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ABSTRACT 
We conducted genome sequence analysis to examine the presence/absence of two types of 
Z-DNA binding domains in various organisms. We examined 68 organisms from archaea, 
914 organisms from bacteria, and 199 organisms from eukaryotes. RecA protein from 
Escherichia coli has a Z-DNA binding domain and this protein promotes homologous re-
combination. All the organisms examined had this domain. This result indicated that this 
domain is essential for all the organisms. RNA editing enzyme, adenosine deaminase from 
human has another type of Z-DNA binding domain. This domain was observed in some 
organisms of archaea, bacteria, and eukaryotes. The presence/absence of Z-DNA binding 
domain in adenosine deaminase indicated that gain and loss of this domain had occurred in 
the process of evolution. The implication of presence and absence of this domain is dis-
cussed in this study. 

 

1. INTRODUCTION 
Double-stranded DNA is in equilibrium between right-handed B-DNA and left-handed Z-DNA. The 

B-DNA form is dominant and Z-DNA form makes only a small contribution to the equilibrium. It is re-
ported that Z-DNA can be stabilized by cations and anions, dehydrating solvents, numerous covalent 
modifications of DNA, negative supercoiling, and Z-DNA binding proteins [1]. Segments of DNA with 
alternating d(CG) sequences are the most favored for forming Z-DNA. Z-DNA binding proteins have 
been identified on the basis of their preferential binding to segments of Z-DNA, and they have been iso-
lated from Drosophila melanogaster [2], rat brain neurons [3], wheat germ [4], bull testis [5], Escherichia 
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coli [6, 7], Deinococcus radiodurans [8], chicken [9], and human [10]. The three-dimensional (3D) struc-
tures of Z-DNA binding domain from human [11-14] revealed that it differs from that of E. coli [15]. This 
result indicated that there are at least two types of Z-DNA binding domains. The recA protein from E. coli 
has Z-DNA binding domain, this protein promotes homologous recombination and it has Z-DNA stimu-
lated ATPase activity [6]. RecA has multiple activities, all related to DNA repair. The RNA editing enzyme, 
adenosine deaminase acting on RNA (ADAR) from human includes Z-DNA binding domain [10] and this 
domain acts as an effector of gene expression [16].  

We assumed that the presence/absence of Z-DNA binding domain would give the clues to the func-
tion and evolution of Z-DNA binding proteins. We expected the survey of genome sequences would reveal 
the presence/absence of Z-DNA binding domain, as genome sequence has all protein information the or-
ganism has. We conducted genome sequence analysis to examine the presence/absence of two types of 
Z-DNA binding domains in various organisms from archaea, bacteria, and eukaryotes using the database 
of genomes to protein structures and functions (GTOP) [17, 18]. GTOP provides protein annotation of 3D 
structures and functions based on homology search against Protein Data Bank [19, 20] and Structural 
Classification of Proteins (SCOP) [21] database protein sequences of known structure. We used GTOP 
because it has a powerful search aid by keyword to survey the query protein fold prediction in genome se-
quences.  

2. MATERIALS AND METHODS 
2.1. Estimation of Presence/Absence of Z-DNA Binding Domain  

The determination of presence/absence of Z-DNA binding domain in organisms was simply done by 
using GTOP database. GTOP is containing protein fold predictions based on homology search against 
protein sequences of known structure. If there was a homologous hit for the Z-DNA binding domain with 
an e-value less than 10−10, it is estimated that the organism has the Z-DNA binding domain. If there was no 
hit, it is considered that the Z-DNA binding domain is absent in the organism.  

2.2. Protein Domain Structure 

The amino acid sequences of Z-DNA binding domain of E. coli recA protein and that of human 
ADAR protein from GTOP are shown in Figure 1(a) and Figure 1(b), respectively. GTOP uses Swiss-Prot 
protein sequence database [22], so the Swiss-Prot codes are given for the sequences. 

GTOP adopted SCOP classification of protein structures, the unit of classification is usually the pro-
tein domain. SCOP organizes protein structures according to evolutionary origin and structure similarity. 
Actually, protein domains are classified on hierarchical levels into four categories: class, fold, superfamily, 
and family. The 3D structure of recA protein from E. coli has a domain described as class: alpha and beta 
 

 
(a) 

 
(b) 

Figure 1. (a) Amino acid sequence of E. coli recA protein Z-DNA binding domain. Swiss Prot: 
RECA_ECOLI [residues 4 to 269]; (b) Amino acid sequence of human adenosine deaminase 
acting on RNA Z-DNA binding domain. Swiss Prot: DSRAD_HUMAN [residues 134 to 198]. 
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protein, fold: p-loop containing nucleotide triphosphate hydrolases, superfamily: p-loop containing nuc-
leotide triphosphate hydrolases, family: recA protein-like (ATPase-domain). This domain is described as 
c.37.1.11 in SCOP code, and this is used as a keyword in GTOP search. Another Z-DNA binding domain 
in ADAR from human is described as class: all alpha protein, fold: DNA/RNA-binding 3-helical bundle, 
superfamily: winged helix DNA-binding protein, and family: Z-DNA binding domain. This domain is ex-
pressed as a.4.5.19 in SCOP code and used as a keyword in GTOP search. As more genomic sequences be-
come available, the survey of proteins becomes difficult without useful tools. GTOP has a tool of keyword 
search on the web. For example, we searched the Z-DNA binding domain in GTOP using c.37.1.11 as 
keyword, then the homologous proteins in an organism were displayed with e-values. Therefore, we can 
simply estimate the presence or absence of the Z-DNA binding domain. 

3. RESULTS  
3.1. Classification of Organisms  

We employed GTOP for the search of two types of Z-DNA binding domains. In GTOP, organisms 
are classified based on the annotation in the genome sequence according to hierarchy: three kingdoms 
(archaea, bacteria, and eukaryotes), phylum, and section. In GTOP, 68 organisms in archaea were divided 
into 5 phyla and 13 sections (Table 1(a)), 914 organisms in bacteria were divided into 21 phyla and 45 
sections (Table 1(b)), and 199 organisms in eukaryotes were divided into 13 phyla and 21 sections (Table 
1(c)).  

3.2. Two Types of Z-DNA Binding Domains  

The Z-DNA binding domain in recA protein from E. coli was observed in all the sections of archaea, 
bacteria, and eukaryotes in GTOP. Therefore, there is no need to distinguish the presence/absence of the 
Z-DNA binding domain in recA protein. This result indicated that this domain is essential for all the or-
ganisms.  

 
Table 1. (a) Organisms that have Z-DNA binding domain in archaea; (b) Organisms that have 
Z-DNA binding domain in bacteria; (c) Organisms that have Z-DNA binding domain in eukaryotes. 

(a) Archaea 

Phylum Section Organism 
Crenarchaeota Thermoprotei Hyperthermus butylicus 
Euryarchaeota Archaeoglobi Archaeoglobus fulgidus 

 
Halobacteria  

 
Methanobacteria  

 
Methanococci  

 
Methanomicrobia Methanococcoides burtonii 

 
Methanopyri  

 
Thermococci Thermococcus onnurineus 

 
Thermoplasmata  

Korarchaeota Candidatus Korarchaeum Candidatus Korarchaeum cryptofilum 
Nanoarchaeota Nanoarchaeum  

Thaumarchaeota Cenarchaeales  
 

marine archaeal Nitrosopumilus maritimus 
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(b) Bacteria 

Phylum Section Organism 
Acidobacteria Acidobacteriales 

 
 

Candidatus Koribacter. 
 

 
Solibacteres 

 
Actinobacteria Acidimicrobidae 

 
 

Actinobacteridae 
 

 
Coriobacteridae 

 
 

Rubrobacteridae 
 

Aquificae Aquificales Persephonella marina 
Bacteroidetes Bacteroidia  

 
Candidatus Amoebophilus  

 
Flavobacteria  

 
Sphingobacteria  

Chlamydiae Chlamydiales 
 

Chlorobi Chlorobia Chlorobaculum parvum 
Chloroflexi Chloroflexales  

 
Dehalococcoidetes  

 
Herpetosiphonales  

 
Thermomicrobiales  

Cyanobacteria Acaryochloris.  
 

Chroococcales  
 

Gloeobacteria  
 

Nostocales  
 

Oscillatoriales  
 

Prochlorales  
Deinococcus-Thermus Deinococci  

Dictyoglomi Dictyoglomia  
Elusimicrobia Elusimicrobiales  

Firmicutes Bacilli Enterococcus faecalis 

 
Clostridia Thermoanaerobacter tengcongensis 

Fusobacteria Fusobacteriales  
Gemmatimonadetes Gemmatimonadales  

Nitrospirae Nitrospirales  
Planctomycetes Planctomycetacia  
Proteobacteria Alphaproteobacteria 

 
 

Betaproteobacteria Burkholderia xenovorans 
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Continued 

 
Deltaproteobacteria Desulfovibrio vulgaris 

 
Epsilonproteobacteria Nitratiruptor sp. SB155-2 

 
Gammaproteobacteria  

 
Magnetococcus  

Spirochaetes Spirochaetales  
Tenericutes Mollicutes  

Thermotogae Thermotogales Fervidobacterium nodosum 
Verrucomicrobia Methylacidiphilales 

 

 
Opitutae 

 

 
Verrucomicrobiae 

 
(c) Eukaryotes 

Phylum Section Organism 

Alveolata Apicomplexa 
 

Amoebozoa Mycetozoa 
 

Choanoflagellida Codonosigidae 
 

Cryptophyta Pyrenomonadales 
 

Euglenozoa Kinetoplastida 
 

Fornicata Diplomonadida 
 

Fungi Chytridiomycota 
 

 
Dikarya 

 

 
Fungi incertae sedis 

 

 
Microsporidia 

 

 
Ichthyosporea 

 
Haptophyceae Isochrysidales 

 
Heterolobosea Schizopyrenida 

 
Metazoa Eumetazoa Homo sapiens (human) 

 
Placozoa 

 
Rhodophyta Bangiophyceae 

 
Viridiplantae Chlorophyta 

 

 
Streptophyta 

 
Stramenopiles Bacillariophyta 

 

 
Oomycetes 

 

 
Pelagophyceae 

 
 

https://doi.org/10.4236/jbise.2019.121001 5 J. Biomedical Science and Engineering 
 

https://doi.org/10.4236/jbise.2019.121001


 

Another Z-DNA binding domain in ADAR from human was observed in some organisms of archaea, 
bacteria, and eukaryotes, respectively. The representative organism in the column of organism in Tables 
1(a)-(c) indicates the presence of Z-DNA binding domain in ADAR from human. The white space in the 
column of organism means the absence of this domain.  

3.3. Z-DNA Binding Domain from Archaea, Bacteria, and Eukaryotes  

Comparisons of the ribosomal RNA sequences from various organisms are commonly used to deduce 
the phylogenetic trees [23]. The trees indicate clustered classification into three kingdoms, archaea, bacte-
ria, and eukaryotes, and sub-clustered groups into phyla and sections according to their sequence similari-
ties. The phylogenetic tree based on archaeal 16S small subunit ribosomal RNA sequences revealed that 
phylum Thaumachaeota may emerge before the divergence between Crenarchaeota and Euryarchaeota 
[24]. The presence of Z-DNA binding domain in the organisms belongs to the phyla Thaumachaeota, 
Crenarchaeota and Euryarchaeota suggested that the emergence of the Z-DNA binding domain was pre-
ceding to the branch between Crenarchaeota and Euryarchaeota (Table 1(a)). Four organisms, H. butyli-
cus, A. fulgidus, T. onnurineus, and Candidatus K. cryptofilum are thermophiles, and M. burtonii and N. 
maritimus are mesophililes (Table 1(a)). This result suggested that the Z-DNA binding domain is favora-
ble in thermophiles.  

The evolutionary history of organisms of bacteria can be obtained by a comparison of conserved pro-
tein sequences of elongation factor-1 alpha/Tu or 70-kDa heat shock protein [25]. A clear separation of the 
Gram-positive and Gram-negative bacteria can be obtained. The phylum firmicutes only indicated the 
presence of Z-DNA binding domain in the Gram-positive bacteria (Table 1(b)), and the organisms have 
low G + C content. In Gram-negative bacteria, the phyla of aquificae, chlorobi, proteobacteria and ther-
motogae showed the presence of Z-DNA binding domain (Table 1(b)), and their G + C content ranged 
from 35% to 67% among the organisms. The organisms of P. marina, T. tengcongensis, Nitratiruptor sp., 
and F. nodosum are thermophiles. 

The Z-DNA binding domain was observed only in the organisms belong to phylum metazoan, section 
eumetazoa in eukaryotes (Table 1(c)). It was interesting that only vertebrates indicated the presence of 
this domain and invertebrates indicated the absence of this domain. Mammalian genomes encode three 
ADAR genes, ADAR1, ADAR2 and ADAR3 [26, 27]. ADAR1 contains two Z-DNA binding domains, but 
not ADAR2 nor ADAR3. The ADAR genes are present in Caenorhabditis elegans genome [28], Drosophi-
la genome [29], squid nervous system [30], and their ADAR gene products have no Z-DNA binding do-
main [31]. The ADAR family catalyzes the conversion of adenosine to inosine in pre-mRNA, and the sub-
strates require duplex RNA secondary structure. Adenosine to inosine editing modulates the calcium per-
meability of neural glutamate receptors [32] and reduces the G-protein coupling efficiency of serotonin 2C 
receptors [33].  

4. DISCUSSION  
As mentioned above, the Z-DNA binding proteins have been isolated from various organisms based 

on the measurements of the interactions between Z-DNA and its binding proteins. The presence of the 
Z-DNA binding domain in various organisms is consistent with the result that the Z-DNA binding do-
main in recA protein was observed in all the organisms examined. It is reported that the experiments of 
the Z-DNA binding proteins in E. coli were performed in the recA protein free strain [7]. This result sug-
gested that there is another type of Z-DNA binding protein beside recA protein. However, we found 
Z-DNA binding domain only in recA protein in E. coli, so this point is not clear. 

Ideally, taxonomic classification should reflect the evolutionary history of the organism for the pres-
ence/absence of Z-DNA binding domain. If organisms A and B are phylogenetically close enough, it is ex-
pected that both organisms A and B have Z-DNA binding domain or not. This expectation varied among 
organisms as follows. There were 71 organisms in the section of betaproteobacteria and 24 organisms be-
long to Bundrkholderia species. Only Burkholderia xenovorans indicated the presence of Z-DNA binding 
 

https://doi.org/10.4236/jbise.2019.121001 6 J. Biomedical Science and Engineering 
 

https://doi.org/10.4236/jbise.2019.121001


 

domain, and other organisms indicated the absence of this domain. There were 49 vertebrates in the sec-
tion of eumetazoa in eukaryotes. 43 vertebrates showed the presence of Z-DNA binding domain and 6 
vertebrates including chicken showed the absence of this domain. It is reported that chicken has Z-DNA 
binding protein [9], but our results indicated the absence of this domain in chicken. This point is not clear. 
In eukaryotes, only vertebrates had the Z-DNA binding domain. The acquisition of this domain in verte-
brates would be caused by horizontal gene transfer (HGT) [34-36]. Isolated occurrence of Z-DNA binding 
domain in ADAR from human in distantly related species of archaea and bacteria suggested that the gene 
of this domain might have arrived via an HGT event. 

It is considered that if the function of a protein is essential, the protein would be conserved. The 
Z-DNA binding domain in recA protein from E. coli was conserved in all the organisms. This result indi-
cated that the function of this domain is essential. Another type of the Z-DNA binding domain in ADAR 
from human was observed in some organisms in archaea, bacteria and eukaryotes. This result suggested 
that the function of this domain is non-essential, even though the biological function of this domain is not 
clearly understood.  

Unfortunately, GTOP database has not been updated since 2010 October 6. However, GTOP offers 
valuable information on Z-DNA binding domains. As far as we examined, there was no database like 
GTOP with useful keyword search. There are two types of Z-DNA binding domains and some organisms 
have both domains. However, it seems that most researchers do not distinguish E. coli type or human type 
Z-DNA binding domain they are analyzing. To study the function of this domain, it is necessary to discern 
which type of this domain they are studying.  
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