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Abstract 
A lot of methods, such as Jacobian elliptic function analysis, are used to look 
for the explicit exact solution of Duffing differential equation. The key of the 
analysis is to construct quotient trigonometric function, and then nonlinear 
algebraic equation set theory and method are used for the solution of some 
kinds of nonlinear Duffing differential equation. In this paper, the exact solu-
tion of Duffing equation is obtained by using constant variation method, 
making use of the formula to solve cubic equations and general solution of 
the homogeneous equation of Duffing equation with appropriate Constant m 
and function ( )f t . 
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1. Introduction 

The Duffing equation is a non-linear second-order differential equation. The 
equation describes the motion of a damped oscillator with a more complicated 
potential than in simple harmonic motion; in physical terms, it models, for ex-
ample, a spring pendulum whose spring’s stiffness does not exactly obey Hooke’s 
law. It is also an example of a dynamical system that exhibits chaotic behavior.  

Many of the dynamic behavior of mechanical power model can be described 
by a single degree of freedom oscillator [1] [2] [3] [4] [5]. The systems can be 
described by the following equation  

( ) ( , , )x f x g x x t x Rε= + ∈   

Alex (2013) discussed the exact solution of a cubic-quintic Duffing oscillator 
of the form [6] 
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3 5 0x Ax Bx Gx+ + + =  
Alex’s idea is both simple and enlightening, he turn looking for exact solution 

into solving algebraic equations set. Without lose of generally, in this paper, we 
consider the following Duffing equation without external force and damping 

3 0x x x− + =                          (1.1) 

Talay’s solve approach is much complex. He assumes that the Equation (1.1) 
has boundary conditions in the form 

(0) 0x =  and ( ) 0x ±∞ =  

Given (0)x a= , ( ) ( )x t ay t= , where a is an undetermined parameter, the 
Equation (1.1) becomes 

2 3 0y y a y− + =                        (1.2) 

Equation (1.2) satisfies the following boundary conditions  
(0) 1y = , (0) 0y = , ( ) 0y ±∞ =                  (1.3) 

Additionally, Talay assumed that the solution of Equation (1.2) can be ex-
pressed by index Series in the form 

0
1

( ) ( ) ( )mt
m k

k
y t c e y t y t

∞
−

=

= = +∑ ∑  

According to the boundary conditions, he deduces 
2

0 ( ) 2 t ty t e e− −= −  

2 3 4 5 6
1 0 1 2

2 3 4 5 6

4 1 1( ) [ ( )]
5 4 35

5 35 7 35 1( )
64 36 4 64 16

t t t t t t t

t t t t t t

y t e e e e e c e c e

e e e e e e

γ− − − − − −

− − − − − −

= + − + − + +

= − + − + −





 

In the last few years, many scientists work hard to look for exact solutions and 
to develop some efficient procedures. However, what the key of problem is, the 
different type of nonlinear differential equation can only be efficiently solved by 
different corresponding methods. For instant, the Jacobi elliptic function expan-
sion method [7], the exp-function method [8], the F-expansion method [9], the 
tanh method [10], the auxiliary equation method [11], the simplest equation 
method [12], and linearized harmonic balance method [13] are reliable methods 
for obtaining exact solutions of specific types of nonlinear differential equations. 

Keqiang Li (2013) studied the periodic orbits of the modified Duffing diffe-
rential equation [14]. He paid his attention to the existence of multiple periodic 
solutions of asymptotically linear Duffing equations with resonance on the left 
side of the first eigenvalue using index theory and the three-critical-points theo-
rem and obtained a new result. As the function in the right side of his equation 
is zero, how to look for the exact solution of the equation is a significative prob-
lem. Alex (2013) used Jacobi elliptic functions to derive the exact solution of the 
cubic-quintic Duffing oscillator [6]. He also proved that the exact angular fre-
quency of this cubic-quintic Duffing equation is given in terms of the complete 
elliptic integral of the first kind. Vasile (2011) has presented a method for ob-
taining exact solutions for Duffing Equations [15]. Marinca (2011) has presented 
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a method for obtaining exact solutions for Duffing and double-well Duffing eq-
uations [16]. What he used is traditional quotient trigonometric function expan-
sion method, and his solution procedure is similar to the exp-function method. 
However, his result in third section has a distance to reach perfect.  

Exact analytical solutions for a family of autonomous ordinary differential 
equations arising in connection with many important applied problems such as 
a cubic-quintic Duffing oscillator, Helmholtz–Duffing oscillator, and nonlinear 
Schrödinger equation are considered. Recently, some theory and applications are 
found in many contexts, such as, Jiang et al. (2012) presented a new approach 
via the well-known Poincaré-Birkhoff theorem to obtain the existence of period-
ic solutions to impulsive problems, they considered an impulsive Duffing equa-
tion, and then found the possibility of applying a generalized form of the Poin-
caré-Birkhoff theorem due to Ding to construct infinitely many periodic solu-
tions of the impulsive Duffing equation even in a resonance case [17]. Jaume and 
Ana (2015) studied the periodic solutions of a kind of non-autonomous Duffing 
differential equation with forced pendulum. And, they obtained the condition 
for that the non-autonomous Duffing differential system has a periodic solution 
such that it tends to the periodic solution when forced pendulum satisfied with 
some conditions [18]. Gholam and Emmanuel (2015) have provided a set of in-
equalities that helps in finding transformation to obtain solutions to other Duff-
ing equations from a known set of solutions to a related equation in a systematic 
manner [19]. Alexander (2018) has obtained the sufficient and necessary condi-
tions for the existence of a positive periodic solution to a kind of non-autonomous 
Duffing type equation [20]. David and Douglas (2018) perform a complete anal-
ysis of the effect on the asymptotic dynamics of the insertion of delays into a sort 
of unforced Duffing type equation [21].  

One of the most exciting recent advances of nonlinear science has been the 
development of some methods to look for exact solutions of nonlinear differen-
tial equations. It is important that many mathematical models are described by 
nonlinear differential equations and exact solutions are preferable instead of ap-
proximate ones. The aim of this paper is to put forward constant variation me-
thod to derive the exact solution of a Duffing equation of the form (1.1). The 
exact solution of Duffing equation is obtained by solving cubic equations and 
looking for appropriate constant m and function ( )f t . 

2. Constant Variation Method 

In general, the Duffing equation does not admit an exact symbolic solution. 
However, many approximate methods work well: 
 Expansion in a Fourier series will provide an equation of motion to arbitrary 

precision. 
 The cubic term also called the Duffing term can be approximated as small 

and the system treated as a perturbed simple harmonic oscillator. 
 The Jacobi elliptic function expansion method yields a complicated but 

workable solution. 
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 Any of the various numeric methods such as Euler’s method and Runge-Kutta 
can be used. 

In the special case of the undamped and unforced, an exact solution of Duff-
ing equation has been obtained using our constant variation method 

Now, let’s begin at the solution of the homogeneous linear equations. The 
homogeneous linear equations corresponding to Equation (1.1) is  

0x x− =                             (2.1) 

Its general solution is 

1 2
t tx c e c e−= +                          (2.2) 

Assume we have functions 1( )c t  and 2 ( )c t , such that the solution of Equa-
tion (1.1) has the form as 

1 2( ) ( )t tx c t e c t e−= +                        (2.3) 

Taking Equation (2.3) into Equation (1.1), we obtain following differential 
equation  

3
1 2 1 2 1 2( ) ( ) 2( ( ) ( ) ) ( ( ) ( ) ) 0t t t t t tc t e c t e c t e c t e c t e c t e− − −+ + − + + =         (2.4) 

Because functions 1( )c t  and 2 ( )c t  are discretionary, hence, we let 

1 2( ) ( ) ( )c t c t c t= = . 
Then, Equation (2.4) becomes 

3 3( )( ) 2 ( )( ) ( )( ) 0t t t t t tc t e e c t e e c t e e− − −+ + − + + =           (2.5) 

Therefore, we obtain a more compact differential equation form for unknown 
function ( )c t  . 

If we can find an undetermined constant m and an undetermined function
( )f t , such that they satisfy with following equation  

3 2( ) ( ) ( )( )t tf t mc t c t e e−= − +                   (2.6) 

Then, it is possible for us to reduce solving differential Equation (2.5) to 
looking for a couple of undetermined constant m and undetermined function 

( )f t . Our main conclusions as follows. 
Theorem 1. The Equation (2.5) has solutions if only and if the following equ-

ations set have solutions for given constant m and undetermined function ( )f t . 

{
3 2

( ) 2 ( ) ( ) ( )

( )( ) ( ) ( ) 0

t t

t t

t t

e ec t c t mc t f t
e e

c t e e mc t f t

−

−

−

 −
+ + =

+
 + − + =

 

               (2.7) 

Proof: Let ( )( )t tz c t e e−= + , then Equation (2.6) leads to a cubic equation as  
3 ( )( ) 0t tz mz f t e e−− + + =                  (2.8) 

Its solutions can be expressed as  

3
2

3

3
2 2

3

4( )( ) ( )( )
27

2

4( )( ) ( )( )
27

2

t t t t

t t t t

mf t e e f t e e
z

mf t e e f t e e

− −

− −

− + + + −
=

− + − + −
+

            (2.9) 
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Specially, if 0m = , we have the simplest representation as follows 

3 ( )( )t tz f t e e−= − + . 

Notice that Equation (2.7) has denominators in the form as ( )t te e−+ ,so let 
3

4( )
( )t t

kf t
e e−

−
=

+
                      (2.10) 

Applying function (2.10) to equations set (2.7), we get 3 8k k= , it means 
2 2k =  or 0k = . 

On the other hand, we can prove that 3k  is forever equal to 8k when 0m = . 

Actually, if 0m = , then 
3

4( )
( )t t

kf t
e e−

−
=

+
, meanwhile, we have 

( )t t

kz
e e−=
+

 

Let’s make a transformation: ( )( )t tz c t e e−= + , then 

2( )
( )t t

kc t
e e−=
+

 

Applying ( )c t  and its first derivative and second derivative to equations set 
(2.7), we have  

2 2 3

4 3 4

( ) 3( )2 4
( ) ( ) ( )

t t t t t t t t

t t t t t t t t

e e e e e e e e kk k
e e e e e e e e

− − − −

− − − −

+ − − − −
+ ⋅ =

+ + + +
  (2.11) 

Equation (2.11) follows 3 8k k=  immediately. This finishes the proof of 
theorem1.  

We have showed a few representative integer parameters m and functions in 
Table 1.  

In fact, m is not only integer, but it maybe any fractional as well. Some values 
of m and respective function are showed in Table 2. 

3. Applications 

In this section, we shall give some examples to explain our constant variation 
method. 

Example 1. Consider following Duffing equation 
3 0x x ax− + =                         (3.1) 

1) 0a > . Take time transformation atτ =  for Equation (3.1), we have 
2

3
2

1 0d x x x
adτ

− + =  

According to theorem 1, we can easily find a couple of m and ( )f t  (see Ta-

ble 2), for instant, take m = 1/2 and 

1 1
2

1 1
4

12 ( )( ) 2
( )

a a

a a

e ef
e e

τ τ

τ τ
τ

−

−

− −
= − ⋅

+

. In the 

light of theorem 1, one can get the solution of Equation (3.1) at once 
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Table 1. Integer parameter m and function ( )f t . 

m ( )f t  

0 
4

16 2
( )t te e−

−
+

 

1 
2

4

4 ( )2 2
( )

t t

t t

e e
e e

−

−

− −
− ⋅

+
 

2 
2

4

4 2( )
( )

t t

t t

e e
e e

−

−

−
+

 

3 
2

4

4 3( )2 2
( )

t t

t t

e e
e e

−

−

+ −
⋅

+
 

4 
2

4

2 ( )8 2
( )

t t

t t

e e
e e

−

−

+ −
⋅

+
 

5 
2

4

12 5( )2 2
( )

t t

t t

e e
e e

−

−

+ −
⋅

+
 

6 
2

4

8 3( )4 2
( )

t t

t t

e e
e e

−

−

+ −
⋅

+
 

7 
2

4

20 7( )2 2
( )

t t

t t

e e
e e

−

−

+ −
⋅

+
 

8 
2

4

3 ( )16 2
( )

t t

t t

e e
e e

−

−

+ −
⋅

+
 

9 
2

4

28 9( )2 2
( )

t t

t t

e e
e e

−

−

+ −
⋅

+
 

10 
2

4

16 5( )4 2
( )

t t

t t

e e
e e

−

−

+ −
⋅

+
 

11 
2

4

36 11( )2 2
( )

t t

t t

e e
e e

−

−

+ −
⋅

+
 

12 
2

4

10 3( )8 2
( )

t t

t t

e e
e e

−

−

+ −
⋅

+
 

 
Table 2. Fractional parameter m and function ( )f t . 

m ( )f t  

1
2

 
2

4

12 ( )2
( )

t t

t t

e e
e e

−

−

− −
− ⋅

+
 

1
3

 
2

4

2 2 20 ( )
3 ( )

t t

t t

e e
e e

−

−

− −
− ⋅

+
 

1
4

 
2

4

2 2 14 ( )
2 ( )

t t

t t

e e
e e

−

−

− −
− ⋅

+
 

1
5

 
2

4

2 2 36 ( )
5 ( )

t t

t t

e e
e e

−

−

− −
− ⋅

+
 

1
6

 
2

4

2 44 ( )
3 ( )

t t

t t

e e
e e

−

−

− −
− ⋅

+
 

1
7

 
2

4

2 2 52 ( )
7 ( )

t t

t t

e e
e e

−

−

− −
− ⋅

+
 

1
8

 
2

4

2 60 ( )
4 ( )

t t

t t

e e
e e

−

−

− −
− ⋅

+
 

1
9

 
2

4

2 2 68 ( )
9 ( )

t t

t t

e e
e e

−

−

− −
− ⋅

+
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2 2 2 2 , 0
coshcosh

x a
a ta

a
τ

= = >                (3.2) 

2) 0a < . Take time transformation atτ = −  for Equation (3.1), in same 
way we also get 

2 2 , 0
sinh

x a
a t

= <
−

                    (3.3) 

Example 2. Vasile (2011) discussed the unforced and undamped double-well 
Duffing equation [16] 

2 3
0 0x x xω β− + =                       (3.4) 

where β  is a positive constant which may not be a small value. 
We can easily obtain exact solution of Equation (3.4) in the same way as ex-

ample 1.  

0

2 2
cosh( )

x
tβ ω

=                       (3.5) 

Example 3. Jaume and Ana (2013; 2015) discussed following modified Duff-
ing differential equation [15] [19] 

3 ( , )y ay y h y yε ε+ − =                     (3.6) 

In the special case 0, 0h a= < , we obtain one of the solutions of Equation 
(3.6) at once in the same way as example1. 

2 2 , 0
cosh( )

y
at

ε
ε

= <
− −

                 (3.7) 

2 2 , 0
sinh( )

y
at

ε
ε

= >
−

                 (3.8) 

Example 4. By using Jacobian elliptic function, Alex (2013) derive the exact 
solution of a cubic-quintic Duffing oscillator of the form [14] 

3 5 0x Ax Bx Gx+ + + =                     (3.9) 

Let’s discuss the special case 0, 0, 0G A B= < > . Take time transformation 
( 0)Bt Bτ = >  for Equation (3.9), then (3.9) can be turned into 

2
3

2 0d x A x x
Bdτ

+ + =  

According the result in example 3, one can get the solution at once 

2 2 , 0
cosh( )

x B
B At

= >
−

 and 
2 2 , 0

sinh( )
x B

B At
= <

− −
  (3.10) 
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