
Advances in Infectious Diseases, 2019, 9, 8-24 
http://www.scirp.org/journal/aid 

ISSN Online: 2164-2656 
ISSN Print: 2164-2648 

 

DOI: 10.4236/aid.2019.91002  Feb. 21, 2019 8 Advances in Infectious Diseases 
 

 
 
 

Epidemiological Study and Optimal Control for 
Lumpy Skin Disease (LSD) in Ethiopia 

Okey Oseloka Onyejekwe*, Abebe Alemu, Biruk Ambachew, Ayalnesh Tigabie 

Computational Mechanics and Dynamical Systems Group, Computational Science Program, Addis Ababa University, Arat Kilo 
Campus, Addis Ababa , Ethiopia 

 
 
 

Abstract 
Lumpy skin disease (LSD) is an infectious, fatal skin disease of cattle caused 
by a virus of the family Poxviridae (genus Capripox). In addition, severely af-
fected animals suffer from reduced weight, cessation of milk production and 
infertility. The aim of this paper is to computationally apply epidemiological 
(SEIR) and optimal control (OC) techniques to study the transmission and 
the impact of vaccination on LSD. Based on our numerical experiments, we 
were able to deduce the overall impact of the optimal strategy adopted for this 
study on the cattle population for vaccination rates within the range of  
0 0.85ν≤ ≤ . It is shown that the vaccination as a control strategy signifi-
cantly reduced the effects of LSD on the cattle population if properly ma-
naged and that an optimal performance of the control strategy adopted here-
rin is achieved at an approximate value of 0.6ν = . 
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1. Introduction 

LSD has an economical importance because of permanent damage to hides. It 
has been reported ([1] [2]) that 10% of animals exposed to LSD experience abor-
tion. According to [3], lumpy skin disease (LSD) is an exhaustive viral disease 
and a pox disease of cattle. It is characterized by fever, nodules on the skin, 
mucous membranes in internal organs, enlarged lymph nodes and odema of the 
skin ([3] [4]). Due to chronic debility in affected animals high economic losses 
occur. The clinical syndrome of LSD was first described in Zambia in 1929. 
More cases also occurred between 1943 and 1945 in Botswana, Zimbabwe and 
the republic of South Africa ([1] [3] [5] [6]). Transmission of LSD is by insect 
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vectors (through biting flies) found among cattle sharing similar grazing and 
watering areas. And those that congregate in the same barn may be contami-
nated by the viruses in saliva of the infected animals or ingestion of already con-
taminated food or by teratogenic agents and suckling calves ([7] [8]). The inci-
dence of LSD occurrence is high during wet seasons [3]. 

LSD was first observed in Ethiopia in the northwestern part of the country 
(southwest of Lake Tana) in 1983, [1]. It occurs in all agro-climatic conditions 
and has the potential to extend its boundaries. Good understanding of epidemi-
ology, economic significance and control mechanisms of the disease will en-
hance suitable control measures. The disease could be diagnosed using appro-
priate serological and molecular techniques. Effective control measures can be 
achieved through mass vaccination, separation and culling of infected animals, 
([9] [10] [11]). It is therefore important to formulate an LSD model with optimal 
control policy to eradicate LSD epidemic and minimize the cost associated for 
vaccination strategy [3]. 

Most studies of epidemic control of LSD focus on increasing immunization 
coverage (vaccination coverage) in a population to control the disease, but they 
do not consider how this parameter affects the strategy over a period of time. 
Though some of these studies have considered vaccination strategy at different 
levels of immunization, none of them has studied optimal vaccination strategy 
for LSD disease in Ethiopia. Hence the general objective of this study aims at 
addressing these shortfalls in order to make the number of infected animals as 
small as possible.  

2. Epidemiological Model Formulation 
SEIR Model and Equation Formulation 

All Epidemiological ODE models of disease transmission are continuous time 
compartment level models [12]. The model considered herein is compartmenta-
lized into: 

S: susceptible portion of population, 
E: exposed population.  
I: the infected population. 
R: the recovered population. 
Newly born population merge into the S compartment at the rate of alpha 

(α ), which represents the birth rate. The infected population are those individ-
uals who can contract the disease. However for the SEIR model, we also consider 
the exposed population that is those individuals who have the disease but are not 
yet infectious. After treatment the infected population will move into R-Com- 
partment, at the rate of omega ω  i.e. the recovery rate. Cattles can lose their 
immunity after some time. Let us assume a rate of θ . As a result, that popula-
tion moves from R into the S compartment. Hence the following S-E-I-R-S Epi-
demiological model without control is shown in Figure 1 as: 

The system is represented by the temporal vectors S(t), E(t), I(t), R(t); and is 
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characterized by the following assumptions 
• The population is homogeneous. 
• No demographics,(immigration and emigration) consideration 
• Birth rate and natural death rate are constant. Mathematically this means 

( ) ( ) ( ) ( )S t E t I t R t N+ + + =                     (1) 

where N is the total population. This facilitates the expression of one of the va-
riables in terms of the others and the conserved constant N. Table 1 shows the 
description of the model parameters and variables applied in this study. 

d
d
S N SI R S
t

α β θ φ= − + −                        (2) 

d
d
E SI E E
t

β γ φ= − −                         (3) 

d
d
I E I I
t

γ ω φ= − −                          (4) 
 

 
Figure 1. SEIRS Model without Control. 

 
Table 1. Descriptions for variables for the model. 

No. parameter Description 

1 N Total population 

2 S Susceptible to be expose for infection those of who interact with the disease 

3 E Exposed population that are infected but have not yet become infectious 

4 I Infected by the disease who are capable of transmitting the disease to any  
susceptible individuals. 

5 R 
Individuals recovered from infection  

who are temporarily immune from the infection 

6 α  Birth rate from the total population N 

7 β  The rate of population exposed to the disease. 

8 γ  The rate which will be infected from the population of exposed 

9 ω  
The rate of getting immunity after sort of treatment  

in move to the recovered compartment from infected compartment. 

10 θ  
The rate of populations loss their immunity and moved to the susceptible 

compartment. 

11 φ  The rate of natural death 
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d
d
R I R R
t

ω θ φ= − −                         (5) 

Note that the natural death rate on each of the compartment for this paper is 
the same, which is  

( )S E I R S E I R Nφ φ φ φ φ φ+ + + = + + + =               (6) 

3. Optimal Control 

Optimal control deals with the problem of finding a control law for a given sys-
tem such that a certain optimal criterion is achieved. A control problem includes 
a function of state and control variable. An optimal control is a set of differential 
equations describing the paths of the control variables that minimize the cost 
function. The control can be derived using Pontryagins maximum principles (a 
necessary condition also known as Pontryagins minimum principle or simply 
Pontryagins Principle), or by solving the Hamilton-Jacobi-Bellamn Equations (a 
sufficient condition), [13]. This boundary-value problem actually has a special 
structure because it arises from taking the derivative of a Hamiltonian. Thus, the 
resulting dynamical system is a Hamiltonian system of the form 

Hx
λ

∂
=
∂

�                           (7) 

H
x

λ ∂
= −

∂
�                          (8) 

where  
T TH L a bλ µ= + −                      (9) 

is an augmented Hamiltonian [14]. For this study, vaccination is applied as an 
optimal control and is denoted as u.  

Numerical Solutions of Optimal Control Problems 

Consider the optimal control problem 

( ) ( )( )
1

0

max , , d
t

t

U f t x t u t t∫                    (10) 

( ) ( )( )subject to : , ,x g t x t u t′ =                 (11) 

( ) ( )0 0 1, freex t x x t=                     (12) 

Any solution to the above optimal control problem must also satisfy 

( ) ( ) ( )( ) ( )0 0, , ,x t g t x t u t x t x′ = =                 (13) 

( ) ( ) ( ) ( )( ) ( )1, , , , , 0x x
Ht f t x u t g t x u t
x

δλ λ λ
δ

= − = − + =        (14) 

( ) ( ) ( )( ) *0 , , , , , atu
H f t x u t g t x u u
x

δ λ
δ

= = − +            (15) 

Equation (6), the optimal condition, can usually be manipulated to find a re-
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presentation of u* in terms of t, x, and λ .  
An optimal control with bounded control can be written in the form 

( ) ( )( ) ( ) ( )( )
0

max , , , dft
u t

J x t u f t x t u t t= ∫               (16) 

Subject to 

( ) ( )( )
( )

( )
0 0

, ,x g t x t u t

x t x

a u t b

 ′ =
 <
 ≤ ≤

                      (17) 

where a, b are fixed real constants and a < b.  
Proposition (Necessary conditions):- If ( )*u t  and ( )*x t  are optimal for 

Equations (16, 17), then there exists a piecewise differentiable adjoint variable 
( )tλ  such that 

( ) ( ) ( )( ) ( ) ( ) ( )( )* *, , , , , ,H t x t u t t H t x t u t tλ λ≤            (18) 

For all controls u at each time t, where H is the Hamiltonian, [13]. 

( )
( ) ( ) ( )( )* *, ,H x t u t t

t
x

δ λ
λ

δ
′ = −  (adjoint condition) (19) 

( ) 0tfλ =  (transversality condition)     (20) 

By an adaptation of the Pontryagin’s Maximum Principle (PMP), the OC 
must satisfy (optimal condition): 

*

if 0,

, if 0,

, if 0,

Ha
u

H Hu a b
u u
H Hb a
u u

δ
δ

δ δ
δ δ
δ δ
δ δ

 <

= < < =



< < >

                   (21) 

If we have a minimization problem, then *u  is chosen to minimize H point 
wise. 

If 
2

2 0H
u

∂
<

∂
 at *u  then u is the maximization of the problem, while  

2

2 0H
u

∂
<

∂
 goes with minimization.  

The optimal control 0H
u

δ
δ

=  obtained without truncation, and is bounded 

by a and b such that: 

( )* min ,max , Hu t a b
u

δ
δ

  =   
  

               (22) 

Runge-Kutta (RK4) routine is applied for the numerical solution. It is re-
quired that: 

( ) ( )
1

n

old
i

u i u i
=

−∑  be small, in addition to guaranteeing that the relative error  

between the current and the previous computed scalars be negligible, i.e.  
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oldu u
u

δ
−

≤                           (23) 

where δ  is the accepted tolerance? The optimal control problem can now be 
written in a standard form:  

( ) ( )
1

2

0

max dAx t Bu t t−∫                     (24) 

Subject to:- ( ) ( ) ( )21
2

x t x t Cu t′ = − +                    (25) 

( ) ( )00 fixed 1 freex x x=  

In order for this to be a maximization problem, we require B > 0. The Hamil-
tonian given by 

2 1
2

H Ax Bu C uλ= − − +                    (26) 

By applying the optimal condition  

 *0 2
2

H CBu C u
u B

δ λλ
δ

= = − + ⇒ =                 (27) 

 ( ) ( )2
0

1 , 0
2

x t x Cu x x′ = − + =                   (28) 

( ) ( ), 1 0t A xλ λ λ′ = − + =                    (29) 

The Runge-Kutta forward sweep yields the transient profile of the dependent 
variable. The new *u  is calculated by setting  

 1 2
u C

B
λ

= ∗
∗

                       (30) 

( )10.5 oldu u u= ∗ +                      (31) 

4. ODE Formulation for Optimal Control 
4.1. Modification of SEIRS Model  

A typical optimal control problem requires a performance index or cost function 
( ) ( )( ),J x t u t   , a set of state variables ( )( )x t X∈  and a set of control va-

riables ( )( )u t U∈  in a time t, 0 ft t t≤ ≤ . A major goal of the work reported 
herein, is to find a piecewise continuous control u(t) (vaccination) and the asso-
ciated state variable x(t) to minimize a given objective functional. This strategy 
will directly impact on the susceptible “S” and the recovered “R” compartments 
in the overall mathematical formulation as shown below.  

( )1 2
d 1
d
S v N SI v S R S
t

α β θ φ= − − − + −             (32) 

d
d
E SI E E
t

β γ φ= − −                     (33) 

d
d
I E I I
t

γ ω φ= − −                       (34) 
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1 2
d
d
R v N v S I R R
t

α ω θ φ= + + − −                 (35) 

In the above equations, vaccination is applied during g birth 1v , and for pop-
ulations in the S-compartment 2v , thus vaccinated populations moved to re-
covered compartment as 1v Nα  and 2v S . However, for this paper, we applied 
vaccination on S-compartment only as ( vS ), and the formulation is given as 
below. 

d
d
S N SI vS R S
t

α β θ φ= − − + −                  (36) 

d
d
E SI E E
t

β γ φ= − −                      (37) 

d
d
I E I I
t

γ ω φ= − −                       (38) 

d
d
R vS I R R
t

ω θ φ= + − −                     (39) 

With initial conditions, 

( ) ( )
( ) ( )

0 0

0 0

0 0, 0 0

0 0, 0 0

S S E E

I I R R

= ≥ = ≥

= ≥ = ≥
 

The above equations are illustrated graphically in Figure 2 as:  
The optimal problem (which is the main objectives of this paper) is to minim-

ize the objective (cost) functional (J) by considering the costs of vaccination for 
susceptible population given by: 

( ) 2

0

1 d
2

t

J u AI Bu t = + 
 ∫                    (40) 

where:- 
t: represents the vaccination period  
A: a parameter that balancing cost factors due to the size of ineffective  
B: represents the weight attached on the cost of vaccination  
A and B can also be weight parameters describing the comparative importance 

of the two terms (disease burden and cost) in the functional respectively. 
A high value of A means that it is more important to reduce the disease bur-

den than to reduce the vaccination costs. A less value of B means that it is more 
important to reduce the vaccination costs than to reduce the disease burden. The 
control u is the percentage of the susceptible that is vaccinated per unit time. 
Thus, u lies between 0 and 1 while umax will depend on the amount of resources 
available to implement each of the control measures. 

If u = 0, then no vaccination is done which is uncontrolled. If u = 1, then all 
susceptible population is vaccinated.  

The rate of vaccination is assumed to take values in [0, 0.9] instead of [0, 1] to 
eliminate the case where the entire susceptible population is vaccinated.  

The vaccination cost could include the cost of the vaccine, cost of syringes, 
cost of safety boxes, the vaccine storage cost, and other related overheads.  
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Figure 2. Optimal control with vaccination. 

 
Hence, the Optimal Control problem of the nonlinear dynamics of SEIRS LSD 

epidemic model studied herein is given by; 

( ) 2

0

1min min d
2

t

u J u AI Bu t = + 
 ∫                  (41) 

where ( ) [ ]max: 0 1, 0,U u t u u t t= ≤ ≤ < ∈ . 
For the Hamiltonian function:  

( )

( ) ( )

( )

1 2 3 4

4

1

1 2 3 4

, , , , , , , ,

, , , , , , , , , , , ,

d d d d, , , , , ,
d d d d

i i
i

H t S E I R

f t S E I R u v g t S E I R u v

S E I Rf t S E I R u v
t t t t

λ λ λ λ

λ

λ λ λ λ

=

= +

= + + + +

∑           (42) 

Then by substituting each of the derivatives in Equation (41) into Equation 
(42) and by applying PMP to the Hamiltonian, we have: 

( )

( ) ( )
( )

2
1

2 3

4

1
2

H AI Bu N SI uS R S

SI E E E I I

uS I R R

λ α β θ φ

λ β γ φ λ γ ω φ

λ ω θ φ

 = + + − − + − 
 
+ − − + − −

+ + − −

          (43) 

The Adjoint functions with respect to the dependent variables are: 
For S: 

( )
( )

*
1

*
1 1 2 4

*
1 1 2 4

H
S

I u I u

I u I u

δλ
δ

λ λ β φ λ β λ

λ λ β φ λ β λ

= −

⇒ = − − − + +  
⇒ = − + + − −

             (44) 

Adjoint function with respect to E  

( )
( )

*
2

*
2 2 3

*
2 2 3

H
E

δλ
δ

λ λ γ φ λ γ

λ λ γ φ λ γ

= −

⇒ = − − − +  
⇒ = + −

                  (45) 

Adjoint function with respect to I  
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( ) ( )
( )

*
3

*
3 1 2 3 4

*
3 1 2 3 4

H
I

A S S

A S S

δλ
δ

λ λ β λ β λ φ ω λ ω

λ λ β λ β λ φ ω λ ω

= −

⇒ = − + − + + − − +  
⇒ = − + − + + −

         (46) 

Adjoint function with respect to R  

( ) ( )
( )

*
4

*
4 1 4

*
4 1 4

H
R

δλ
δ

λ λ θ λ θ φ

λ λθ λ θ φ

= −

⇒ = − + − −  
⇒ = − + +

                  (47) 

From the Equation (43 to 47); we obtain:  

 

( )
( )

( )
( )

*
1 1 2 4

*
2 2 3

*
3 1 2 3 4

*
4 1 4

I u I u

A S S

λ λ β φ λ β λ

λ λ γ φ λ γ

λ λ β λ β λ φ ω λ ω

λ λθ λ θ φ

= − + + − −

= + −

= − + − + + −

= − + +

             (48) 

With transversality conditions we have ( ) 0, 1,2,3,4i T iλ = =  
Next, we consider an optimal condition for determining the characterization 

of the optimal control *u . The optimal condition by differentiating the Hamil-
tonian H with respect to u based on the Equation (27) for each control *u . We 
have the following optimal system:  

0H
u

δ
δ

=  at *u u=  ( )1Bu Sλ⇒ + − , at *u u=   

then we have ( )*
1

Su t
B

λ=  taking into account the bound *u  and its characte-

rization obtain; 

*
1

0 if 0,

if 0,

0.9 if 0

H
u

S Hu
B u

H
u

δ
δ
δλ
δ
δ
δ

 <

= =



>

                    (49) 

the optimal control *u  can now be put in a compact form: 

*
1max min ,0.9 ,0Su

B
λ  =   
  

                  (50) 

Hence using the characterization of the optimal control, we now have follow-
ing optimal system 

S N SI uS R S
E SI E E
I E I I
R uS I R R

α β θ φ
β γ φ
γ ω φ

ω θ φ

′ = − − + −
′ = − −
′ = − −
′ = + − −

                  (51) 

( ) ( ) ( ) ( )0 0 0 00 0, 0 0, 0 0, 0 0S S E E I I R R= ≥ = ≥ = ≥ = ≥  
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To determine the optimal vaccination, we use a forward-backward sweep nu-
merical method. The model solves the SEIRS Equations (36 to 39) using fourth 
order Runge-Kutta (RK4) method. The values of all the accompanying parame-
ters necessary for the successful numerical solution of the governing equations 
are given in Table 2. 

4.2. Numerical Results and Discussion 

In Figure 3, no optimal control was applied. The number of populations in S is 
dramatically decreased. Whereas the number of Exposed populations exhibits an 
increase with time (t). After some time, the population shows an increase in 
E-compartment. As time progresses, the number of population in I compart-
ment increases, while the number of population in R-decrease. This suggests an 
endemic situation. 

Unlike the previous case, Figure 4 displays the effect of optimal control (vac-
cination) on the susceptible population. As a consequence of vaccination, there 
is a movement of the vaccinated population from the S compartment to the re-
covery compartment. This is confirmed by an increase in the recovery popula-
tion in the graph. We hasten to comment that irrespective of any control strate-
gy, the population in the S compartment displays a decline as time progresses, 
but the rate of decrease when vaccination is applied is slower. With the popula-
tion in the S-compartment vaccinated, recovery is enhanced. This shows that 
LSD disease can be controlled with vaccination. In addition, Figure 4 displays 
the response of the population in the S-compartment, for optimal control and 
non optimal control applications. For both cases, the size of the population de-
creases at different rates. The profiles for both cases clearly demonstrate the ef-
fect of the application of this treatment strategy for the susceptible population.  
 
Table 2. Assigned values for model parameters. 

Symbols Description Value Reference 

β  Exposed rate 0.02 [2] 

γ  Infection rate 0.29 [3] 

ω  Recovered rate 0.3 Estimation 

φ  Natural death rate 0.00002 [6] 

θ  
Rate of losing immunity  

and move to S from R Compartment. 
0.00002 Estimation 

α  Birth rate 0.0004 [6] 

A Balancing cost factor 1000 Estimation 

B The weight of the cost of vaccination 200 Estimation 

[0, t] Vaccination period [0, 12] months [6] 

[0, u] Vaccination rate [0, 0.9] [6] 

S0 Initial Susceptible population 3000 [3] 

E0 = I0 = R0 
Initial Exposed, Infected,  

and Recovered Population 
10 [11] 
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Figure 3. SEIRS without Optimal control. 
 

 
Figure 4. S-compartment with optimal control and without optimal control. 

 
Figure 5 shows the effect of vaccination as a control measure on the infected 

population. The sharp decline in the infected cattle population demonstrates 
that if vaccination is properly applied it sure will turn out as a utilitarian strategy 
to control LSD spread in cattle, The same can also be said of the “E” or the ex-
posed population (see Figure 6). There is less population in the exposed com-
partment as a result of the application of vaccination. Both cases demonstrate 
the beneficial effects of vaccination with time.  
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Figure 5. I-compartment with optimal control and without optimal control. 

 

 
Figure 6. E-compartment with optimal control and without optimal control. 

 
Figure 7 shows a dramatic rise in the “R” population resulting from the ap-

plication of vaccination. This reflects an inflow from virtually all the compart-
ments of the model into the “R” population when control is applied. This again 
shows that vaccination as intervention strategy has a great impact on controlling 
LSD among cattle. 

For demonstration purposes, we present the effects of different vaccination 
rates ( )0 0.85ν≤ ≤  on the SEIR profiles in order to assess the impact on the 
overall control strategy adopted for this study. 

Figures 8-13 show a continuous decrease in the “S” population for increasing 
vaccination rates. This is solely because vaccination plays a big role in decreasing 
the susceptible population for any successful control strategy. As the susceptible 
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population decreases, they move to both the recovered (“R” population) and the 
exposed (the “E” i.e. the exposed or the latent population). There is a gradual 
rise in the “E” population as indicated in Figure 8. Initially it exhibits a higher 
profile than the “R” population (see Figure 9 and Figure 10). Figures 11-13 
show that it finally catches up with and surpasses the exposed population. The 
actual point of transition happens around 0.6ν = . Given the parameters 
adopted in this study this can be considered as an optimal point of application 
and the decision as to whether to continue increasing the vaccination rate will 
depend on other consideration among which will be that availability of funds. 
From Figures 8-13, it can also be observed that the profile of the infected popu-
lation (the “I” compartment) remains the lowest when compared to the dynamic 
profiles exhibited by other compartments. 
 

 
Figure 7. R-compartment with OC and without OC. 

 

 
Figure 8. SEIR-compartment with optimal control at u [0, 0.2]. 
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Figure 9. SEIR-compartment with optimal control at u [0, 0.3]. 

 

 
Figure 10. SEIR-compartment with optimal control at u [0, 0.5]. 

 

 
Figure 11. SEIR-compartment with optimal control at u [0, 0.6]. 
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Figure 12. SEIR-Compartment with Optimal Control at u [0, 0.75]. 

 

 
Figure 13. SEIR-Compartment with Optimal Control at u [0, 0.85]. 

5. Conclusions 

The work reported herein demonstrates the application of vaccination as an op-
timal control strategy for LSD cattle disease in Ethiopia in addition to the opti-
mization of the cost of the protective strategy adopted. To implement this, we 
used the Pontryagins maximum principle to characterize the controls and derive 
the optimality system. For the numerical simulation, we adopted an algorithm 
based on the Runge-Kutta forward-backward sweep method. The state equations 
were solved forward in time, while the adjoint equations were simultaneously 
solved backward in time. 
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Both the controlled and uncontrolled scenarios were demonstrated graphical-
ly in order to identify the optimal vaccination schedule for the treatment and 
assessment of the impact of LSD on the cattle population. The results of our 
numerical experiments (Figures 8-13) clearly demonstrate that the applied op-
timality measures and intervention protocol have a very desirable effect in con-
trolling and reducing the number of infected cattle population during the con-
trol period as long as they are properly managed. In addition, as the control pe-
riod increases the number of cattle population saved from LSD gradually in-
creased.  

Based on our LSD model and parameters adopted for this study, the effects of 
the optimal vaccination strategy can be assessed for the vaccination rates in the 
range of ( )0 0.85ν≤ ≤ . It is observed that the control measures adopted herein 
achieves optimal operation at approximately 0.6ν = .  
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