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Abstract 
The modeling of porous medium has many applications whose techniques 
can be used in the fields of automotive, aerospace, oil exploration, and bio-
medical. This work concentrates on the Noise and Vibration (NV) develop-
ment of automotive interiors but the ideas can be translated to the aforemen-
tioned areas. The NV development requires the setting of NV targets at dif-
ferent levels. These targets are then translated to TL (Transmission Loss), IL 
(Insertion Loss), and Alpha (absorption) performance. Therefore, the ability 
to manage an efficient product development cycle, that entails analyzing vi-
bro-acoustic environments, hinges on the premise that accurate TL, IL, or 
Alpha values pertaining to the different multi-layered porous materials can be 
calculated. Thus, there is a need to have a thorough understanding of the 
physics behind the energy dissipating mechanism that includes the effects of 
the fluid meandering through the pores of the material. The goal of this series 
is to model the acoustic and dynamic coupling via multi-scale and homoge-
nizations techniques, thus subsequently understand where to incorporate the 
concepts of dynamic tortuosity, viscous and thermal permeability, as well as 
viscous and thermal lengths. This study will allow the ability to get a better 
understanding of the underlying processes and also provides tools to create 
practical concepts for determining the coefficients of the macroscopic equa-
tions. This will assist in attaining novel ideas for NV absorption and insula-
tion.  
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1. Introduction 

NV development begins by assigning NV targets for different systems. Using an 
automobile development cycle as an example, this translates to assigning NV 
targets to systems like dashboard, floor, roof, trunk, and other systems of the 
automobile. These targets dictate TL, IL and Alpha performances that are pro-
jected to different parts that the system comprises of. These performance levels 
are usually derived via a Hybrid Statistical Energy Analysis (HSEA) technique 
[1] [2] [3]. The aggregate sound attenuation performance of each component is 
affected by the multi-layer porous materials that are utilized to manufacture it. 
NV specialists run simulations in order to decide the optimum combination. 

Material suppliers furnish layer parameters such as porosity, tortuosity, resis-
tivity, foam bulk modulus, skeleton Young’s modulus, viscous and thermal 
lengths that are then applied to calculate flat sample TL, IL, and Alpha. Quite 
often, OEM engineers plug in values pertaining to these parameters, but have lit-
tle understanding of the energy absorbing or sound blocking mechanism. Deci-
sions are based on past experiences. The difficulty is to find a work that encom-
passes the gamut of equations required and clearly explains the physics behind 
transmission and absorption of energy. This work builds a bridge between the 
gaps in order to obtain a more fundamental understanding. In this part of the 
series the goal is to derive the coupled fluid/structural equations. The ma-
cro-scale equations are obtained by applying the multi scales and homogeniza-
tion techniques. The scales of the pores are small compared to the macroscales. 
The process will show how energy is being dissipated due to fluid/structure in-
teraction; the dilatational/compressional interplay between the acoustic/fluid 
and structural medium.  

The encapsulation of the acoustic medium due to how tortuous the foam ma-
terial is and the mass entrapped in the viscous boundary layer are incorporated 
in the above equations. There is also a boundary layer where the flow is not 
adiabatic, therefore a loss/gain of energy due to thermal exchange will occur. 
This thermal exchange also changes the acoustic bulk modulus at certain fre-
quencies and in turn changing the speed of sound. This paper ties the aforemen-
tioned physical phenomena to the parameters of tortuosity, dynamic viscous and 
thermal permeability, viscous as well as thermal lengths. The derivation of the 
equation bands together ideas and techniques presented in [4] [5] [6] [7]. Part 2 
of this series details how to incorporate the foam equations with other type of 
layers, e.g. panels, air gap, other foams, via the Transfer Matrix Method (TMM) 
and Finite Transfer Matrix Method (FTMM) in order to calculate TL, IL, and 
Alpha. 

2. Formulation 
2.1. Basic Tensor Calculus and Notation 

This body of work takes advantage of tensor notation and tensor calculus. This 
notational generalization makes it easy to describe the physics regardless of the 
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abstract methodology used to define the dynamics of the system. In order to 
clearly define ideas, the Einstein summation convention is used in which cova-
riant index followed by the identical contravariant index is implicitly summed 
over. Variables written in bold are tensors of rank 1, i.e. vectors. In the mean-
time, a bold letter with a special tilde as shown here, A



, is a tensor of rank 2. 
The covariant derivative of a contravariant vector, iA  is given as 

Γ
i

i k
jkjx

∂
= +
∂

i
j

AA A∇                        (1) 

Additionally, the use of the divergence of a second rank tensor, ijT


, is defined 
as 

Γ Γij i kj i ik
i ik ik= ∂ + +ij

iT T T T
   

∇                   (2) 

In Equation (1) and (2), Γi
ik , is the Chritoffel symbol of the second kind. 

2.2. Fluid-Structure Interaction: Two-Scale Expansion 

The pore composition of the porous medium has amicroscopic length l, while 
the macroscopic length is designated L. The material is statistically homogenous 
at the macroscopic scale. The ratio of the two length scale is set as l

L
=  where 

1 . The different acoustic and vibration variables will depend on two scales: a 
slow scale x and a fast scale =

xy


. The two-scale expansion is applied to the 
coupled fluid-structure equations. For relatively small viscosity values, condi-
tions found in acoustics, the intrinsic viscous relaxation time is 

2l
ν

, here ν  is  

the kinematic viscosity 
f

η
ρ

. In order to correctly compare orders of asymptotic  

expansion the dimensionless scaled terms of the equations of motion are derived 
and hence the right scaling factors are required. Due to the dynamic viscous 
permeability conditions, acoustic pressure and structural stresses are scaled with  

respect to 
2

3
o

Lp
l
η
ρ

= . Concurrently, due to the dynamic thermal permeability 

conditions the temperature fluctuation is scaled with respect to 
3

2 3
o

LT
l
η

ρ κ
= .  

The dimensionless form of the coupled Navier-Stokes and structural equations 
along with the fluid/structure boundary conditions are given as 

( )* * * * *2 * * * *1 1 in
3 fi Dξω

η
 

− =− +∇ + + ⋅ 
 

v p v v


  ∇ ∇ ∇          (3) 

* * * * *1 1 in fi p PrT Dγω
γ γε

 −
− − = − ⋅ 

 
v∇              (4) 

* * * * *2 in fi PrT i p T Dω ω− = − +∇                  (5) 

* * * in f si D Dω= − ∂ = ∂v u                      (6) 

* * in f sD D⋅ = ⋅ ∂ = ∂n n
 

σ τ                     (7) 
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*2 * *1 inf
s

s

Dω− = ∇u



*ρ
τ

ρ
                     (8) 

* * * inijkl
sD= C u

 


∇τ                        (9) 

The dimensionless/scaled version of each variable is denoted with an asterisk. 
For each of the variables in Equations (3)-(9) are represented by a two scale ex-
pansion ( ) ( ) ( )2

1, ,of f x y f x y O= + +  . The covariant derivative becomes 
* * *

y x= + ∇ ∇ ∇ . Applying the expansion and collecting all terms of O(1/) the 
following are obtained 

* 0y op =∇                          (10) 

* *1
y oγ

− ⋅ =v 0∇                        (11) 

* *
y o⋅ = 0∇ τ                          (12) 

* * *ijkl
y o =C u



0∇                        (13) 

Collecting all O(1) terms the following key equations are obtained 
* * * * * * * 2 *

1  ino y x o y o fi p p Dω− =− − +v v∇ ∇ ∇              (14) 

* * * * * * *
1

1 1 1 ino o y x o fi p PrT Dγω
γ γ γ

 −
− − = − ⋅ − ⋅ 

 
v v∇ ∇         (15) 

* * * * * 2 * ino o y o fi PrT i p T Dω ω− = − +∇                (16) 

( )*2 * * * * *
1 inf

o y x o s
s

Dω τ− = +⋅ ⋅u
 

∇ ∇
ρ

τ
ρ

              (17) 

* * * * * * *
1 inijkl ijkl

o y x o sD= +C u C u
  

∇ ∇τ                (18) 

To better explain the interaction conditions the relative displacement 
( ),w x y  is introduced, 

( )* * * * ( , ) ino o fi x Dω  = − + v u w x y                (19) 

and is incorporated into Equations (14) and (15) 

( ) ( ) ( )*2 * *2 * * * * * * 2 *
1, , ino y x o y fp p Dω ω− − = − − −∇u x w x y w x y∇ ∇     (20) 

( )

* * *

* * * * * * * *
1

1

1 1 1 , in

o o

y x o x f

i p PrT

i i D

γω
γ

ω ω
γ γ γ

 −
− − 

 

= − ⋅ + ⋅ + ⋅v u w x y∇ ∇ ∇
      (21) 

* * * * * 2 * ino o y o fi PrT i p T Dω ω− = − +∇                (22) 

Thus, the new boundary condition becomes ( ), =w x y 0  at f sD D∂ = ∂  
In the meantime, to solve the coupled partial differential Equations 

(20)-(22),it is assumed that there exist a rank 1 operator, ( )* ,P x y , a second 
rank tensor ( )* ,V x y



 and a scalar ( ),x yΘ  that act as transfer functions or 
operators that satisfy the following 
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( ) ( )* * * * *2 *
1 , x o op P p ω = − − x y u x∇                  (23) 

( ) ( )* * * * * *2 *, x o oi pω ω − = − − w x y V u x


∇                (24) 

( )* * *, ( )o oT i pω= Θ −x y                      (25) 

In [8] [9], a more detailed analysis at the microscopic level is constructed. 
There, it is shown that the microscopic dynamics produces exponential decaying 
effects on the transfer functions ( )* ,V x y



 and ( ),x yΘ . Fluid equations per-
taining to the viscous boundary layer relates this decaying effects on viscous 
length. For the thermal counterpart, the decaying effects due to the entropy 
boundary layer are related to thermal length. Homogeneity is obtained by aver-
aging at the microscopic level, i.e. with respect to y, thus the following relation is 
obtained 

( ) * 2 2 ( )x o o oi l pω ϕ ρ ω − = − − w x V u x∇              (26) 

Comparing this equation and the definition of dynamic permeability will de-
termine that 

* 2( ) lω ϕ=k V  

Therefore 

( ) 2( ) ( )x o o oi pωω ρ ω
η

 − = − − 
kw x u x


∇              (27) 

Taking the inverse of ( )ωk , Equation (27) can be rearranged as 

( )
( ) ( )

( ) ( ) ( ) ( ) ( )

2
2

2

2
2

2

f x o o
f

f x o o
f

i p

ip

η ρ ρ ω
ω ωρ

ηα ω ρ ρ ω α ω
ω ωρ

= − −

= = − − =

o

o

d w x
u x

k dt

d w x
u x

kdt

∇

∇

    (28) 

( )α ω  is known as Dynamic tortuosity. Variables with an overbar, e.g. 
( )w x , are ones that have been averaged at the microscopic level. 
The dimensional form of Equation (25) is  

( )( )2Θ ,o oT l x y i pω= −                    (29) 

By taking the microscopic average of the above equation one will obtain 

( )o oT k i pω′= −  such that ( )2Θ ,k l x y′ =                (30) 

Replacing the temperature with this relationship to pressure in Equation (21), 
the following is obtained 

( )* * * *
o

* * * * * * * *
1 f

( 1)

( , ) in Dy x o x

i p Prk i

i i

ω γ γ ω

ω ω

′− + −

= − ⋅ + ⋅ + ⋅v u w x y∇ ∇ ∇
        (31) 

The term * * *( 1)a Prk iβ γ γ ω′= + −  is the compressibility factor in dimen-

sionless form. Set *
*

1
a

a

κ
β

=  (bulk modulus for the acoustic medium) and ap-

https://doi.org/10.4236/jamp.2018.612224


A. Teagle-Hernandez et al. 
 

 

DOI: 10.4236/jamp.2018.612224 2710 Journal of Applied Mathematics and Physics 
 

ply this in the last equation above  

( )
*

* * * * * * * * *
1* , 0 ina

o y a x o a x fp D
i
κ

κ κ
ω

− + +⋅ ⋅ ⋅ =v u w x y∇ ∇ ∇       (31') 

After taking the microscopic average of (31), the following expression is ob-
tained 

( )
*

* * * * * * * * *
1* , 0 ina

o y a x o a x fp D
i
κ

ϕ κ ϕ κ
ω

− ⋅ + ⋅ + ⋅ =v u w x y∇ ∇ ∇       (32) 

2.3. Structural: Finite Element – Representative Volume Element 

The structural skeleton of the porous medium will be split up into identical unit 
cells where the macroscopic variables will represent conditions at the boundary, 
while microscopic variables will be tied to conditions interior of the unit cell. 
The boundary conditions and structural characteristics of the unit cell will be 
assumed statistically periodic. Special boundary conditions and interior forces 
are applied in order to obtain a set of Basis functions that will expand the inte-
rior solutions. A set of equations that will relate boundary stresses to interior 
strains will be easily obtained by representing  

* * * * * * *
1 inijkl ijkl

o y x o sDτ = +C u C u
  

∇ ∇                (33) 

In order to obtain a relationship between macroscopic strain and macroscopic 
stresses and considering the impedance from the micro-scale portion the fol-
lowing finite element form is used  

* * * *
1

* * * * *

0
ii ib y

bi bb x o

C C
C C τ

    ∇   =    
∇        

u
u

                   (34) 

*
iiC  are the elements pertaining to interior nodes, *

ibC  and *
biC  are the 

coupling elements, while *
bbC  are the elements pertaining to the boundary 

nodes. The assumption that there exist a potential energy for the fluid-structure 
problem forces *

ibC  and *
biC  to be transpose operators from each other. From 

the top part of the above matrix formulation an expression for * *
1yu∇  as a func-

tion of * *
x ou∇  can be obtained 

1* * * * * *
1y ii ib x oC C

−
 = −  u u∇ ∇                   (35) 

thus 
1* * * * * * *

bi ii ib bb x oC C C C
−  = − +   

u

∇τ                (36) 

The interior basis functions can be obtained by solving the following matrix 
formulation 

** * * * * * * *
01 1

* * * * * * *0
pii ib y ii ib y

bi bb x o bi bb i

pC C C C
C C C C

           = =        
           

Iu u
u





∇ ∇
∇ τ

        (37) 

where pI


 is a special tensor, of rank 2, that transforms the scalar, op , pressure 
into its tensor form and applies it normal to the structural surface. It should be 
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clear that *
iiC , *

ibC , *
biC , and *

bbC  are 4th order contravariant tensors. The 
stress component that is transferred to the boundary nodes will be equal to  

1* * * *
i bi ii p oC C p

−
 =   I





τ                       (38) 

By combining the two concepts the equations for microscopic strains and 
macroscopic stress is 

1 1* * * * * * * *
1  y ii o ii ib x ou tr C p tr C C

− −
   ⋅ = −   I u



∇ ∇             (39) 

[ ] [ ]1 1
o bi ii ib bb x o bi ii p oC C C C C C p− − = − − +  u I




∇τ          (40) 

From the acoustic relations, Equation (20) can be placed into the following 
form 

( ) ( )*2 * *2 * * * * *
1, ino x o y fx p Dω ω− − + = ⋅u w x y 

∇ ∇ σ          (41) 

Taking the microscopic average of this equation and utilizing Green’s theorem 
Equation (41) becomes 

( ) ( )*2 * *2 * * *

*
1boundary3

,
1lim in

4
3

o x o

y fR

p

D
R

ω ϕ ω ϕ

π
→∞

+ −

= − ⋅∫∫

u x w x y

dA


∇

σ              (42) 

Similarly, the same procedure is done to the structural Equation, (17) 

*2 * * * *
1boundary3

1lim in
4
3

s
o x o y sR

f

D
R

ω ϕ
π

→∞
+∇ ⋅ = − ⋅∫∫u dA

 ρ
τ τ

ρ
      (43) 

Due to the boundary conditions at the interface, Equation (7), the foregoing 
equations becomes 

( ) ( )( )2 ,o f x o x opω ϕρ ρ ϕ− + = −⋅u x w x y


∇ ∇τ         (44) 

where s fρ ρ ρ= + . 

2.4. Coupled Equations 

Equation (28) will be rewritten as 

( ) ( ) ( )( )2 ,f o f x opω ρ α ω ρ− + = −u x w x y ∇           (45) 

Reintroducing dimensions to the compressibility factor *
aβ  one will get 

( 1)a
Pr k iβ γ γ ω
ν

′= + −                    (46) 

The final dimensional form pertaining to the acoustic is 

( )1 , 0 ino a y a x o a x fp Dϕ κ κ ϕ κ+ ⋅ + ⋅ + ⋅ =u u w x y∇ ∇ ∇      (47) 

Plugging in Equation (39) into (47), the dimensional and averaged structur-
al/acoustical expression is 

[ ] [ ]

( )

1 1 

, 0 in

o a ii p o ii ib x o a x o

a x f

p tr C p tr C C

D

ϕ κ ϕ κ ϕ

κ

− − + − + ⋅  

+ ⋅ =

I u u

w x y



∇ ∇

∇
     (48) 
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[ ]
[ ] ( )1

1
  ,a

o ii ib x o x o x

a ii

p tr C C
tr C I

κ
ϕ ϕ

ϕ κ

−

−

−  = − + ⋅ + ⋅   +  

u u w x y


∇ ∇ ∇   (49) 

[ ] ( )1  ,o ii ib x o x o xp M tr C C ϕ ϕ− = − − + ⋅ + ⋅  
u u w x y∇ ∇ ∇        (50) 

where 

[ ]
1

a

a ii

M
tr C

κ

ϕ κ
−

=
 +  

I


                   (51) 

The grouping of Equations (40), (45), (44) and (50) develops one form of the 
coupled equation 

( ) ( )( ) ( )2 ,o o x o x o x o op pω ρ ρ ϕ ϕ⋅ ⋅− + = − = −u x w x y I
 



∇ ∇ ∇τ τ     (52) 

( ) ( ) ( )( )2 ,f o f x opω ϕρ α ω ϕρ− + = −u x w x y ∇           (53) 

[ ] [ ]1 1
o bi ii ib bb x o bi ii oC C C C C C p− − = − − +  

u I




∇τ          (54) 

[ ] ( )1 ,o ii ib x o xp Mtr C C Mϕ ϕ− = − + − ⋅  
u w x y∇ ∇          (55) 

The term op Iϕ


 and the expression for po will be subtracted from Equation 
(54) 

[ ] [ ]( ) [ ]( )
[ ]( ) ( )

11 1

1
,

o o

bi ii ib bb bi ii p ii ib x o

bi ii p x

p I

C C C C I C C I Mtr I C C

I C C I M

ϕ

ϕ ϕ

ϕ

−− −

−

−

 = − − + − −  

+ − ⋅

u

w x y




  

 

∇

∇

τ

 (56) 

Equation (56) in its current form can model anisotropic material. A simpler 
expression can be obtained by assuming that the material is statistically isotrop-
ic. Therefore the first term in the right hand side can be expressed in the follow-
ing form after taking advantage of basic concepts of symmetric tensors 

[ ] [ ]1 ˆ T
bi ii ib bb x o x o x o x oC C C C Iλ µ−   − − = ⋅ + +   u u u u



∇ ∇ ∇ ∇     (57) 

Additionally, in [6] it is shown that 

[ ] [ ]1 1
bi ii p ii ibC C tr C C− −=I



                    (58) 

Set [ ]( )1
ii ib x o x otr C Cϕ β−+ = ⋅I u u



∇ ∇  and because of (58). 

[ ] 11
3 bi ii ptrC Cβ ϕ − = + 

 
I


. Analyzing how Equation (58) was derived, β   

represents the proportion of fluid pressure that produces the same strains as the 
total stress. 

Plugging Equation (57) and the definition for β  into Equation (56) the sub-
sequent equation is obtained 

https://doi.org/10.4236/jamp.2018.612224


A. Teagle-Hernandez et al. 
 

 

DOI: 10.4236/jamp.2018.612224 2713 Journal of Applied Mathematics and Physics 
 

[ ] ( )

( ) [ ] ( )

2

2

ˆ ,

ˆ ,

o o

T
x o x o x o x o x

T
x o x o x o x

p I

I M I M

M I M

ϕ

λ µ β β

λ β µ β

−

 = ⋅ + + + ⋅ + ⋅ 
 = + ⋅ + + + 

u u u u w x y I
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


 

 



∇ ∇ ∇ ∇ ∇

∇ ∇ ∇ ∇

τ

  (59) 

λ  and µ̂  are new Lame’ constants of the elastic portion when the porous 
material is drained where as ( )2Mλ β+  is the contained Lame’ constant some-
times referred as cλ  in the literature. Equation (59) is in the exact form as Equ-
ation (30) found in Biot and Willis’ paper [10]. Equation (55) can also be ex-
pressed, using the definition for β , as  

( ),o x o xp M Mβ= − ⋅ − ⋅u w x y∇ ∇                (60) 

It is desired to define the equations above as a function of uo and Uo. Hence, 
the relative displacement can be expressed as ( ), o oϕ = − w x y U u . Equation 
(53) becomes  

( ) ( ) ( )( )2
f o f o o x opω ρ α ω ϕρ ϕ− + − = −u x U u ∇         (61) 

( ) ( ) ( )( )2 2( )f f o f o x opω ϕρ α ω ϕ ρ α ω ϕρ− − + = −u x U ∇        (62) 

Now, subtracting (61) from (52) one obtains 

( ) ( ) ( ) ( )( )2 21 ) ( )s f f o o f o x oω ϕ ρ α ω ϕ ρ ϕρ ρ α ω ϕρ− − + − + − ⋅=u x U


∇ τ  (63) 

Applying the same definition of ( ),iωw x y  into Equation (53) the acoustic 
portion of the coupled equation of motion turns into 

( ) ( )( )
( )( ) ( )( )

2

2 2 2

( )f o f o o

f f o f o x op

ω ϕρ α ω ϕρ ϕ ϕ

ω ϕρ α ω ϕ ρ α ω ϕ ρ

− + −

= − − + = −

u x U u

u U ∇
      (64) 

Set 
 ( ) ( ) 2

11 1 s f fρ ϕ ρ α ω ϕ ρ ϕρ= − + −               (65) 

 ( )12 f fρ ρ α ω ϕρ= −                     (66) 

 ( )22 fρ α ω ϕρ=                      (67) 

so that (63) and (64) can be expressed in a simpler form 

 ( ) ( )2
11 12o o x oω ρ ρ− + = ⋅u x U



∇ τ                 (68) 

 ( )2
12 22o o x opω ρ ρ− + = −u U ∇                  (69) 

Plug into (68) and (69) the definitions for o



τ  and op  found in Equations 
(54) and (55), along with the replacements for β  and ( ),w x y  one arrives to 
the following equation 

 ( ) ( )
( ) ( )

2
11 12

2 2ˆ( )

o o

x x o x x o x oM M

ω ρ ρ

λ β ϕ β ϕ µ

− +

= + − ⋅ + − ⋅ + ∇

u x U

u U u∇ ∇ ∇ ∇
      (70a) 

 ( ) ( ) ( )2 2
11 12 2 2o o x x o x x o x oP N Q Nω ρ ρ− + = − ⋅ + ⋅ +u x U u U u∇ ∇ ∇ ∇ ∇   (70b) 
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and 

 ( ) ( )2 2
12 22o o x x o x x oM Mω ρ ρ ϕ β ϕ− + = ⋅ + − ⋅u U U u∇ ∇ ∇ ∇       (71a) 

 ( )2
12 22o o x x o x x oR Qω ρ ρ− + = ⋅ + ⋅u U U u∇ ∇ ∇ ∇           (71b) 

Equation 70(a) and Equation 70(b) and Equation 71(a) and Equation 71(b) 
are the Equation which will be utilized to study wave propagation through por-
ous medium. Note, that the form of the equations are in the same format as Bi-
ot’s Equation [11] 

3. Results and Conclusion 

A Simple application of Equations (70) and (71) is applied to the simple layer 
configuration shown in Figure 1. The figure shows a multi layer system where 
there is a plate that is glued to foam 1. The parameters pertaining to plate1 and 
foam1 are listed in Table 1. This simulation also applied the following parame-
ters that are not listed in the table: Viscous length = 40 μm, Thermal length = 80 
m. The goal of this simulation is to calculate Random Incidence Transmission 
Loss (TL). This is achieved by applying Finite Size correction Transfer Matrix 
Method (FTMM). The Finite Size Correction is achieved by incorporating a 
Green’s Function integration to the radiation efficiency. Equations (70) and (71) 
are used to simulate how the structural and fluid stresses will change as the 
acoustic wave travels through the panel. The results are shown in Figure 2. The 
results are compared to measured results and also to the empirical formulas of 
Delaney and Bazley [12] [13]. The graph shows that the calculated results come 
within 0.4 dB. 
 

 
Figure 1. Multi layer cofiguration. 

 
Table 1. Parameters pertaining to plate and foam. 

Panel Thickness [m] Density [kg/m3] Youngs Modulus [Pa] Shear Modulus [Pa] Poisson Ratio Loss Factor Description 

Plate1 7.00E−04 7800 2.10E+11 8.00E+10 0.3125 0.001 Steel 

Plate2 1.00E−03 1100 2.30E+09 7.72E+08 0.4896 0.005 Hard Rubber 

Plate3 2.10E−03 2500 4.85E+10 1.96E+10 0.2398 0.001 Tempered Glass 

 

Foam Thickness [m] 
Density 
[kg/m3] 

Young’s 
Modulus [Pa] 

Poisson 
Ratio 

Loss 
Factor 

Porosity Tortuosity 
Flow  
Resistivity [Ns/m4] 

Description 

Foam 1 1.00E−02 22 4.65E+04 0.4 0.14 0.96 1.74 5000 
Polyurethane 
Foam 

Foam 2 3.00E−02 40 9.50E+04 0.34 0.1 0.95 1.9 1.15E+04 
Typical Car 
Seat Foam 

Case4 Air Plate1_B* Foam1 Air
Case43 Air Foam1_B Plate1* Air
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Figure 2. Top: TL comparison (dB); Bottom: TL difference c(dB) measured data is the 
reference. 
 

The current method used in order to calculate TL requires the use of various 
measured variables. Parameters like tortuosity, viscous/thermal lengths, tortuos-
ity, flow resistivity are all measured. Additionally, these measurements are being 
done at different times at different facilities that have disparate techniques and 
equipment. This makes running simulations challenging. One of the goals of 
going through this mathematical derivation is to find systematic techniques to 
reduce the disparity in these parameters or at least get a better understanding of 
the physics.  
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Nomenclature 

tr  = trace of a tensor 
a  = averaged at the microscopic level 
v  = Fluid Velocity 
u  = Structural displacement 
U  = Fluid displacement 
p  = Fluid Pressure 
ϕ  = Porosity 
η  = Viscosity 
ξ  = Second Viscosity 

fD  = Domain Occupied by Fluid 

sD  = Domain Occupied by Structure 

fD∂  = Boundary of Domain Occupied by Fluid 

sD∂  = Boundary of Domain Occupied by Structure 
γ  = Cp/Cv Cp = specific heat at constant pressure Cv = Specific heat at constant 
volume 
κ  = Coefficient of thermal Conductivity 

Pr  = Prandlt Number = pCη
κ

 

n  = unit normal pointing into the solid 
σ  = Stress Tensor in the Fluid 
τ  = Stress Tensor in the structure 

ijklC


 = Elastic fourth ranked Contravariant tensor, operates on u∇  

fρ  = density of the Fluid 

sρ  = density of the Structure 
ˆ,λ µ  = Lame Parameters  

κ  = Coefficient of thermal Conductivity 
T  = Temperature deviation 

( )k ω  = Dynamic Viscous Permeability 
( )k ω′  = Dynamic Thermal Permeability 

aκ  = Acoustic bulk Modulus 
*a  = asterisk superscript means scaled variable (dimensionless)  
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