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Abstract 
This research paper concentrates on the Kakeya problem. After the introduc-
tion of historical issue, we provide a thorough presentation of the results of 
Kakeya problem with some examples of the early solutions as well as the 
proof of the final outcome of this problem, the solution of which is known as 
Besicovitch Set. We give 3 different construction of Besicovitch set as well as 
the intuition of construction, which is related to iterated integral of 2-variable 
real function. We also give the Cunningham construction in which the area of 
a simply connected Kakeya set can also tend to 0. Furthermore, we generalize 
the process of generating a Kakeya set into a Kakeya dynamic. The definition 
of multiplicity enables us to estimate the area of a Kakeya set. In following 
discussion we provided a conjecture related to the solution in particular 
range. Finally, the derivation of the Kakeya problem is presented. 
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1. Introduction 
1.1. History of Kakeya Problem 

In 1917, Sōichi Kakeya asked a question: what is the smallest area which enables 
a unit line segment to rotate 180 degrees and return to the initial position in re-
versed direction? In honor of Kakeya, a compact set nE ⊂   in which the unit 
line segments can be found in every direction is defined to be Kakeya set.  
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where 1nS −  is the notation for unit sphere in n . The optimal solution for the 
Kakeya problem when n = 2 is constructed by Besicovich, known as Besicovich 
set.  

1.2. History of Besicovitch 

Abram Samotlvitch Besicovich made great contributions to the Kakeya problem. 
Described in [1], his family had seven children and they were living in a frugal 
life. The older ones earned money to support the younger ones. They all studied 
at the University of St. Petersburg and received high education. After his gradu-
ation, Besicovitch published his first paper about probability theory. Later in 
1917, he became a professor in the University, which was destroyed in 1919 
during the Civil War. However, Besicovitch locked books in the cellar and pre-
served most of the property, which later contributed to the re-establishment of 
the university after the liberation of Perm. In 1920, he returned to Leningrand 
and gave lectures on Pedagogical Institute for four years. However, from 1920, as 
the Russian revolution was launched, he was forced to lecture to workers who 
had weak mathematical backgrounds. To leave Russia, he decided to apply for 
Rockefeller Fellowship, a fellowship that enabled people to work abroad, but the 
offer was not obtained until 1924.  

Accompanied with another mathematician, J.D. Tamarkin, Abram Besico-
vitch went to Copenhagen. In Copenhagen, he worked with Harald Bohr for a 
year. Then, he made his way for Oxford and stayed for several months with G.H. 
Hardy, who recognized his great analytical talent and enabled his lectureship at 
the University of Liverpool for 1926-1927. In 1927, he moved to Cambridge and 
became a college lecturer as well as a Fellow of Trinity.  

Besicovitch passed most of his life in Britain. After retiring from the Rouse 
Ball Chair in 1958, he remained active in the field of mathematics as a visiting 
professor in the United States. After all, he died in his eightieth year on 2 No-
vember, 1970. Besicovitch is a successful mathematician who received several 
high standard awards and medals and his mathematical work is still valuable to-
day and still influences the modern mathematical field.   

1.3. The Structure of This Paper 

This paper about the Kakeya problem makes an entire summary of the historical 
solutions of Kakeya problem. In Section 2, some basic examples of Kakeya sets 
are given and we shall see the basic techniques of constructing a Kakeya set with 
small area is by overlapping some basic Kakeya set. Intuitively, the more area 
they overlap, the smaller their total area would be. In Section 3, we illustrate the 
construction of a Besicovitch set in Besicovitch [2], a kind of Kakeya set which 
can achieve arbitrary small area, by introducing the Pal-join technique that 
enables the parallel transformation. After the construction of that set, we also 
discuss the connection of the Besicovitch set and the iterated integral. In Section 
4, we summarize the simply connected Kakeya set which was discovered in 
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Cunningham [3] and again, find the basic ideas behind constructing them are 
still overlapping them as heavily as possible. In Section 5, we give a measure of 
the overlap in terms of the multiplicity of a Kakeya set. With the system con-
structed in Section 5, we are able to explain the reason that the Besicovitch set 
can achieve an arbitrary small area. After that, as a conjecture, we give some 
constraint under which a Kakeya set might not able to achieve a arbitrary small 
area and as a consequence, the deltoid become the optimal solution of the Ka-
keya problem. In Section 6, we provide the recent result and algebraic analog of 
the Kakeya problem under finite field context. One of the most famous results is 
the size of finite field Kakeya conjecture which has been proved in Divr [4]. Also, 
some other derivatives discussed in Pugh [5] and Furtner [6] are also included. 
The summary of this paper is in Section 7.  

2. Some Examples of Kakeya Sets 
2.1. Circle 

Details. Rotate a unit needle centered at its midpoint for 180˚, forming a circle 
(see Figure 1).  

Area calculation. Let the length of the needle be 1. The area of the circle is 
21 ππ 0.785

2 4iS  = = = 
 

.  

2.2. Curved Edge Triangle 

Details. Combine three identical 60˚ sectors together to form a convex triangle. 
The edges of the sectors form an equilateral triangle. The needle starts from an 
edge of the triangle, then rotates 60˚ for three times in order to reverse itself (see 
Figure 2).  

Area calculation. Let the length of the needle be 1, so the length of the side of  

each sector 1. The area of each sector is π
6iS = , where i = 1, 2, 3. The area of 

inner triangle is 3
4

S ′ = . The total area of the convex triangle is  

π 3 π2 0.705
6 4 6

S
 

= − + =  
 

. 

2.3. Equilateral Triangle 

Details. Combine three identical 60˚ sectors together to form an equilateral tri-
angle. The needle starts from one side of the triangle with one end of needle at a 
vertex of the triangle, rotates to another side of the triangle, then slides a little to 
the another vertex of the triangle. Repeat the process three times. Then, the 
needle reverses itself (see Figure 3).  

Area calculation. Assume the length of the needle be 1, so the height of the 

equilateral triangle equals to 1. The area of the triangle is 1 0.577
3

S = = .  
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Figure 1. 

 

 
Figure 2. 

 

 
Figure 3. 

2.4. Sunshape 

Details. Since both the equilateral triangle and the convex triangle are both 
composed of three identical sectors with 60˚ (see Figure 4), which can construct 
a semicircle without overlapping. Then, we can cut the semicircle into smaller 
sectors and construct them to a smaller figure. For example, the figure composed 
of seven sectors is similar to the seven-point star except the seven small sectors 
between the outer triangles (see Figure 5).  

Area calculation. Since the figure was composed of the a n-point star and n 
sectors, divide the area into two parts for calculation. Let the angle of half of the  

outer triangles be θ , then 2π
2 1n

θ =
+

. Then make an angle bisector from one of  

the vertex A to intersect the n-point star with point B, and intersect the arc of 
the sector with point C. Let the length of AB be l (see Figure 6). Since the calcu-
lation of small sector is complicated, make a line tangent to the arc of the sector 
at point C to form a small triangle. Let the length of the needle be 1, then 

1AC = , 1BC l= − . The area S of the whole figure is  

( )
( )

( )
( )

( ) ( )
2 2

22
2

sin sin
1 1 tan 3

sin 2 sin 2
S n l n l

θ θ
θ

θ θ
 

= ⋅ ⋅ ⋅ − + ⋅ − ⋅  
 

 

https://doi.org/10.4236/apm.2019.92006


R. C. Tao et al. 
 

 

DOI: 10.4236/apm.2019.92006 82 Advances in Pure Mathematics 
 

 
Figure 4. 

 

 
Figure 5. 

 

 
Figure 6. 

 
Then the area of figure with five sectors is  

( )
( ) ( ) ( )( )22 3 3 5 5 20 5 1 10 5 1

4 5 5

l l
S l

+ − + + +
=

−
 

Then the minimum area of the figure with five sectors is 0.542 when l = 0.921.  
When the semicircle is cut into n pieces, it can achieve its minimum area. 

When n goes to ∞ , θ  goes to 0. The area of the shape is  

( )223 3π π 1
16 2

S l l= + −  

The minimum area of this figure is 0.524 when 8
9

l = .  

2.5. Deltoid 

Details. Historically, deltoid was considered to be the optimal solution of the 
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Kakeya problem. One can intuitively understand the formation of a deltoid in 
[7]. It’s also easy to see how it is qualified for a Kakeya set: the needle starts from 
the middle of the deltoid which one of the ends is at a vertex of the deltoid and 
another end is at the middle point of the side. The needle rotates along and 
keeps tangent to the side. The same process repeats three times. The needle re-
verses itself (see Figure 7).  

Area calculation. Build an x-axis and a y-axis. The function of deltoid curve 
can be presented on the coordinate which is 

( ) ( ) ( )
cos cos

R r t
x t R r t r

r
− 

= − +  
 

 

( ) ( ) ( )
sin sin

R r t
y t R r t r

r
− 

= − −  
 

 

where R represents the radius of the large circle which is 3
2

, and r represents 

the radius of the rolling circle which is 1
2

. Take the data into the function and 

then we can calculate the area S:  

( )( )
3π

2 2 22
3π
2

3π
23 3

3π
2

1d sin 2 2sin cos 4sin cos 2sin cos
8

1 1 1 2 4 1 πsin 4 sin cos cos 2
8 2 8 3 3 2 8

S y x t t t t t t t

t t t t t

−

−

= = + − −

 = − + + + = 
 

∫ ∫
 

3. Besicovitch Set 
3.1. Translation between Parallel Line 

To deal with the Kakeya problem, the trick named Pàl joins is established to 
achieve the minimum rotating area.  

Given two parallel lines 1l , 2l , Let 1x  be any point in 1l , and 2x  be a 
point in 2l . Connect the two points and name the line across 1x , 2x  as abl . 
Let the angle between abl  and 1l  (or 2l ) be θ . Assume that the original po-
sition of the unit segment is in 1l . Move that unit segment such that one of its 
endpoint reaches 1x . Then rotate the segment to coincide with abl , and slide to 

2x . Finally, rotate the unit segment to 2l . Since the area cost depends on θ , 
when the theta becomes extremely small, the unit line segment can “jump” from 

1l  to 2l  cost a very small area (see Figure 8). The following lemma is the proof 
of this strategy.  

1 Lemma. Let 1l , 2l  be parallel lines. 0∀ > , ∃  a compact set E s.t. 
E <  , in which any unit line segment can be moved continuously from 1l  to 

2l .  
Proof. Let d be the distance between 1l  and 2l  and d ′  be the distance be-

tween the projection of 1x  onto 2l  and 2x . The angle which between abl  
and 1l , 2l  is θ . Thus  
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Figure 7. 

 

 
Figure 8. 

 

tan
dd
θ

′ =  

0∀ > , because θ  can be arbitrarily small,  

tan π
dd ′ >


 

Thus  

1tan πd
d

θ −= <
′

  

The congruent sectors between abl  and 1l , 2l  are the swept areas that are 
not negligible. Let M represents the area that the segment travels as it moves 
along the straight lines. Let 1S , 2S  be the sectors between abl  and 1l , 2l   

with unit radius. Take 1 2E M S S=   . M can be arbitrary small and 1S , 2 2
S <

 , 

so E <  .                                                          

3.2. Besicovitch Sets 

The lemma above implies the possibility to construct a compact set which is Le-
besgue measure zero and contains unit line segments in every direction. There 
are two methods to construct the Besicovitch set which satisfies the conditions.  

Method 1. First, we show the original version Besicovitch set which has been 
simplified to be the Perron tree.  

2 Lemma. Given a triangle T with height h and bottom length 2b (see Figure 
9), divide it through the midline into two triangles 1T , 2T  with same bottom 
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length b (see Figure 10). Slide 1T , 2T  along the bottom line at a contrary di-
rection such that the overlapped length of their bottom is ( )2 1 bα− , where  
1 1
2

α≤ ≤ . Let the area of T be T . The area S of this new figure, containing  

two small triangles 1A , 2A  above and a triangle 1T , which is similar to T, at 
the base (see Figure 11) is  

( )( )22 2 1S Tα α= + −  

Proof. The bottom side length of 1T  is 2 bα . So  
2

1T Tα=  

The line, parallel to the bottom side and across the vertex of 1T , divides 1A , 2A  
into four triangles 11A , 1 2A , 21A , 2 2A  (see Figure10). 11A  is congruent to 

2 2A , and 1 2A  is congruent to 21A . The bottom length of them is ( )1 bα−  
and the height is ( )1 hα− . Thus the area of 1A  and 2A  is  

( )1 2 1A A Tα= = −  

Thus the total area of 1T  is  

( )( )22
1 2 1 2 1S A A T Tα α= + + = + −                 

Based on this construction technique and the lemma above, we can construct 
the Perron tree as follows:  

Given a triangle with height 1 (see Figure 12), divide the bottom of 2n  equal 
pieces and get 2n  triangles (see Figure 13).  

Step 1, move the adjacent triangles 2 1iT − , 2iT  ( 11 2ni −≤ ≤ ) with the same 
technique and get 12n−  figures called 1

iS  (see Figure 14 & Figure 15). The top 
two small triangles are called 1

2 1iA − , 1
2iA  and basal triangle is called 1

iT  (see 
Figure 16). One side of 2 1iT −  is parallel and equal to the other side of 2iT , so 

1
iS  is translated such that 1

iT  forms a triangle called 1T  which is similar to T.  
Step 2, move the adjacent figures 1

2 1iS − , 1
2iS  ( 21 2ni −≤ ≤ ) to form 2

iS  and 
name the basal triangle as 2

iT  (see Figure 17 & Figure 18). Translate 1
iS  to let 

1
iT  form a triangle which is similar to T called 2T .  
  
Step r ( 2 r n≤ ≤ ), move the adjacent figures 1

2 1
r
iS −
− , 1

2
r
iS −  (1 2n ri −≤ ≤ ) to 

form r
iS . and name the basal triangle as r

iT . Translate r
iS  to let r

iT  form a 
triangle named rT  which is similar to T (see Figure 19).  
  
In the final step, we can obtain a single figure with 2n  small triangles above 

and one basal triangle nT . This is the Perron tree (see Figure 20).  
3 Theorem. The measure of the Perron tree can be arbitrary small.  
Proof. In the first step, from lemma() we have  

( )( )21 2 12 1i iS Tα α= + −  

From the translation of 1
iS  we have  

https://doi.org/10.4236/apm.2019.92006


R. C. Tao et al. 
 

 

DOI: 10.4236/apm.2019.92006 86 Advances in Pure Mathematics 
 

 
Figure 9. 

 

 
Figure 10. 

 

 
Figure 11. 

 

 
Figure 12. 

 

 
Figure 13. 
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Figure 14. 

 

 
Figure 15. 

 

 
Figure 16. 

 

 
Figure 17. 

 

 
Figure 18. 
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Figure 19. 

 

 
Figure 20. 

 
1 2T Tα=  

Because there are some overlapped parts,  

( )( )
12 21 2

1
2 1

n

i
i

S Tα α
−

=

≤ + −∑  

In the second step, we have  
2 4T Tα=  

( ) ( )( )
22 2 22 4 2

1
2 1 2 1

n

i
i

S Tα α α α
−

=

≤ + − + −∑  

  
In the r-th step ( 2 r n≤ ≤ ), we have  

 ( )
2 122 2

1 1
2 1

n r r
r r i
i

i i
S Tα α α

− −

= =

 ≤ + − 
 

∑ ∑  

  
In the final step, for the area S of the single figure,  

( ) ( )

( ) ( )

( )( )

12 22 2 2 2

1 1

2
2 2

2

2

2 1 2 1

2 1 2 1
11

2 1

n
n i n i

i i

n n

n

S T T

T T

T M

α α α α α α

α α
α α

αα

α α

− ∞

= =

   ≤ + − ≤ + −   
   
 − − 
 = + = +   +−   

≤ + − =

∑ ∑
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when 1α →  and nT →∞ , 0∀ > , M <  . Thus S can be arbitrary small.   
Method 2. The other attempt of constructing such set is simpler in a tricky 

way.  
Given a triangle T with vertex θ  and bottom length b (see Figure 21), cut 

the triangle from its angle bisector into two pieces marked as 11A , 11B  (see 
Figure 22).  

Move the two pieces along the bottom line at the opposite direction such that 
the overlapped length at the bottom is ( )1 bα− , where 0 1α≤ ≤ . Let the new 
figure be set 1C . The basal triangle similar to T is named as T ′ . Thus the bot-
tom length of T ′  is bα . Let the vertex of triangle 11A  be 11a , and the vertex  

of triangle 11B  be 11b . The angles of those two vertex are both 
2
θ  (see Figure 

23).  
Extend the sides of 11A  to points 21a , 22a  such that the distances between 

21a , 22a  and 11a  are 1. Let two lines pass the point 21a  and 22a  and be pa-
rallel to the angle bisector of 11A  then we can obtain two small triangles named 

21A , 22A . Repeat the steps above for 11B  and get other two triangles 21B , 22B .  

We call the small triangle “horn”. The apex angles of those four triangles are 
4
θ . 

Set { }2 21 22 21 22, , ,C A A B B=  (see Figure 24).  

Extend the side of 21A , 22A , 21B , 22B  and get eight smaller “horns”, 
named 31A , 32A , 33A , 34A , 31B , 32B , 33B , 34B . The set contains them called 

3C  (see Figure 25).  
Continually repeat the manipulations above, we can get a set E like a “tree”. 

n∀ ∈ , nC  contains 2n  “horns”, whose apex corners are 
2n

θ .  

4 Lemma. n∀ ∈ , 1n ≠ , , , ,ni nj nr ns nA A B B C∀ ∈ , where 1, , , 1, 2ni j r s − ∈    
and i j≠ , r s≠ , ni nj nr nsA A B B≅ ≅ ≅ .  

Proof. For each triangle in nC , because its bottom is parallel to the angle bi-
sector of the corresponding triangle in 1nC − , it must be an isosceles triangle  

with basal angle 
2n

θ  and the lengths of the isosceles sides are 1 (see Figure 26). 

Also, because the third angle of them are 1π
2n

θ
−− , every triangle in nC  satisfies  

the condition of the congruent theorem “ASA”. Thus, every triangle in nC  is 
congruent.                                                         

5 Lemma. n∀ ∈ , 1n ≠ , assume the area of nC  is nc , then 2nc θ< . 
Proof. For each “horn” in nC , the area of it is less than the area sum of two 

sectors with radius 1 and angle 
2n

θ . Therefore, 2 2 2
2

n
n nc θ θ < = 

 
.         

Assume that the area of the whole overlapped graph of 11A , 11B  is 1c , 
which is a constant. So, for the total area of the “tree”,  

( )1 1 1
2 2

2 2 1
n n

n
i i

c c c c c nθ θ
= =

= + < + = + −∑ ∑ .              
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Figure 21. 

 

 
Figure 22. 

 

 
Figure 23. 

 

 
Figure 24. 
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Figure 25. 

 

 
Figure 26. 

 
Let ( ) ( ){ }min , , ,ni ni nj njh d a x d b y=  ( 11 , 2ni j −≤ ≤ ), where nia , nib  are the 

vertexes of the triangles in nC  satisfies that the segment which connected itself 
and its projection point is in the “tree”, and nix , njy  are the projection points. For 
the chosen vertex P, the extension cord of its adjacent side which is length 1 insects 
with the bottom at Q such that ( ) ( ), 1d P Q n a= − + , where 0a > . Let the angle 
between the extension cord and the bottom be α . Thus, ( )1 sinh n a α= − +    
(see Figure 27).  

Compress the whole “tree” proportionally to obtain a new set E′  which is 
similar to the previous set E and h becomes h′ , where 1h′ = . Let the basal tri-
angle be T ′′ . After the compression, for the whole area c′ ,  

( )

2

2 2

1

1 sin

c h
c h n a α

′ ′
= =

− +  
 

( )
( )

( )
1

2 2

2 1

1 sin 1 sin

c ncc M
a n a n

θ

α α

+ −
′ = ≤ =

+ − + −      
 

( )
( ) ( )

1
2 2

2 1 2lim lim lim 0
2sin 11 sinn n n

c n
M

a na n

θ
αα→∞ →∞ →∞

+ −
= = =

+ −+ −  
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Figure 27. 

 
Therefore, E′  achieves the arbitrary small area.  
6 Lemma. E′  contains a unit line segment in every direction in θ .  
Proof. Assume that after compressing, nC  becomes nC′ . Because E′  is 

similar to E, nC′  is similar to C. For set E′ , ∀  set nC′ , the sum of the apex is 
θ . Fix one endpoint of the unit line segment at nia  or njb , where 11 , 2ni j −≤ ≤ . 
Assume the angle between the unit segment and the left side of T ′′  be β  (see 
Figure 28).  

First, we prove that every [ ]0,β θ∈  can be found in E′ . Note that every 
adjacent triangle in nC  has a parallel and equal side. Let bjI  = {β: β can be 
taken when unit segment rotates inside njB } and aiI  = {β: β can be taken when 
unit segment rotates inside niA }. Then we have  

( ) ( )
1

1 1
, , , , 0,

2 2 2 2bj b bnn n n n

j njI I I
θ θθ θθ θ θ θ θ

− −    = − − = − = −        
 

( ) ( )
1

1 1
, , , , 0,

2 2 2 22 2 2 2ai a ann n n n

i niI I I
θ θθ θ θ θ θ θθ

− −    = − − = − = −        
 

Therefore,  

[ ] ( ) ( )0, ai bjI Iθ ⊂     

Then, we prove that E′  contain a unit segment every direction in θ .  
Because h is the minimum distance from the apex to the bottom, the unit 

segment can reach the bottom only when the endpoint is P′  (corresponding to 
P). Thus the unit segment can be contained in every direction in θ  in set E′ .   

This lemma indicates that we can rotate the unit segment for every value in θ  
with the method of Pàl joins. The following is the specific manipulation.  

Without the loss of generality, let the unit segment star at the left side. First  

use the parallel lemma to “jump” to the 2-nd triangle, rotate 
2n

θ , and then “jump”  

to 3-rd triangle, continually operate and then the unit segment can arrive the 
right side (see Figure 29). 
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Figure 28. 

 

 
Figure 29. 

 
The difference between Kakeya set and Besicovitch set is that Kakeya set per-

mits movement. The detailed definition of movement will be discussed in Sec-
tion 5.  

Method 3. Instead of cutting triangle to form a Besicovitch sets, cutting sector 
will reduce the waste of cutting triangle (see Figure 30).  

Inscribe a sector with the radius the same as the height of the isosceles trian-
gle. Since when rotating the needle in the Besicovitch sets, the needle actually 
only uses the area of sectors without using the whole area of the triangle. So, 
there are wastes of the areas in using the triangle Besicovitch sets. 

Assume a big triangle with the height of 1 is cut into 2n  pieces, and T is the 
set of all small triangles. Then, inscribe a sector with the radius the same as the 
height of the triangle. Then, cut the sectors into 2n  pieces, such that each small 
piece of the sector is contained in each small triangle. Assume S is the set of all 
small sectors. So, S T⊂ .  

Construct a triangle Besicovitch set, and then take out all the area of \T S  to 
form a sectorial Besicovitch set. Since the areas of the triangle Besicovitch set 
equals to   and S T⊂ , the area of the sectorial Besicovitch set less than   
(see Figures 31-33).  
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Figure 30. 

 

 
Figure 31. 

 

 
Figure 32. 

 

 
Figure 33. 

3.3. The Origin of Besicovitch Set 

Besicovitch noticed that for a Riemann integrable function f defined on the real 
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plane 2 , the existence of ( ), d df x y x y∫∫  does not always imply the existence 
of ( ), d df x y x y  ∫ ∫ . For example, let ( ), 1f x y =  if x∈ , 0y = , and 
( ), 0f x y =  otherwise. This function is zero except on a single line. Therefore, 

the discontinuity points comprise a planar zero set, and thus it is Riemann in-
tegrable on the plane. However, it is not Riemann integrable on the slice.  

For the case above, a simple manipulation of rotating the coordinate would 
transform the function into a Riemann integrable function that could be inte-
grated by iterated integrals. Besicovitch wondered if there exists a Riemann in-
tegrable function f defined on the plane which is free from the choice of ortho-
gonal coordinate axes, such that the iterated integral ( ), d df x y x y  ∫ ∫  cannot 
substitute the Riemann integral ( ), d df x y x y∫∫  for all possible linear coordi-
nate systems.  

He found a counterexample by constructing a compact zero set that contains a 
unit line segment in every direction, known as the Besicovitch set. The characte-
ristic function Bχ  is Riemann integrable since the set of discontinuity points is 
a zero set in plane.  

For example, let B = Besicovitch set and let ( ) ( )A = × ×    , A Bf χ=


. 
We can translate B in the y-direction so that some horizontal segments 0 Bσ ∈  
have rational y-coordinates 0y . Thus 1χ × =

 

 on 0σ  and ( ) ( )0,f x y xχ=  , 
which is not Riemann integrable as a function of x. Since A B B⊂ , we have 
A B  is a zero set, therefore f is Riemann integrable on the plane. Now, let 
( ),ξ η  be a new set of orthogonal coordinates on the plane.  

1˚. The ξ-axis is parallel to the x-axis. The segment 0σ  is contained in B and 
parallel to the ξ-axis, but ( )0, df x y x∫  does not exist (see Figure 34).  

2˚. The ξ-axis is not parallel to the x-axis. The property of the Besicovitch set 
implies that B contains a segment: ( ){ }0, : & 1σ ξ η η η ξ= = ≤  that is parallel 
to the ξ-axis. Notice that A σ  is dense in σ . The discontinuity points of the 
single variable function ( )0,f ξ η  would be the whole segment σ , which is not 
a zero set. Thus, ( )0,f ξ η  is not Riemann integrable (see Figure 35).  

4. Simply Connected 

We construct a simple connected Kakeya set with the 4 following steps. It is 
contained in a circle of radius 1, and its area can be arbitrarily close to 0 ( <  ). 

Step 1. We start with a simple construction. Let Γ  be a fixed unit circle and 
Π  be a regular polygon concentric with Γ , having sides of a large odd num-
ber Q. The area of Π  can be arbitrarily small as long as the radius of its cir-
cumcircle is small enough (see Figure 36). 

Lem. Take a vertex of Π , denoted as C. Connect the longest diagonals from 
C, denoted as 1CC  and 2CC  (Since Q is an odd number, there are two longest 
diagonals). Extend 1C C  and 2C C  and they intersect with Γ  at A and B re-
spectively. Up to now, we can slide or rotate a unit segment from 1C A  to 2C B  
continuously. Conduct the same operation to every vertex of Π , we get a 
star-shape figure, and it is a Kakeya set. We denote triangle 1 2CC C  as ∆ , and 
the triangle outside the polygon as J. Denote ( )0K J= ∆ . 
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Figure 34. 

 

 
Figure 35. 

 

 
Figure 36. 

 
Now consider the area of Π  and those triangles. The area of Π , according 

to the previous discussion, can be arbitrarily close to 0. The sum of those trian-
gles, however, will be arbitrarily close to π 2  as long as Q is large enough.  

(The sum of area of triangles is close to 1 1 1 π 2
2 π

Q Q⋅ ⋅ ⋅ ⋅ = ). 

Step 2. In this part, we are going to improve ( )0K  to ( )1K , which consists of 
Tree and Joins (see Figure 37). 
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Figure 37. 

 
Tree. Tree is improved from J, lies on the right side of 0x = . We put the 
( )0K  into plane, between two lines 0x =  and 1x = . The common vertex of 

∆  and J is on the line x δ= . We have 1rδ + = . Denote ∆  as triangle 
CA B′ ′ , where vertex A′  and A′  are on the line { 0x = . Extend A C′  and 
B C′ , they intersect the line 1x =  at points A and B respectively.  

Choose distinct points on segment A B′ ′  in descending order:  

0 1 1, , , mC A C C B+′ ′= = .  

Choose distinct points on segment AB in ascending order:  

0 1 2, , , , mV A V V V B= = .  

The tree is the union of 1m +  triangles: 1i i iC V C +∆ , 0,1, ,i m=  . 
Joins. Joins lie on the left side of 0x = . For every iC , extend 1i iV C−  and 

i iV C , intersecting the line x r= −  at iA  and iB  respectively. Then we get a 
triangle i i i iJ C A B= ∆ . Joins are the union of m triangles 1, , mJ J . 

Denote ( )1K Tree Joins=  . Now we consider the area of ( )1K . Denote 

JS a=  (S means area), 
iJ iS a= , then  

2
1

1 1 1
2 2 2i i i i ia A B r r V V r r AB ra−= ⋅ = ⋅ ⋅ ⋅ = ⋅ =∑ .  

In conclusion, the area of Joins is less than the area of J after this improvement 
(see Figure 38). 

Step 3. In this part, we make further improvement of the tree, and prove that 
the area of tree can be arbitrarily close to zero. 

First, we put a triangle ABC∆  between the line 0x =  and x h′= , one side 
of which (denoted as AB) is on the line 0x = . AB σ= . Extend AC and BC, 
intersecting the line x h′′=  at 0V  and 1V  respectively ( h h′′ ′> ). The mid-
point of AB is M. Connect 0V M  and 1V M , intersecting AC and BC at 1D  
and 0D  respectively. Shadow the triangle 1 1D CV∆  and 0 0D CV∆ , and the 
shadow area is the new additional area. We now calculate the shadow area (see 
Figure 39).  

( ) ( )2 2
1
2 2Shadow

h h h h
S

h h h
σ σ

′′ ′ ′′ ′− −
= ⋅ ⋅ <

′′ ′ ′−
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Figure 38. 

 

 
Figure 39. 

 
Now divide the space between x δ=  and 1x =  into p equal parts. Take  

r i
p

δ + ⋅  and ( )1r i
p

δ + ⋅ +  as h′  and h′′ , employ the improvement above  

for p times (Let 0,1, , 1i p= − ). The total area of shadow area is no more than  

( ) ( )2 2 21 1

0 0

p p

i i

r p r p r
i r p p

σσ σ
δ δ δ

− −

= =

⋅ < ⋅ =
+ ⋅∑ ∑ . Therefore, 0ShadowS →  as p →∞  (see 

Figure 40).  
Step 4. Consider every triangle i i iA B C∆  in the Joins of ( )1K . Denote 

i i iA B C iS a∆ =  Extend i iAC  and i iB C , intersecting the line x δ=  at iA′  and 

iB′  respectively. Let i i iC A B′ ′∆  be ∆  in ( )0K , i i iA B C∆  be J in ( )0K . Then we 
make improvement following the Step 2 and Step 3, constructing a small “Tree 
and Joins”. The total area of new joins is no more less than ira . Therefore, if we 
denote the graph after this improvement as ( )2K , JoinsS  of ( )2K  is less than 

2r a . Take improvements following the above steps, we can get ( )NK  with 
N

JoinsS r a<  and TreeS <   (arbitrarily small). In conclusion, the area outside 
the original triangle ∆  can be arbitrarily close to zero. So we construct a Ka-
keya set with arbitrarily small area. 
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Figure 40. 

5. Methodology 

The most essential intuition of the Besicovitch set is to cut a basic figure (e.g. a 1
6

  

disc) into different pieces and overlap the pieces by conducting parallel tech-
nique. In general, we can properly break a Kakeya set into 2 pieces such that a 
unit line segment can move in each subset. Translating one subset such that it is 
overlapped on another, generating a new set. After conducting Pal-join trick, it’s 
obvious that a unit line segment can also turn around in the new set, while the 
overlapping area indicates that the new Kakeya set has a smaller area. Not all 
Kakeya sets can reduce area by the process. One example is the deltoid curve.  

How to define the extent to which a Kakeya set is overlapped? Given a Kakeya 
set, can we turn it into a set that has no overlapped area? Is there any law that 
dominates the area of Kakeya set? In order to analyze the question above, proba-
bly we need to reconsider the Kakeya set problem in a new way.  

Most of our discussions are under the assumption that the slope angle of the 
segment monotonically increases from 0 to π as the segment turns around in the 
Kakeya set. The benefit is obvious, since a given slope angle corresponds to a 
unique position of the segment. The constraint of monotone condition is so 
strong that it immediately rules out the existence of Pal-joins, which is an essen-
tial part of the Besicovitch set shown previously. In an example constructed by 
Cunningham, a monotone (but not strictly) and simply connected Kakeya set 
has been proved to exist, since a segment can slide along its direction for any 
length without costing area. This example will also be ruled out since we require 
strictly increasing. One natural question is: Is there any possibility that there still 
exists a Kakeya set with arbitrary small area?  

In fact, the following definition and theorem can be extended to the case in 
which the motion of the segment is not monotone. Due to the limitation of 
length, they are unable to present.  
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Intuitively, if the area of a Kakeya set tends to zero during the construction, 
almost every point in the set would be overlapped infinitely often, which means: 
given a point in Kakeya set, when the needle turns around, it would sweep 
through the point infinitely many times. To formalize the above assertion, we 
need to specify some definitions.  

5.1. Definition: Kakeya Dynamic  

A Kakeya dynamic is a mapping from the interval to real plane: 

[ ] 2: 0,πφ →   

( ) ( ) ( )( ), ,t x t y t tθ→  

Subject to the conditions  
1) ( )x t , ( )x t  and ( )x t  are 1C .  
2) ( ) ( )0 0 0x y= =  and ( ) ( )π 1, π 0x y= = .  
The meaning of the above definition is: the left endpoint of a unit line seg-

ment begins at the origin at the beginning. The position of the endpoint is 
( ) ( )( ),x t y t  given the moving time t. The points swept by the segment can be 

expressed as: ( ) ( ) ( ) ( )( ) [ ]cos , sin , 0,1x t u y t u uθ θ+ + ∈ . Since a Kakeya dy-
namic is not necessarily monotone, ( )tθ  may not be one-one. If it is monotone, 
it can be simplified to take the following expression.  

5.2. Definition: Monotone Kakeya Dynamic  

A monotone Kakeya dynamic is a mapping from the interval to the real plane:  

[ ] 2: 0,πφ →   

( ) ( )( ),x yθ θ θ→  

Subject to the conditions  
1) ( )x θ  and ( )y θ  are 1C .  
2) ( ) ( )0 0 0x y= =  and ( ) ( )π 1, π 0x y= = .  
The meaning turns to be: the left endpoint of a unit line segment begins at the 

origin with zero slope angle. The position of the endpoint is ( ) ( )( ),x yθ θ  giv-
en the slope angle θ . Each point in the Kakeya set takes the form:  

( ) ( ) ( ) ( )( )cos , sinx t y tθ θ θ θ+ + .  

Since the motion is monotone, each slope angle corresponds to unique segment. 
Thus the above dynamic is well defined.  

Since a Kakeya set permits a needle turning around inside it, every Kakeya set 
corresponds to a dynamic though the dynamic may not be unique.  

The above definition enables us study the extent to which a Kakeya set is 
overlapped. We will soon define the multiplicity to account for it systematically.  

5.3. Definition: Dynamic Track  

( ) ( ) ( ) ( )( ) [ ]{ } 3cos , sin , : 0,πx t y tθ θ θ θ θ θΩ = + + ∈ ⊂   
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The track of the dynamic lifts the motion process into 3  space. Through 
defining a projection mapping, we can deal with the multiplicity of a point in 
Kakeya set.  

5.4. Definition: Projection Mapping  

A projection mapping is the inverse of the dynamic which sends each point in 
dynamic track back to the Kakeya set.  

: KΠ Ω→  

( ) ( )( ) ( ) ( )( ), , ,x y x yθ θ θ θ θ→  

The existence of overlapping guarantees that the projection mapping is an 
onto but not one-one map. To some extent, it resembles an identification map 
from Ω  to K. Now we can precisely measure the extent to which a Kakeya set 
is overlapped by examining the cardinality of the pre-image of each point in the 
Kakeya set.  

5.5. Definition: Multiplicity  

The multiplicity is a mapping from a Kakeya set to the natural numbers:  

: Kλ →   

( ) ( )1#x x xλ−→ Π =  

The multiplicity of a point is defined to be the cardinality of the pre-image of 
it with respect to the projection mapping. A highly overlapped Kakeya set auto-
matically manifests relatively high multiplicity for each point in it. The area of 
the set would also become relatively smaller. To precisely express the above 
thoughts, we define a set that corresponds to a given Kakeya set. The set is 
named as “unfolded set”, the multiplicity of any point in which is one.  

5.6. Definition: Unfolded Set  

The unfolded set of a Kakeya dynamic is the set expressed in polar coordinates:  

( )( ) [ ] [ ]{ } 2, : 0,1 , 0,πU M u uθ θ θ= + ∈ ∈ ⊂   

where  

( ) ( )
( )

cos
sin

x
M

y
θ θ

θ
θ θ

=




 

Decompose the motion of the segment into the sliding along direction of the 
segment and the rotation at the center of a point which lies on the segment or on 
its extension. Then ( )M θ  is exactly the component of the revolution. The un-
folded set is aimed to wipe out the sliding motion of the segment and keep the 
rotation only. We present the example of the deltoid to illustrate the fact pre-
cisely (see Figure 41 & Figure 42).  

The projection map can induce an onto map from unfolded set to the original 
Kakeya set.  
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Figure 41. 

 

 
Figure 42. 

 

:F U K→  

( )( ) ( ) ( ) ( ) ( )( ), sin , cosM u x u y uθ θ θ θ θ θ+ → + +  

The left side is polar coordinates while the right side takes the form of ortho-
gonal coordinates. F is a 1C  map from U to K.  

It would be an immediate result that for any x K∈ , ( ) ( )1# F x xλ− = .  
In order to prove our main theorem, we need some lemmas.  
1 Lemma. Given a partition of a Kakeya set K:  

{ }: ,1i iP S S K i n= ⊂ ≤ ≤  

Suppose each iS  is simply connected area and the map between K and the 
unfolded set U induced by projection map is F. Then  

( ){ }1 : ,1i iP F S S P i n−′ = ∈ ≤ ≤  

is a partition of U.  
Proof. To see P′  is a partition, we need to show that P′  is a cover of U and 

elements in P′  are disjoint, which is equivalent to: for each p U∈ , there ex-
ists unique iS  such that ( )1

ip F S−∈ . For each q U∈ , since P is a partition of 
K, there exists S P∈  such that ( )F q S∈ , it’s obvious that q is contained in 

( )1
iF s− . Thus P′  is a covering of U. Now suppose there exist ( )1

1F S−  and 
( )1

2F S−  that cover a point p U∈ . We immediately have ( ) 1 2F p S S∈ 
 

which contradicts that { }iS  is a partition.                               
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2 Lemma. There is a closed simply connected set { } 2A ⊂  . Suppose f is a ho-
meomorphism from A to B, then ( ){ }, :B A x f x x A− ⊂ ∈∂ , where ( ),x f x  
means the line segment generated by endpoint: x and ( )f x .  

Proof. If B A−  is empty, there is no point in B A− . So we only consider the 
case where B A−  is nonempty.  

If p B∈∂ . Since the homeomorphism from A to B induces a homeomor-
phism from A∂  to B∂ , there exists unique preimage of p, denoted by p′ , and 
p A′∈∂ . It’s obvious that ( ),p p f p′ ′∈ .  

Now we suppose that ( )p int B∈ . A is simply connected, f is homeomor-
phism, so B is simply connected and B∂  is a Jordan curve. Moreover, notice 
that p A∉ , so we have: p is encompassed by B∂  while it’s not done by A∂  
(see Figure 43). This drastic difference is the point of the proof.  

Suppose the perimeter of A∂  is l. Fix a point O A∈∂ . A point Q is moving 
along A∂ , which is a closed curve, from the beginning position O until it back 
to that original point. Denote the travelled distance of Q to be x, then the slope 
angle of line PQ would be a continuous function of x, denoting ( )xγ .  

The image ( ) :f Q Q′=  is also going a full round along B∂  as Q travels a 
round along A∂  since f is a homeomorphism. The slope angle of PQ′  is also a 
continuous function of x, denoting ( )xθ . Without loss of generality, we define 
that ( )0 0γ = , which can be done by rotating x axis. Then, according to the 
above fact, we have: ( ) 2πlγ = , and ( ) ( )0 lθ θ= .  

To see how the above definition contributes to the proof, notice that there 
eixsts 0x  such that ( )0 0,p x f x∈  if and only if there exists 0x  such that 
( ) ( ) ( )0 0 2 1 π,x x k kγ θ+ = + ∈  (see Figure 43).  
Since there exists 0k ∈  such that ( ) ( ) [ ]02 1 π 0 0,2πk θ+ − ∈ , we immediate-

ly have: ( ) ( ) ( )00 0 2 1 π 0kγ θ+ − + ≤  and ( ) ( ) ( )02 1 π 0l l kγ θ+ − + ≤ . The ex-
istence theorem of zero point of continuous function claims that there exists 

[ ]0 0,x l∈  such that ( ) ( ) ( )0 0 02 1 πx x kγ θ+ = +  (see Figure 44).            
3 Lemma. There is a closed simply connected set { } 2A ⊂  . Suppose f is a 

homeomorphism from A to B ( 2B ⊂  ). Then B A D⊂  , where 

( ) ( ): f x xD M x−=  , x is boundary point of A.  
Proof. Suppose not, then there exist a point p B∈  such that p A D∉  , 

which also means that p B A∈ − . According to lemma2, there exists 0x A∈∂   
such that ( )0 0,p x f x∈ . Hence it’s obvious that ( ) ( )

0 0 0f x xp M x−∈ .       

4 Lemma. There is a family of closed simply connected measurable set 
{ } 2

nA ⊂   with Hausdorff dimension 2, the boundary of nA  has Hausdorff 
dimension 1. The diameter nd  of nA  tends to 0 as n →∞ . Suppose nf  is a 
sequence of homeomorphisms from nA  to nB  ( 2

nB ⊂  ) such that n nx A∀ ∈ ,  
( )

0n n

n

f x x
d
−

→  as n →∞ . Then 0n n

n

A B
A
−

→  as n →∞ .  

Proof. For each n, Since nf  is onto map, nH := { :
n nx xO O  is ( )n nf x x−

-neighborhood of nx , n nx A∀ ∈ } covers nB . Denote:  

:
nn xD O=   if nx  is boundary point of nA .  
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Figure 43. 

 

 
Figure 44. 

 
According to Lemma 3, n n nB A D⊂  , we have n n nB A D≤ + , i.e. 

n n nA B D− ≥ − .  
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On the other hand, nf  being a homeomorphism implies that nf  is inverti-
ble, hence nG := { :

n nx xO O  is ( )1
n nx f x−− -neighborhood of nx , n nx B∀ ∈ } 

covers nA .  
Similarly, we can denote:  

:
nn xD O′ =   if nx  is boundary point of nB .  

And we have n n nA B D′− ≤ . In one word, n n n nD A B D′− ≤ − ≤ .  

In order to show 0n n

n

A B
A
−

→  as n →∞ , it suffices to show that 0n

n

D
A

→  

as n →∞  and 0n

n

D
A
′
→  as n →∞ .  

Notice that nD  is a cover of the boundary of nA  with open discs. The  

Hausdorff dimension of boundary being 1 implies that n

n

D
d

 tends to a finite 

number as n →∞ . Similarly, we have n

n

D
d
′

 tends to a finite number as n →∞ .  

Also, Notice that the Hausdorff dimension of nA  being 2 implies that 2
n

n

A
d

 

tends to a finite number as n →∞ .  

In conclusion, n

n n

D
A d

 tends to a finite number as n →∞  and n

n n

D
A d

′
 

tends to a finite number as n →∞ , so we have 0n n

n

A B
A
−

→  as n →∞ .   

Under the 1C  setting of the Kakeya dynamic, the following lemma shows 
that the multiplicity of a Kakeya dynamic is a.e. bounded. This finite condition is 
useful. 

5 Lemma. The multiplicity ( )pλ  is almost everywhere bounded in the Ka-
keya set K.  

Proof. Suppose not, then there exists an open neighborhood O K⊂  such 
that x O∀ ∈ , the multiplicity of x, denoting ( )xλ , is infinity. O is open implies 
that ∃  a closed segment ,x y O⊂ . For each point Z on ,x y , there are in-
finite many [ ]0,πiθ ∈  such that their corresponding unit segments go through 
Z. By extending the unit segment and ,x y  to be real line and taking the in-
tersection, we naturally induce a mapping h from [ ]0,π  to   if we give a pa-
rameterization to the line determined by ,x y . Since the intersection of 2 lines 
in plane exists unless they are parallel, the monotone condition implies that the 
mapping h is 1C  continuous except for a point. Denote by [ ],a b  the interval 
corresponding to ,x y  under the parameterization. Then h should satisfy: for 
each [ ],s a b∈ , ( )1f s−  is a infinite set in the interval [ ]0,π , according to Bolza-
no-Weierstrass theorem, there exists a convergent subsequence ( ){ } ( )0iu s u s→  
as a subset of ( )1f s− . The continuity of f implies that ( )( ) ( )( )0if u s f u s→ . 
Since ( )( )if u s s= , we have ( )( )0f u s s=  and ( )( )0 0f u s′ = . We can simply 
denote by ( )0U s  the collection of all such cluster point like ( )0u s .  

https://doi.org/10.4236/apm.2019.92006


R. C. Tao et al. 
 

 

DOI: 10.4236/apm.2019.92006 106 Advances in Pure Mathematics 
 

Next, we claim that for each [ ],s a b∈  there exist a ( ) ( )0 0u s U s∈  and an 
open neighborhood sO  of ( )0u s  such that ( ), ss v U v O∀ ≠ 

 is empty, if 
this property holds, the closed interval [ ]0,π  is covered by a family of uncoun-
table disjoint open sets { } [ ], ,sO s a b∈ , a contradiction.  

Suppose there exist a ( )0 0u s  such that any open neighborhood of ( )0 0u s  in-
tersects with some ( )U v , then we can construct a sequence { } 0is s→  ( )0is s≠  
with ( ) ( )0 0 0iu s u s→  by compressing that open neighborhood. Since for each 

is , ( ) 0if s′ = , f is constant and 0is s= , a contradiction.                  
Lemma 5 claims that for almost every point p K∈  with multiplicity ( )pλ , 

there exist finite segments ( )1 2, , , pl l lλ  containing p. Without loss of generali-
ty, we assume the slope angle of il  is iθ  and i jθ θ>  if i j> . We can ex-
press coordinate of the point p in ( )pλ  ways, i.e.  

( ) ( ) ( ) ( )( )cos , sini i i i i ip x u y uθ θ θ θ= + + .  

Suppose F is the mapping from the unfolded set to the Kakeya set constructed 
previously. ( )1F p−  takes the form of ( )( ) ( ){ }, :1i i iM u i pθ θ λ+ ≤ ≤ , which is 
a collection of ( )pλ  distinct points in U.  

Take a partition of a Kakeya set K:  

{ }: , is simply connected,1i i iP S S K S i n= ⊂ ≤ ≤   

Given that the diameter of kS  is small enough, ( )1F p−  induce ( )pλ  num-
ber of homeomorphism kf  between ks  and a neighborhood of ( )( ),i i iM uθ θ+ : 

iV , with ( )i iF V S= .  
Now we consider a particular homeomorphism, say kf :  

:k k if S V→  

( ) ( ) ( ) ( )( ) ( )( )cos , sin ,i i i i i ix u y u M uθ θ θ θ θ θ+ + → +  

The below figure (Figure 45) shows the pattern of the motion in θ∆  neigh-
borhood, where the velocity vector ( ) ( )( ),x yθ θ   is decomposed into the nor-
mal component and radial component.  

Computation shows that ( )M θ  is the distance between the rotation center 
and the endpoint. Take a point q in kS . Triangle inequality implies that 

( ) ( )2cotkf q q α θ− ≤ ∆ , while the diameter of ( )kS u θ≥ ∆ . The mesh of kS  
is at least: L θ∆ , where L is the distance between q and the rotation center. Thus  
 

 
Figure 45. 
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( )
0k

n

f q q
d

−
→  as 0n → , so we can apply the lemma1, lemma2, lemma3 and 

lemma4 to get theorem 6.  
6 Theorem. The integral of multiplicity on Kakeya set K is equal to the area of 

unfolded set U:  

( ), d d 1d d
K U

x y x y x yλ =∫∫ ∫∫  

Proof. Given a series of partition of Kakeya set K: { }: ,1n i iP S S K i n= ⊂ ≤ ≤  
with mesh tends to 0 as n →∞ .  

The Riemann sum of ( ), d d
K

x y x yλ∫∫  is ( ),i i ii x y sλ∑ . The Riemann sum 
of 1d d

U
x y∫∫  is ( )1

ii F S−∑ . The difference between them is:  
( ) ( ),
1
i ix y

i k ii k S f Sλ
=

−∑ ∑ .  

From the lemma above, 
( )

0i k i

i

S f S

S

−
→  as 0n → . Moreover, ( ),i ix yλ  

is almost everywhere bounded on K, we have 
( ) ( )( ),

0
i i i k i

i

x y S f S

S

λ −
→  as 

n →∞ . So we have 
( ) ( ),
1 0
i ix y

i k ii k

ii

S f S
S

λ
=

−
→

∑∑
∑

 as n →∞ .  

Notice that K is Riemann integrable since ( ) ( ),x yθ θ  are continuously dif-
ferentiable functions. The sum ii S∑  is finite. So  

( ) ( ),
1 0
i ix y

i k ii k

ii

S f S
S

λ
=

−
→

∑∑
∑

  

as n →∞  immediately implies: ( ) ( ),
1 0i ix y

i k ii k S f Sλ
=

− →∑∑  as n →∞ . 
Thus we identify the Riemann sum above.                               

The unfolded set can be regarded as the area swept by a moving unit segment, 
while the segment must intersect with a fixed point during the whole motion 
process. It’s obvious that under such constraint, the minimum area of the unfolded  

set is 1 π
2

, obtained by the disc with diameter of 1. We have the following theo-

rem.  
7 Theorem. Given a monotone Kakeya dynamic, the integral of multiplicity 

on Kakeya set is greater than 1 π
2

.  

( ) 1, d d π
2K

x y x yλ ≥∫∫  

It’s a direct deduction that if the area of a sequence of Kakeya sets tends to 
zero, the multiplicity of points in Kakeya sets must tend to infinity.  

The estimation of multiplicity can fully explain how the Besicovitch set and 
the Cunningham simply connected set achieve an arbitrary small area, they are 
highly overlapped while the trick of the overlapping is not the same. The Besico-
vitch one used Pal-join which can translate the segment at any direction. Ac-
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tually, the motion of the segment also implies that any Pal-join will spoil the 
monotone assumption. In the case of Cunningham, the trick becomes: a line 
segment can slide along its direction which will hold the property of simply 
connected and cost no area at the same time. Again, the motion is not strictly 
monotone if any slide takes place. What would be the solution if we require that 
the dynamic must be monotone? We have the following conjecture.  

Conjecture. The optimal solution is taken by deltoid when we minimize the 
area of strictly monotone Kakeya dynamic. 

6. Derivation of Kakeya Problem 

Similarly, we can ask the minimum measure that allows a disc or something 
more general to turn around in some more general spaces (e.g. n-sphere, real 
projective plane or so). Currently, it has been proved that there exists Kakeya set 
of arbitrary small measure in sphere. The spherical Kakeya problem reads: In-
stead of a plane, the rotation takes place on the surface of a unit sphere and an 
arc of great circle substitutes the needle. Cunningham showed that for the arc 
length a: 0 πa≤ ≤ , the lower bound of Kakeya set area is still 0.  

In the range of dimension theory, it was shown by Davies that, in Euclidean 
spaces, even though Kakeya sets had zero area, they were still necessarily 
two-dimensional, which led to an analogous conjecture in higher dimensions: 
the Hausdorff dimension of a Kakeya set is n dimensional Euclidean space. That 
is the Kakeya conjecture.  

1 Conjecture. A Besicovitch set in n  has Minkowski and Hausdorff di-
mension n.  

In an algebraic field, there is an analogous conjecture. The Kakeya set in a fi-
nite field nF  is a finite point set K such that for any nv F∈ , there exists a 
point nx F∈  such that the whole line: { }:x tv t F+ ∈  is contained in K. the 
Kakeya conjecture in Euclidean space takes the form of the finite field conjec-
ture.  

2 Conjecture. Suppose F is finite field and nE F⊂  is a Kakeya set. Then E 
has cardinality at least n

nc F , where 0nc >  depends only on n.  
The finite field Kakeya conjecture was proved by Zeev Dvir in 2008. The me-

thod is to combine the Kakeya set with a polynomial which vanishes on that Ka-
keya set. The feature of Kakeya set implies that any polynomial of degree at most 

1F −  which vanishes on a Kakeya set E must be the null polynomial. Then, the 
cardinality of a Kakeya set must exceed the dimension of the vector space: 
{ [ ]1, , :nP F x x∈ 

 the degree of P is less than F }, which is 1F n
nC + − .  

7. Summary 

By and large, this thesis summarizes the classical results of the Kakeya needle 
problem. The Kakeya needle problem asks for the minimum area in which a line 
segment can turn around. The first attempt is to search for a solution in a con-
vex set. The minimum convex set turns out to be triangle with height of 1. As for 
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non-convex sets, mathematicians believed that deltoid was the optimal solution 
but it was left unproved until Besicovitch found a Kakeya set of arbitrary small 
area.  

We presented 3 methods in constructing Besicovitch sets. The second con-
struction is simpler in the sense of estimating the area of each “horn”. The last 
one makes some minor changes: the unfolded set changes from a triangle to a 
sector. After the construction, we presented the original intuition of Besicovitch 
sets, which is connected to the existence of iterated integrals in the real plane.  

In 1971, Cunningham provided a simply connected Kakeya set of area less 
than any real number, which broke through the belief that every simply con-
nected Kakeya set had area greater than the Bloom-Schoenberg number. We 
presented the process of constructing a Cunningham Kakeya set but omitted the 
proof of simply connectedness.  

The Methodology part generalized the trick took place in the Besicovitch set. 
First, through paraphrasing the Kakeya problem from a dynamic point of view, 
we defined the multiplicity of a Kakeya set. Then we provided a theorem to ex-
plain the fact that if a Kakeya set can achieve arbitrary small area, the set must be 
highly overlapped. In modern analysis, the concept of multiplicity (not exactly 
the same though) is also used in estimating the bound of Hausdorff dimension 
when mathematicians discuss Kakeya maximal functions. The end of this section 
put forward a conjecture of the constraint under which a deltoid becomes the 
optimal solution of the Kakeya problem.  

There are many forms of the Kakeya needle problem. Many of them were put 
forward in a relatively modern way. The most important unsolved problem may 
be the Kakeya conjecture. The algebraic analogue is known as finite-field Kakeya 
conjecture. The Kakeya conjecture is connected with Fourier analysis, additive 
combinatorics and partial differential equation. 
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