\phi_{t}(x), \phi_{t}(y)\right) \leq a, \forall t \in \mathbb{N}$, then $x=y$. Suppose that $\left\{x_{1}, \cdots, x_{n+1}\right\}$ are $n+1$ different points of X satisfying

$$
d\left(\psi_{t}\left(x_{i}\right), \psi_{t}\left(x_{j}\right)\right) \leq a, \forall t \in \mathbb{R}, \forall(i, j) \in\{1, \cdots, n+1\} \times\{1, \cdots, n+1\}
$$

Hence, at most one of these points belong to M. Consequently, at least n of them belong to E. Without loss of generality, we get
$x_{m}=q\left(i_{m}, k_{m}, j_{m}\right), m \in\{1, \cdots, n\}$. Because $i_{m} \in\{1, \cdots, n-1\}$ and we have n number i_{m}; thus, by Pigeonhole principle, at least two of these points are of the
form $q(i, k, j)$ and $q(i, m, r)$. We prove that $k \neq m$. Indeed, if $k=m$, we have 2 points are $q(i, k, j)$ and $q(i, k, r)$ with $j \neq r$ (because all of $n+1$ points are different). For each $s \in \mathbb{R}$ we have

$$
\begin{aligned}
& d\left(\phi_{s}\left(\phi_{j}\left(p_{k}\right)\right)\right), d\left(\phi_{s}\left(\phi_{r}\left(p_{k}\right)\right)\right) \\
& =d\left(\psi_{s}\left(q(i, k, j), \psi_{s}(q(i, k, r))\right)\right)-\frac{2}{k} \\
& <d\left(\psi_{s}(q(i, k, j)), \psi_{s}(q(i, k, r))\right)<a
\end{aligned}
$$

This implies that $\phi_{j}\left(p_{k}\right)=\phi_{r}\left(p_{k}\right)$ (by the Proposition of 1-expansive of ϕ), which implies that $j=r$ and we obtain a contradiction. Therefore, $k \neq m$.

Now we implies that: for every $s \in \mathbb{R}$ we have:

$$
\begin{aligned}
& d\left(\phi_{s}\left(\phi_{j}\left(p_{k}\right)\right)\right), d\left(\phi_{s}\left(\phi_{r}\left(p_{m}\right)\right)\right) \\
& =d\left(\psi_{s}(q(i, k, j)), \psi_{s}(q(i, m, r))\right)-\frac{1}{k}-\frac{1}{m} \\
& <d\left(\psi_{s}(q(i, k, j)), \psi_{s}(q(i, m, r))\right)<a
\end{aligned}
$$

So similarly, we have $\phi_{j}\left(p_{k}\right)=\phi_{r}\left(p_{m}\right)$; hence, $p_{m}=p_{k}$, which is contradiction with the fact that $k \neq m$. Thus, we cannot choose $n+1$ points satisfy this proposition; it means ψ is n-expansive in X.

Next, we prove that ψ is not $(n-1)$-expansive. For any $a>0$, we choose $k \in \mathbb{N}$ such that $\frac{1}{k}<a$, so we have
$d\left(\phi_{j}\left(p_{k}\right), q(i, k, j)\right)=\frac{1}{k}<a, \forall j \in \mathbb{R}, \forall i \in\{1, \cdots, n-1\}$. So $\Gamma\left(p_{k}, a\right)$ contain at least n points $\left\{p_{k}, q(1, k, 0), \cdots, q(n-1, k, 0)\right\}$ and that ψ is not $(n-1)$ -expansive, because there is not $a>0$ satisfies this define about $(n-1)$ -expansive.

Now we prove that ψ has the shadowing property. Since ϕ has the shadowing property, for each $\epsilon>0$, we can consider $\delta_{\phi}>0$, so for any $\left(\delta_{\phi}, 1\right)$ -pseudo-orbit in M we have the $\frac{\epsilon}{2}$-shadowing. Now consider $\left(x_{n}, t_{n}\right)_{n \in \mathbb{Z}}$ has the $(\delta, 1)$-pseudo-orbit by ψ in X. We assume that $\delta<\frac{\delta_{\phi}}{3}<\frac{\epsilon}{3}$. So we have $d\left(\psi_{t_{n}}\left(x_{n}\right), x_{n+1}\right)<\delta$. Let N is a smallest integer number such that $\frac{1}{N}<\delta$, and we consider $\left(x_{n}, x_{n+1}\right)$ in 3 cases.

Case 1. If $\left(x_{n}, x_{n+1}\right) \in E \times M$, we have $x_{n}=q(i, k, j)$ and $d\left(\psi_{t_{n}}\left(x_{n}\right), x_{n+1}\right)=\frac{1}{k}+d_{0}\left(x_{n+1}, \phi_{j+t_{n}}\left(p_{k}\right)\right)$, so $\frac{1}{k}<\delta$; hence, $k \geq N$.

Case 2. If $\left(x_{n}, x_{n+1}\right) \in M \times E$, we obtain $x_{n+1}=q(i, k, j)$ and $d\left(\psi_{t_{n}}\left(x_{n}\right), x_{n+1}\right)=\frac{1}{k}+d_{0}\left(\phi_{j}\left(p_{k}\right), \phi_{j}\left(x_{n}\right)\right)$, so $\frac{1}{k}<\delta$; hence, $k \geq N$.

Case 3. If $\left(x_{n}, x_{n+1}\right) \in E \times E$, we have $x_{n}=q(i, k, j)$ and $x_{n+1}=q(l, m, r)$. So $\psi_{t_{n}}\left(x_{n}\right)=q\left(i, k, j+t_{n}\right)$. Thus, if we want $d\left(\psi_{t_{n}}\left(x_{n}\right), x_{n+1}\right)<\delta$, we have either if $k \geq N$, so $m \geq N$ (by similarly) or if $k<N$, we have $x_{n+1}=\psi_{t_{n}}\left(x_{n}\right)$, such that $x_{n+1}=q\left(i, k, j+t_{n}\right)$. When $\left(x_{n}, t_{n}\right)_{n \in \mathbb{Z}}$ is one of orbit $\left\{q\left(l, k, j_{n}\right)\right\}_{n \in \mathbb{Z}}$,
and $j_{n+1}=j_{n}+t_{n}, \forall n \in \mathbb{Z}$. So one obtain $s_{n}=j_{n}-j_{0}$, thus,

$$
d\left(\psi_{t-s_{n}}\left(x_{n}\right), \psi_{t}\left(x_{0}\right)\right)=d\left(q\left(l, k, t-s_{n}+j_{n}\right), q\left(l, k, t+j_{0}\right)\right)=0, s_{n} \leq t<s_{n+1} .
$$

Therefore, the shadowing property is proved.
When $x_{i}=q(l, k, j)$, then $k>N$. Define a sequence $\left(y_{n}, t_{n}\right)_{n \in \mathbb{Z}} \subset M$ by

$$
y_{n}= \begin{cases}x_{n} & \text { if } x_{n} \in M \\ \phi_{j}\left(p_{k}\right) & \text { if } x_{n}=q(l, k, j)\end{cases}
$$

Then $\left(y_{n}, t_{n}\right)_{n \in \mathbb{Z}}$ is δ_{ϕ}-pseudo-orbit in M since

$$
\begin{aligned}
& d\left(\phi_{t_{n}}\left(y_{n}\right), y_{n+1}\right)=d\left(\psi_{t_{n}}\left(y_{n}\right), y_{n+1}\right) \\
& \leq d\left(\psi_{t_{n}}\left(y_{n}\right), \psi_{t_{n}}\left(x_{n}\right)\right)+d\left(\psi_{t_{n}}\left(x_{n}\right), x_{n+1}\right)+d\left(x_{n+1}, y_{n+1}\right) \\
& <\frac{1}{N}+\delta+\frac{1}{N}<\delta_{\phi} .
\end{aligned}
$$

Hence, there exists $y \in M$ and a function $h \in \operatorname{Rep}$ such that

$$
d\left(\phi_{t-s_{n}}\left(y_{n}\right), \phi_{h(t)}(y)\right)<\frac{\epsilon}{2}, \forall s_{n} \leq t<s_{n+1} .
$$

So

$$
\begin{aligned}
d\left(\phi_{t-s_{n}}\left(x_{n}\right), \phi_{h(t)}(y)\right) & <d\left(\phi_{t-s_{n}}\left(x_{n}\right), \phi_{t-s_{n}}\left(y_{n}\right)\right)+d\left(\phi_{t-s_{n}}\left(y_{n}\right), \phi_{h(t)}(y)\right) \\
& <\frac{1}{N}+\frac{\epsilon}{2}<\epsilon .
\end{aligned}
$$

Therefore, $\left(x_{n}, t_{n}\right)_{n \in \mathbb{Z}}$ is ϵ-shadowing. Hence, ψ has the shadowing property.

Finally, we have ψ admits an infinite number of chain-recurrent classes. Indeed, if we have $q(i, k, l) \in E$ then

$$
d(q(i, k, j), x) \geq \frac{1}{k}, \forall x \in X \backslash\{q(i, k, j)\} .
$$

So if $0<\epsilon<\frac{1}{k}$ then the orbit of $q(i, k, j)$ cannot be connected by ϵ -pseudo orbits with any other point of X. This proves that the chain-recurrent classes of $q(i, k, j)$ contains only its orbit. Therefore different periodic orbits in E belong to different chain-recurrent classes and we conclude the proof.

Acknowledgements

The first author was supported in part by the VNU Project of Vietnam National University No. QG101-15.

Open Questions

How are the properties of the local stable (unstable) sets of n-expansive flows?

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

[1] Bowen, R. and Walters, P. (1972) Expansive One-Parameter Flows. Journal of Differential Equations, 12, 180-193. https://doi.org/10.1016/0022-0396(72)90013-7
[2] Anosov, D.V. (1967) Geodesic Flows on Closed Riemannian Manifolds with Negative Curvature. Proceedings of the Steklov Institute of Mathematics, no. 90, American Mathematical Society, Providence.
[3] Walters, P. (1970) Homeomorphisms with Discrete Centralizers and Ergodic Properties. Mathematical Systems Theory, 4, 322-326. https://doi.org/10.1007/BF01695774
[4] Oka, M. (1976) Expansive Flows and Their Centralizers. Nagoya Mathematical Journal, 64, 1-15. https://doi.org/10.1017/S0027763000017517
[5] Utz, W.R. (1950) Unstable Homeomorphisms. Proceedings of the American Mathematical Society, 1, 769-774. https://doi.org/10.1090/S0002-9939-1950-0038022-3
[6] Eisenberg, M. (1966) Expansive Transformation Semigroups of Endomorphisms. Fundamenta Mathematicae, 59, 313-321. https://doi.org/10.4064/fm-59-3-313-321
[7] Reddy, W. (1970) Pointwise Expansion Homeomorphisms. Journal of the London Mathematical Society, 2, 232-236. https://doi.org/10.1112/jlms/s2-2.2.232
[8] Bowen, R. (1972) Entropy-Expansive Maps. Transactions of the American Mathematical Society, 164, 323-331. https://doi.org/10.1090/S0002-9947-1972-0285689-X
[9] Kato, H. (1993) Continuum-Wise Expansive Homeomorphisms. Canadian Journal of Mathematics, 45, 576-598. https://doi.org/10.4153/CJM-1993-030-4
[10] Artigue, A. (2015) Robustly N-Expansive Surface Diffeomorphisms. arXiv: 1504.02976v1.
[11] Artigue, A., Pacfico, M.J. and Vieitez, J. (2013) N-Expansive Homeomorphisms on Surfaces. arXiv:1311.5505.
[12] Carvalho, B. and Cordeiro, W. (2016) N-Expansive Homeomorphisms with the Shadowing Property. Journal of Differential Equations, 261, 3734-3755. https://doi.org/10.1016/j.jde.2016.06.003
[13] Li, J. and Zhang, R. (2015) Levels of Generalized Expansiveness. Journal of Dynamics and Differential Equations, 1-18.
[14] Morales, C.A. (2012) A Generalization of Expansivity. Discrete \& Continuous Dynamical Systems, 32, 293-301. https://doi.org/10.3934/dcds.2012.32.293
[15] Aponte, J. and Villavicencio, H. (2018) Shadowable Points for Flows. Journal of Dynamical and Control Systems, 24, 701-719. arxiv:1706.07335. https://doi.org/10.1007/s10883-017-9381-8
[16] Lee, K. and Oh, J. (2016) Weak Measure Expansive Flows. Journal of Differential Equations, 260, 1078-1090. https://doi.org/10.1016/j.jde.2015.09.017

