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Abstract 
In this paper, we study a class of boundary value problems for conformable 
fractional differential equations under a new definition. Firstly, by using the 
monotone iterative technique and the method of coupled upper and lower 
solution, the sufficient condition for the existence of the boundary value 
problem is obtained, and the range of the solution is determined. Then the 
existence and uniqueness of the solution are proved by the proof by contra-
diction. Finally, a concrete example is given to illustrate the wide applicability 
of our main results. 
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1. Introduction 

In recent years, there are few studies on boundary value problems of conforma-
ble fractional differential equations under new definitions [1] [2] [3]. And con-
formable fractional derivatives not only have good operational properties (Four 
Operational Rules of Derivatives, Chain Rule and Leibniz Rule), this definition 
can also construct fractional Newton equation and Euler-Lagrange equation 
from fractional variational method, this is of great significance to the study of 
uniform or uniformly accelerated motion of particles and to the solution of 
Newton’s fractional-order mechanical problems [4] [5] (fractional-order har-
monic oscillator, fractional-order damped oscillator and forced oscillator). And 
the method of upper and lower solution for monotone iteration can not only 
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gives the existence theorem, but also determines the value range of the solution. 
Therefore, this method has gradually become an important method for studying 
nonlinear differential equations [6] [7] [8] [9]. In addition, with the application 
of anti-periodic boundary value problems in various mathematical models and 
physical processes has been widely applied, the integral boundaries are also 
widely used in heat conduction, chemical engineering, groundwater flow, ther-
moelasticity, plasma physics and other fields. As a result, more and more studies 
have been made on this kind of problems [10] [11] [12] (anti-periodic boundary 
value problems, anti-periodic boundary value problems with integral bounda-
ries). However, the indefinite sign of solutions of nonlinear differential equa-
tions determines that some problems (anti-periodic boundary value problems 
and their generalizations) cannot be studied directly by the method of upper and 
lower solutions for monotone iteration. But the development of nonlinear analy-
sis theory provides a powerful tool for the study of these problems. In the gene-
ralized monotone iteration process, the method of coupled upper and lower so-
lution becomes an important method to study this kind of problem by the flexi-
ble construction of the comparison theorem [13] [14] [15] [16]. Motivated by 
the above work, in this paper, the existence of solutions for a class of boundary 
value problems of conformable fractional differential equations under a new de-
finition is proved by using the method of coupled upper and lower solution, and 
the range of solutions is obtained. Throughout this paper, we consider the exis-
tence of solutions of boundary value problems for the following uniform frac-
tional differential equations 

( ) ( ) ( )( ) ( )

( ) ( ) ( )1

0

, , 0,1 ,

0 1 d

x t f t x t t

x rx x s s

δ

λ

 = ∈


= − + ∫                  

(1) 

where ( ) ( )x tδ  is the conformable fractional derivatives of order δ  for  
( )0,1t∈  which is defined in [1], and ( ]0,1δ ∈ , 0r > , 0r > , ( ),= −∞ +∞� , 
[ ]: 0,1f × →   is continuous. 

2. Preliminaries 

In this section, we present some definitions and lemmas which will be used in 
the proof of our main results. 

Definition 2.1. (See [1]) Given a function [ ): 0,x +∞ →  . Then the con-
formable fractional derivative of x of order δ  is defined by 

( ) ( )
( ) ( )1

0
: lim ,

x t t x t
x t

δ
δ

ε

ε

ε

−

→

+ −
=  

for all 0t > , ( )0,1δ ∈ . If the conformable fractional derivative of x of order δ  
exists, then we simply say that x is δ-differentiable. If x is δ-differentiable in 
some ( )0,t a∈ , 0a > , and ( ) ( )

0
lim
t

x tδ

→
 exists, then we define 

( ) ( ) ( ) ( )
0

0 : lim .
t

x x tδ δ

→
=  

Definition 2.2. Let ( ) ( ) [ ]( )0 0, 0,1 ,y t z t C∈  , then ( ) ( )0 0 0 0,y y t z z t= =  
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are said to be coupled lower and upper solutions of (1), respectively, if 
( ) ( ) ( )( ) ( )
( ) ( ) ( )

( ) ( ) ( )( ) ( )
( ) ( ) ( )

0 0
1

0 0 00

0 0
1

0 0 00

, , 0,1 ,

0 1 d .

, , 0,1 ,

0 1 d .

y t f t y t t

y rz y s s

z t f t z t t

z ry z s s

δ

δ

λ

λ

 ≤ ∈

 + ≤


≥ ∈
 + ≥

∫

∫

 

Definition 2.3. Let [ ]( ), 0,1 ,y z C∈  , then the function pair ( ),y z  is said 
to be coupled solutions of (1), if 

( ) ( ) ( )( ) ( )
( ) ( ) ( )
( ) ( ) ( )( ) ( )
( ) ( ) ( )

1

0

1

0

, , 0,1 ,

0 1 d .

, , 0,1 ,

0 1 d .

y t f t y t t

y rz y s s

z t f t z t t

z ry z s s

δ

δ

λ

λ

 = ∈

 + =


= ∈
 + =

∫

∫

 

Let [ ]( ), 0,1 ,Cγ ρ ∈  , then ( ),ρ γ  is said to be minimum and maximum 
coupled solutions of (1), if ( ),ρ γ  are coupled solutions of (1), and  
( ) ( ) ( ) ( ),t y t z t tρ γ≤ ≤  for any coupled solution ( ),y z . 
Lemma 2.1. (See [1]) Let ( ]0,1δ ∈ , and assume 1 2,x x  to be δ-differentiable, 

then 
1) ( )( ) ( ) ( ) ( ) ( ) ( )1 2 1 2ax bx t ax t bx tδ δ δ+ = + ; 

2) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 2 1x x t x t x t x t x tδ δ δ= + ; 

3) 
( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

2 1 1 21
2

2 2

x t x t x t x tx t
x x t

δ δ δ− 
= 

 
. 

for ( )0,1t∈ , ,a b∈ . 

Lemma 2.2. (See[1]) If x is differentiable, 0t > , then ( ) ( ) ( )1 d
d
xx t t t
t

δ δ−= . 

Lemma. 2.3 (See [3]) If ( ) ( )x tδ  exists, then for 0t ≠ , we have  
( ) ( ) ( )1x t t x tδ δ− ′= . 
Lemma 2.4. Assume that [ ]( )0,1 ,g C∈  , and ( ]0,1δ ∈ , m∈ , 0M > , 

Define function [ ]: 0,1p →   as follows: 

( ) ( ) ( )1
0

e e d .
M Mt s tt

p t m s g s s
δ δ δ

δδ δ
−

−−= + ∫                
(2) 

Then ( )p t  is the solution of the initial value problem as follows 
( ) ( ) ( ) ( ) ( ]
( )

, 0,1 ,

0

p t Mp t g t t

p m

δ + = ∈


=
 

Proof Assume that ( )p t  is given by (2), then p is differentiable for 0t > , 
therefore we have 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 1 1
0

1
0

e e e

e e d

.

Mt Mt Ms
t

M Mt s tt

p t t t mM t M s g s g t

M m s g s s g t

Mp t g t

δ δ δ

δ δ δ

δ δ δ δ δδ δ δ

δδ δ

− −
− − −

−
−−

 
 = − − +
 
 

 
= − + +  

 
= − +

∫

∫  
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from Lemma 2.2, and ( )p t  subject to the condition 

( )0 .p m=  

  
Lemma 2.5. (Comparison Theorem) Let [ ]( )0,1 , , 0p C M∈ >� , and the 

following inequalities hold true 
( ) ( ) ( ) [ ]
( )

0, 0,1 ,

0 0.

p t Mp t t

p

δ + ≤ ∈


≤
 

then ( ) 0p t ≤ , for [ ]0,1t∈ . 
Proof Let ( ) ( ) ( ) ( ) ( ), 0p t Mp t g t p mδ + = = , then we have ( ) 0, 0g t m≥ ≥  

for [ ]0,1t∈ , and we can draw a conclusion from (2.1) and Lemma 2.3.  

3. Conclusions 

Theorem 3.1. Assume that ( ) ( )0 0,y t z t  are coupled lower and upper solutions 
of (1.1) with ( ) ( )0 0y t z t≤  for [ ]0,1t∈ , let  

[ ]( ) ( ) ( ){ }0 00,1 , |D x C y t x z t= ∈ ≤ ≤ . And if ( ) ( )0 2 1 0y t x x z t≤ ≤ ≤ , then 
the following inequalities hold true 

( ) ( ) ( )1 2 1 2, , .f t x f t x M x x− ≥ − −                  (3) 

for [ ]0,1t∈  and 0M > . If we take ( ) ( )0 0,y t z t  as initial elements, the itera-
tive sequences defined by 

( ) ( ) ( )( ) ( ) ( ) [ ]

( ) ( ) ( )( ) ( ) ( ) [ ]

1

1

1 1
1 10 0

1 1
1 10 0

d 1 e e d , 0,1

d 1 e e d , 0,1

n

n

M Mt s tt
n n n y

M Mt s tt
n n n z

y t y s s rz s f s s t

z t z s s ry s f s s t

δ δ δ

δ δ δ

δδ δ

δδ δ

λ

λ

−

−

−
−−

− −

−
−−

− −


= − + ∈


 = − + ∈

∫ ∫

∫ ∫
 

(4) 

are ( ){ }ny t  and ( ){ }nz t , then 
1) ( ) ( )*

ny t y t→  and ( ) ( )*
nz t z t→  uniformly and * *,y z D∈ ; 

2) ( )* *,y z  are coupled minimal and maximal solutions of (1.1) respectively 
in D; 

3) If ( )x t  is the solution of (1.1) in D, then we have * *y x z≤ ≤ ; i.e., we 
have 

( ) ( ) ( )* * ,y t x t z t≤ ≤  

for [ ]0,1t∈ . 
Proof 1). There is a unique solution to the boundary value problem as follows 

( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( )

1

0

1

0

, , 0,1 ,

0 1 d .

, , 0,1 ,

0 1 d ,

y t f t u t M y t u t t

y rv u s s

z t f t v t M z t v t t

z ru v s s

δ

δ

λ

λ

 = − − ∈

 + =


= − − ∈

 + =

∫

∫

 

which is given by 
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( ) ( ) ( )( ) ( ) ( ) [ ]

( ) ( ) ( )( ) ( ) ( ) [ ]

1 1
0 0

1 1
0 0

d 1 e e d , 0,1 ,

d 1 e e d , 0,1 .

M Mt s tt
u

M Mt s tt
v

y t u s s rv s f s s t

z t v s s ru s f s s t

δ δ δ

δ δ δ

δδ δ

δδ δ

λ

λ

−
−−

−
−−


= − + ∈


 = − + ∈

∫ ∫

∫ ∫
 

for ,u v D∈  and u v≤  from Lemma 2.2 and Lemma 2.3. Where  
( ) ( )( ) ( ),vf t f t v t Mv t= + , ( ) ( )( ) ( ),uf t f t u t Mu t= + . Define operator  

[ ]( ) [ ]( ): 0,1 , 0,1 ,T D D C C× → ×   

( )( ) ( ) ( )( )1 2, , , , ,T u v t T u v T u v=  

where operators 1 2,T T  are given by 

( ) ( ) ( )( ) ( ) ( ) [ ]

( ) ( ) ( )( ) ( ) ( ) [ ]

1 1
1 0 0

1 1
2 0 0

, d 1 e e d , 0,1 ,

, d 1 e e d , 0,1 .

M Mt s tt
u

M Mt s tt
v

T u v u s s rv s f s s t

T u v v s s ru s f s s t

δ δ δ

δ δ δ

δδ δ

δδ δ

λ

λ

−
−−

−
−−


= − + ∈


 = − + ∈

∫ ∫

∫ ∫
 

respectively. Then the fixed point of operator T in D D×  means the coupled 
solutions of (1). 

Let ( ) ( )1 1 0 0 1 2 0 0, , ,y T y z z T y z= = . 
Here we prove that 0 1 1 0 1 1, ,y y z z y z≤ ≤ ≤ , and 1 1,y z  are coupled lower and 

upper solutions of (1). 
Whereas 

( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( )

1 0 1 0

1
1 0 00

1 0 1 0

1
1 0 00

, , 0,1 ,

0 1 d .

, , 0,1 ,

0 1 d .

y t f t y t M y t y t t

y rz y s s

z t f t z t M z t z t t

z ry z s s

δ

δ

λ

λ

 = − − ∈

 + =


= − − ∈

 + =

∫

∫          

(5) 

And 0 0,y z  are coupled lower and upper solutions of (1), then we have 
( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( )

0 1 0 1

0 1

1 0 1 0

1 0

0,

0 0 0,

0,

0 0 0.

y t y t M y t y t

y y

z t z t M z t z t

z z

δ δ

δ δ

 − + − ≤

 − ≤


− + − ≤


− ≤

 

for [ ]0,1t∈ . And by Lemma 2.5, we have 

( ) ( ) ( ) ( ) [ ]0 1 1 0, , 0,1 .y t y t z t z t t≤ ≤ ∈  

So we can easily get that 
( ) ( ) ( )( ) ( ) ( )( ) ( )( )
( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( ) ( )( )
( ) ( ) ( )

1 0 1 0 1

1
1 1 10

1 0 1 0 1

1
1 1 10

, , ,

0 1 d ,

, , ,

0 1 d .

y t f t y t M y t y t f t y t

y rz y s s

z t f t z t M z t z t f t z t

z ry z s s

δ

δ

λ

λ

 = − − ≤

 + ≤


= − − ≥

 + ≥

∫

∫

 

from formula (3) and (5). i.e., 1 1,y z  are coupled lower and upper solutions of 
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(1). 
We also get that 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( ) ( )( )

1 1 1 1

1
1 1 0 0 0 00

,

0 0 d 1 1 0.

y t z t M y t z t

y z y s z s s r y z

δ δ

λ

 − ≤ − −


− = − + − ≤ ∫
 

from formula (5) and 0 0y z≤ . Similarly, we have 1 1y z≤ . by Lemma 2.5. 
Let ( ) ( )1 1 1 2 1 1, , ,n n n n n ny T y z z T y z− − − −= = , then from formula (4), we have that 
,n ny z  are coupled lower and upper solutions of (1) for any 2n ≥ , which is 

similar to the proof above. And 

1 1.n n n ny y z z− −≤ ≤ ≤  

In summary, we have 

( ) ( ) ( ) ( ) ( ) ( )0 1 1 0 ;n ny t y t y t z t z t z t≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤� � �  

for [ ]0,1t∈ . Therefore, function sequences ( ){ } ( ){ },n ny t z t  are uniformly 
bounded, i.e., 

0 0, .n ny M z M≤ ≤  

for 0,1,2,n = �  and 0 0M > . Because f is continuous, we have 

( )
( )

1 1.nyf t M
−

≤  

for [ ]1,2,3, , 0,1n t= ∈�  and 1 0M > . In addition, because that functions  

( )e
M s tδ δ
δ

−
 and e

M tδ
δ
−

 are continuous, we have 

( ) ( )

( ) ( )( )
( ) ( ) ( ) ( )

( ) ( )( )
( ) ( ) ( ) ( )

2 1

2 12 1

1 1

2 1

2 11 2

1 11

2 1

1
1 10

1 1
0 0

1
1 10

1 1
0

d 1 e e

e d e d

d 1 e e

e e d e

n n

n n

n n

M Mt t

n n

M Ms t s tt t
y y

M Mt t

n n

M M Ms t s tt t
y yt

y t y t

y s s rz

s f s s s f s s

y s s rz

s f s s s f s

δ δ

δ δ δ δ

δ δ

δ δ δ δ

δ δ

δ δδ δ

δ δ

δ δδ δ δ

λ

λ

− −

− −

− −

− −

− −− −

− −

− −

− −− −

−

 
= − −  

 

+ −

≤ − −

 
+ − +  

 

∫

∫ ∫

∫

∫ ∫
( )2 d
s t

s
δ δ−

 

( ) ( )( )
( ) ( ) ( ) ( )

2 1

2 1 21 2

1 11

1
1 10

( )1 1
0

d 1 e e

e e d e d

0

n n

M Mt t

n n

M M Ms t s t s tt t
y yt

y s s rz

s f s s s f s s

δ δ

δ δ δ δ δ δ

δ δ

δ δδ δ δ

λ

− −

− −

− −

− − −− −

≤ − −

+ − +

→

∫

∫ ∫  

if 1 20 1t t≤ < ≤  and 2 1t t→ . Hence, ( ){ }ny t  is equicontinuous, we can also 
get that ( ){ }nz t  is equicontinuous similarly. 

In summary, by Ascoli-Arzela theorem [17], we can prove that { } { },n ny z  
are convergent because of the monotonicity of Sequences, i.e., there are two 
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functions * *,y z , such that 
* *lim 0, lim 0.n nn n

y y z z
→∞ →∞

− = − =  

and * *,y z D∈ . Next we take limits on both sides of (4), then from Lebesgue 
Dominated Convergence Theorem, we have 

( ) ( ) ( )( ) ( )* * * * * * * *
1 2, , , , , .T y z T y z T y z y z= =  

if n →∞ . i.e., ( )* *,y z  are coupled solutions of (1). 
2) Here we prove that ( )* *,y z  are coupled minimal and maximal solutions 

of (1) respectively in D. 
Assume that ( )1 2,x x  are a set of coupled solutions of (1), then the above 

problem is equivalent to prove that 
* *

1 2, .y x x z≤ ≤  

Whereas 1 2,x x D∈ , therefore 0 1 2 0,y x x z≤ ≤ . Assume that 1 2,k ky x x z≤ ≤  
for 1k > , here we prove that 1 1 2 1,k ky x x z+ +≤ ≤ . 

Consider that 

( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( )

1 1

1
1 0

1 1

1
1 0

, , 0,1 ,

0 1 d .

, , 0,1 ,

0 1 d .

k k k k

k k k

k k k k

k k k

y t f t y t M y t y t t

y rz y s s

z t f t z t M z t z t t

z ry z s s

δ

δ

λ

λ

+ +

+

+ +

+

 = − − ∈

 + =


= − − ∈

 + =

∫

∫

 

And from Definition 2.3, we have that 

( ) ( ) ( )( ) ( )

( ) ( ) ( )
( ) ( ) ( )( ) ( )

( ) ( ) ( )

1 1

1
1 2 10

2 2

1
2 1 20

, , 0,1 ,

0 1 d ,

, , 0,1 ,

0 1 d .

x t f t x t t

x rx x s s

x t f t x t t

x rx x s s

δ

δ

λ

λ

 = ∈

 + =


= ∈

 + =

∫

∫

 

Then from (3), we get that 
( ) ( ) ( ) ( ) ( ) ( )( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( )
( ) ( )

1 1 1 1

1 1

1 2 1 2

1 2

0, 0,1

0 0 0,

0, 0,1

0 0 0.

k k

k

k k

k

x t y t M x t y t t

x y

z t x t M z t x t t

z x

δ δ

δ δ

+ +

+

+ +

+

 − + − ≥ ∈

 − ≥


− + − ≥ ∈


− ≥

 

In that way, we have 

1 1 2 1, ,k ky x x z+ +≤ ≤  

according to Lemma 2.5. By Mathematical Induction, we can get 

1 2, .n ny x x z≤ ≤  

for 1,2,3,n = � . In addition, because of the convergence of iterative sequences, 
we have 
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* *
1 2, ,y x x z≤ ≤  

if n →∞ . i.e., 

( ) ( ) ( ) ( )* *
1 2, ,y t x t x t z t≤ ≤  

for [ ]0,1t∈ . Therefore, ( )* *,y z  are coupled minimal and maximal solutions 
of (1) respectively in D from Definition 2.3. 

3) Here we prove that if x is the solution of (1) in D, then * *y x z≤ ≤ . In 
conclusion (2) above, let ( ) ( ) ( )1 2x t x t x t= = , because that x is the solution of 
(1) in D, therefore, ( )1 2,x x  are a set of coupled solutions of (1). Obviously, x 
subject to 

* *.y x z≤ ≤  

In summary, Theorem 3.1 is proved.  
Theorem 3.2. Assume that ( ),f t x  is increasing in x on  

[ ]( ) ( ) ( ){ }0 00,1 , |D x C y t x z t= ∈ ≤ ≤ , and 1 0, 0r λ> > > , then there exists a 
unique solution of (1) in [ ]( ) ( ) ( ){ }0 00,1 , |D x C y t x z t= ∈ ≤ ≤ . 

Proof By Theorem 3.1, we get that ( ) ( )*
ny t y t→  and ( ) ( )*

nz t z t→ . And 
we have ( ) ( ) ( ) ( )* *

0 0y t y t z t z t≤ ≤ ≤  for [ ]0,1t∈ . Then we have that  
( ) ( )* * 0y t z t− ≤  for [ ]0,1t∈ . Here we prove that ( ) ( )* *y t z t= . 

If ( ),f t x  is increasing in x on [ ]( ) ( ) ( ){ }0 00,1 , |D x C y t x z t= ∈ ≤ ≤ , as-
sume that ( ) ( )* * 0y t z t− < , then we have 

( ) ( ) ( ) ( ) ( )( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( )

* *

1* * * * * *
0

, , 0,

0 0 (1) 1 d .

y t z t f t y t f t z t

y z r y z y s z s s

δ δ

λ

∗ ∗ − = − ≤


− = − + − ∫
 

considering the convergence of iterative sequences. Let ( ) ( ) ( )* *h t y t z t= − , 
then we have ( ) ( ) ( ) ( ) ( ) ( ) 0h t y t z tδ δ δ∗ ∗= − ≤  by Lemma 2.2, i.e., the function 
( ) ( ) ( )* *h t y t z t= −  is monotonically decreasing. Hence, ( ) ( )0 1h h≥ , there-

fore, we draw a contradiction from the conclusion that ( ) ( )0 1h h< , which can 
be obtained from the condition 1 0, 0r λ> > >  and the boundary value condi-
tions above. Therefore, we have ( ) ( ) ( )* * 0h t y t z t= − = , i.e., ( ) ( )* *y t z t=  is 
the solution of (1).  

On the basis of (1), we can also consider the existence of solutions of boun-
dary value problems for the following uniform fractional differential equations: 

( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( )1

0

, , 0,1 ,

0 1 d , 1,2, , .k k

x t f t x t t

x rx x s s k n

δ

λ

 = ∈


= − + = ∫ �
           

(6) 

where ( ) ( )x tδ  is the conformable fractional derivatives of order δ  for  
( )0,1t∈  which is defined in [1], and ( ], 1n nδ ∈ + , 1, 0, 0n r λ≥ > > ,  
( ),= −∞ +∞� , [ ]: 0,1f × →   is continuous. Similarly, the existence of the 

solution can be proved by the method of coupled upper and lower solution, and 
the range of the solution can be obtained. Due to ( ], 1n nδ ∈ + , so the original 
problem needs to be solved until the solution of the equation of order n before 
we construct the comparison theorem, which is the difficulty of (6). 
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4. Examples 

To illustrate our main results, we present the following example. 
Example 4.1. Consider the boundary value problem of conformable fractional 

differential equations under the following new definitions 

( ) ( )( ) ( ) ( )

( ) ( ) ( )

1
22

1

0

1 3 , 0,1 ,

1 10 1 d .
3 2

x t t x t x t t

x x x s s

 
 
 


= − − ∈


 = − +
 ∫

             

(7) 

It is obvious that ( ) ( )0 01, 1y t z t= − =  are coupled lower and upper solutions 
of (7), and from the condition ( ) ( )2, 1 3f t x t x x= − − , we can get that there ex-
ists a constant ( )1 2 3 0M t x x≥ + + >  for 2 11 1x x− ≤ ≤ ≤ , such that the for-
mula (4) of Theorem 3.1 holds. Hence, problem (4) has at least one solution 

[ ]1,1x∈ −  for [ ]0,1t∈  by Theorem 3.2.   
Example 4.2. Consider the boundary value problem of conformable fractional 

differential equations under the following new definitions 

( ) ( ) ( )
( ) ( ) ( )

1
3

1

0

arctan , 0,1 ,

0 1 d .

x t x t t

x ax b x s s

 
 
 


= ∈


 + = ∫                  

(8) 

where 1 0, 0a b> > > , it is easy to get that 

( ) [ ]

( ) [ ]

1
3

0

1
3

0

3 3 π 3π , 0,1 ,
2 2 1 4

3 3 π 3π , 0,1 .
2 2 1 4

y t t a b t
a b

z t t a b t
a b

  = − + + ∈  + −  


  = − + ∈  + −  

 

which yield to 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1
3

0 0

1
0 0 00

1
3

0 0

1
0 0 00

π arctan , 0,1 ,
2

0 1 d ,

π arctan , 0,1 ,
2

0 1 d .

y t y t t

y az b y s s

z t z t t

z ay b z s s

 
 
 

 
 
 


− = ≤ ∈

 + ≤



= ≥ ∈

 + ≥

∫

∫

 

Therefore, ( ) ( )0 0,y t z t  are coupled lower and upper solutions of (8), it is 
obvious that the formula (4) of Theorem 3.1 holds. Hence, problem (8) has at 
least one solution ( ) ( )0 0,x y t z t∈     for [ ]0,1t∈  by Theorem 3.2.  
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