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Abstract 
In this paper, a modified implicit Kirk-multistep iteration scheme and a 
strong convergence result for a general class of maps in a normed linear 
space was established. It was also shown that the convergence of this itera-
tion scheme is equivalent to the convergency of some other implicit 
Kirk-type iteration (implicit Kirk-Noor, implicit Kirk-Ishikawa and implicit 
Kirk-Mann iterations) for the same class of maps. Some numerical exam-
ples were considered to show that the equivalence of convergence results to 
the fixed point is true. The results unify most equivalence results in litera-
ture. 
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1. Introduction 

In 1971, Kirk introduced the Kirk iterative scheme as follows: Let ( ), .E  be a 
normed linear space and D a non-empty, convex, closed subset of E and  

:T D D→  be a selfmap of D, let 0x E∈ , the sequence { } 1n n
x ∞

=
 is defined by 

1
0 0

, 0, 1
k k

i
n i n i

i i
x T x nα α+

= =

= ≥ =∑ ∑
                 

(1) 

Various authors have written inspiring papers on Kirk-type iterative schemes. 
Worthy to mention are the following: the explicit Kirk-Mann, Olatinwo [1], ex-
plicit Kirk-Ishikawa, Olatinwo [1], Kirk-Noor, Chugh and Kumar [2] and 
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Kirk-multistep, Akewe, Okeke and Olayiwola [3] iterative schemes. 
In 2014, Akewe, Okeke and Olayiwola [3] proposed an explicit Kirk-multistep 

iterative schemes and proved strong convergence and stability results for con-
tractive-like operators in a normed linear space, the researchers also gave useful 
numerical examples to back up their schemes. The authors in Chugh, Malik and 
Kumar [4] made the following statements in their introduction: “Implicit itera-
tions have an advantage over explicit iterations for nonlinear problems as they 
provide better approximation of fixed points and are widely used in many ap-
plications when explicit iterations are inefficient. Approximation of fixed points 
in computer oriented programs by using implicit iterations can reduce the 
computational cost of the fixed point problems”. They considered a new implicit 
iteration and study its strong convergence, stability, and data dependence and 
also proved through numerical examples that newly introduced iteration has 
better convergence rate than well known implicit Mann iteration as well as im-
plicit Ishikawa iteration and that implicit iterations converge faster as compared 
to corresponding explicit iterations. However, it was observed that little work 
has been done on equivalence of implicit scheme. 

The main aim of this work is in three folds: firstly, to develop a modified im-
plicit Kirk-multistep scheme and prove strong convergence results for a general 
class of mapping introduced by Bosede and Rhoades [5]. Secondly, to show that 
the convergence of the implicit Kirk-multistep iteration scheme is equivalent to 
the convergency of implicit Kirk-Noor, implicit Kirk-Ishikawa and implicit 
Kirk-Mann iterations for the same class of mapping under consideration. 

Let ( ), .E  be a normed linear space and D a non-empty, convex, closed 
subset of E and :T D D→  be a selfmap of D, let 0x D∈ . Then, the sequence 
{ } 0n n

x ∞

=
 defined by 

1 1

1 1

1
1 ,0 , 1 ,1 0

1
,0 , ,1 0

1 1 1 1 1
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q qi
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(2) 

where 1 2 3 kq q q q≥ ≥ ≥ ≥� , for each j, , 0n iα ≥ , ,0 0nα ≠ , , 0j
n iβ ≥ , ,0 0j

nβ ≠ , 
for each j, [ ], ,, 0,1j

n i n iα β ∈  for each j and 1q , jq  are fixed integers (for each j). 
(2) is called implicit Kirk-multistep iterations. 

Equation (2) serves as a general formula for obtaining other implicit Kirk-type 
iterations. Infact, if 3k =  in (2), we obtain a three step (implicit Kirk-Noor) 
iteration as follows: 

1 1

2 2

3 3

1
1 ,0 , 1 ,1 0

1 1 2 1 1 1
,0 , ,1 0

2 2 2 2 2
,0 , ,1 0

, 1

, 1,
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x x T x
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β β β

β β β
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∑ ∑
∑ ∑

            

(3) 

where 1 2 3q q q≥ ≥ , , 0n iα ≥ , ,0 0nα ≠ , 1
, 0n iβ ≥ , 1

,0 0nβ ≠ , 2
, 0n iβ ≥ , 2

,0 0nβ ≠ , 

[ ]1 2
, , ,, , 0,1n i n i n iα β β ∈  and 1 2,q q  and 3q  are fixed integers. 
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If 2k =  in (2), we obtain a two step (implicit Kirk-Ishikawa) iteration as 
follows: 

1 1

2 3

1
1 ,0 , 1 ,1 0

1 1 1 1 1
,0 , ,1 0

, 1

, 1,

q qi
n n n n i n n ii i

q qi
n n n n i n n ii i

x x T x
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α α α

β β β

+ += =

= =

= + = 


= + = 

∑ ∑
∑ ∑             

(4) 

where 1 2q q≥ , , 0n iα ≥ , ,0 0nα ≠ , 1
, 0n iβ ≥ , 1

,0 0nβ ≠ , [ ]1
, ,, 0,1n i n iα β ∈  and 

1q  and 2q  are fixed integers. 
Finally, if 2k =  and 2 0q =  in (2), we obtain a one step (implicit Kirk-Mann) 

iteration as follows: 
1 1

1
1 ,0 , 1 ,

1 0
, 1,

q q
i

n n n n i n n i
i i

x x T xα α α+ +
= =

= + =∑ ∑
              

(5) 

where , 0n iα ≥ , ,0 0nα ≠ , [ ], 0,1n iα ∈  and 1q  is a fixed integer. 
Equations (3)-(5) will be rewritten in the following forms to help us prove our 

equivalence result: 
Let ( ), .E  be a normed linear space and D a non-empty, convex, closed 

subset of E and :T D D→  be a selfmap of D, let 0y D∈ . Then, the implicit 
Kirk-Noor scheme is a sequence { } 0n n

y ∞

=
 defined by 
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(6) 

where 1 2 3q q q≥ ≥ , , 0n iα ≥ , ,0 0nα ≠ , 1
, 0n iβ ≥ , 1

,0 0nβ ≠ , 2
, 0n iβ ≥ , 2

,0 0nβ ≠ ,  
[ ]1 2

, , ,, , 0,1n i n i n iα β β ∈  and 1 2,q q  and 3q  are fixed integers. 
Also, for 0z D∈ , the two step (implicit Kirk-Ishikawa) iteration scheme is a 

sequence { } 0n n
z ∞

=
 defined as follows: 

1 1
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1
1 ,0 , 1 ,1 0

1 1 1 1 1
,0 , ,1 0

, 1

, 1

q qi
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q qi
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(7) 

where 1 2q q≥ , , 0n iα ≥ , ,0 0nα ≠ , 1
, 0n iβ ≥ , 1

,0 0nβ ≠ , [ ]1
, ,, 0,1n i n iα β ∈  and 

1q  and 2q  are fixed integers. 
Finally, for 0u D∈ , the implicit Kirk-Mann iteration scheme is a sequence 

{ } 0n n
u ∞

=
 defined by: 

1 1
1

1 ,0 , 1 ,
1 0

, 1
q q

i
n n n n i n n i

i i
u u T uα α α+ +

= =

= + =∑ ∑
               

(8) 

where , 0n iα ≥ , ,0 0nα ≠ , [ ], 0,1n iα ∈  and 1q  is a fixed integer. We shall now 
consider some of the contractive mappings useful in proving our main results. 

Let E be a normed linear space and D a non-empty, convex, closed subset of E 
and :T D D→  be a selfmap of D. There exists a real number [ )0,1a∈  and 
all ,x y D∈  such that 

x Ty a x y− ≤ −                        (9) 

Zamfirescu [6], discussed mappings T satisfying the following contractive 
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condition: 

2Tx Ty x y x Txδ δ− ≤ − + −                 (10) 

where [ )0,1δ ∈ . Inequality (10) becomes (9) if x is a fixed point of T. 
Osilike [7] proved several stability results which are generalizations and ex-

tensions of most of the results of Rhoades [8] using the following contractive de-
finition: for each ,x y E∈ , there exist [ )0,1a∈  and 0L ≥  such that 

Tx Ty a x y L x Tx− ≤ − + −                  (11) 

In 2003, Imoru and Olatinwo [9] proved some stability results using the fol-
lowing general contractive definition: for each ,x y E∈ , there exists [ )0,1δ ∈  
and a monotone increasing function : R Rϕ + +→  with ( )0 0ϕ =  such that 

( ).Tx Ty x y x Txδ ϕ− ≤ − + −
                

(12) 

In 2010, Bosede and Rhoades [5], made an assumption implied by (9) and one 
which attempted to put an end to all generalizations of the form (12). That is if 
x p=  (is a fixed point) then (12) becomes inequality (9). 

In 2014, Chidume and Olaleru [10] gave several examples to show that the 
class of mappings satisfying (9) is more general than that of (10), (11) and (12) 
provided the fixed point exists. 

We shall need the following lemma in proving our result. 
Lemma 1.2 [11]: Let δ  be a real number satisfying 0 1δ≤ <  and { } 0n n

∞

=
  

a sequence of positive numbers such that lim 0n n→∞ = , then for any sequence 
of positive numbers { } 0n n

u ∞

=
 satisfying 

1 ; 0,1, 2,n n nu u nδ+ ≤ + = �                   (13) 

we have lim 0n nu→∞ = . 
Lemma 1.3 [12]: Let { } 0n n

a ∞

=
 and { } 0n n

e ∞

=
 be nonnegative real sequences 

satisfying the following inequality ( )1 1n n n na a eλ+ ≤ − + , where ( )0,1nλ ∈ , for 

all 0n n≥ , 0 nn λ∞

=
= ∞∑  and ( )n ne o λ= . Then lim 0n na→∞ =  

2. Main Result 

Theorem 2.1. Let ( ), .E  be a normed linear space, D a non-empty, convex, 
closed subset of E and :T D D→ , a self map satisfying the inequality: 

i iT x Tp a x p− ≤ −
                     

(14) 

where [ )0,1ia ∈  and ( )p F T∈ . For 0x D∈ , let { }nx  be the implicit 
Kirk-multistep iteration scheme defined by (2) with ( ),01 1 nn α∞

=
− = ∞∑ . Then 

i) the fixed point p of T defined by (14) is unique; 
ii) the implicit Kirk-multistep iteration scheme converges strongly to the 

unique fixed point p of T. 
Proof: 
i) The first thing is to establish that the mapping T satisfying the contractive 

condition (14) has a unique fixed point. 
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Suppose there exist 1 2, Tp p F∈ , and that 1 2p p≠ , with 1 2 0p p− > , then, 

( ) 1 21 0.ia p p− − ≤
                     

(15) 

Since [ )0,1ia ∈ , then 1 0ia− >  and 1 2 0p p− ≤ . Since norm is nonnega-
tive we have that 1 2 0p p− = . That is, 1 2p p p= =  (say). Thus, T has a 
unique fixed point p. 

ii) Next, we prove that (2) converges strongly to p. In veiw of (2) and (14), 

( )
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q
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(16) 

Also, using (2) and (14), we have: 
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Again, using (2) and (14), we have: 
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Continuing the process using (2) and (14), we have 
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Finally, using (2) and (14) for ( )1k − , we have: 
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(20) 
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Substituting (20) in (19), (19) in (18), (18) in (17) and (17) in (16), we obtain: 
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(21) 

Note that 

1
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qn i nin i

n i nq qi i
in i n ii i

a
a

a a

α αα
α α

α α
=

=
= =

 − +   − = ≥ − + 
− −  

∑
∑

∑ ∑     
(22) 

hence 
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∑
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Let 1ia a< < , then 
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1
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i
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i
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(23) 

That is, 
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1

,0
,0 ,0

,1

1
1

n
n nq i

n ii

a
a

α
α α

α
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≤ − +
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(24) 

Therefore, 

( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

( )( )

1 1 2 2
1 ,0 ,0 ,0 ,0 ,0 ,0

2 2 1 1
,0 ,0 ,0 ,0

,0

1 1 1

1 1

1 1 1

n n n n n n n

k k k k
n n n n n

n n

x p a a a

a a x p

a x p

α α β β β β

β β β β

α

+
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    − ≤ − + − + − +     
   ⋅ − + − + −   
 ≤ − − − − 

�

  

(25) 

Hence, using Lemma 1.2 in (25), then 0limn nx p→∞ − =  This ends the 
proof. 

Theorem 2.1 leads to the following corollary: 
Corollary 2.2. Let ( ), .E  be a normed linear space, D a non-empty, convex, 

closed subset of E and :T D D→ , with ( )p F T∈ , such that: 
i iT x p a x p− ≤ −

                     
(26) 

where [ )0,1ia ∈ . For 0 0 0y z u D= = ∈ , let { }ny  { }nz  { }nu  be the implicit 
Kirk-Noor, implicit Kirk-Ishikawa and implicit Kirk-Mann iteration scheme re-
spectively defined by (6), (7) and (8) with ( ),01 1 nn α∞

=
− = ∞∑ , ( )1

,01 nβ− = ∞ , 

( )2
,01 nβ− = ∞ . Then 

i) T defined by (26) has a unique fixed point p; 
ii) { }ny  (6) converges strongly to the unique fixed point p of T; 
iii) { }nz  (7) converges strongly to the unique fixed point p of T; 
iv) { }nu  (8) converges strongly to the unique fixed point p of T. 
Theorem 2.3. Let ( ), .E  be a normed linear space, D a non-empty, convex, 
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closed subset of E and :T D D→  an operator satisfying 
i iT x Tp a x p− ≤ −

                     
(27) 

where [ )0,1ia ∈  and ( )p F T∈ . If 0 0u x D= ∈ , then the following are equiv-
alent: the 

i) implicit Kirk-Mann iterative scheme { } 0n n
u ∞

=
 (8) converges strongly to p; 

ii) implicit Kirk-multistep iterative scheme { } 0n n
x ∞

=
 (2) converges strongly to 

p. 
Proof: 
We prove that (i) ⇒ (ii). 
Assume limn nu p→∞ = , then using (8), (2) and (27), we have 
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Using condition (27) in (28), we have 
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From (29), 
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From (30), 
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But from (31), 
i i i

n n n n n nu T u u p Tp T u u p Tp T u− = − + − ≤ − + −
       

(32) 

Applying condition (27) on (31), we get 

( )1i i
n n nu T u a u p− ≤ + −

                  
(33) 

Using (33) in (31), we have 
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2

2 2

11
,1 ,0 2 1

1 1
, ,1 1

1
1 1

q
n in ii

n n n n nq qi i
n i n ii i

u x u x a u p
a a

ββ

β β
=

= =

− ≤ − + + −
− −

∑
∑ ∑   

(34) 

Similarly, 
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( )
( )

( )
( )

( )

( ) ( )
3

3 3

22
,2 ,0 3 1

2 2
, ,1 1

1
1 1

q
n in ii

n n n n nq qi i
n i n ii i

u x u x a u p
a a

ββ

β β
=

= =

− ≤ − + + −
− −

∑
∑ ∑   

(35) 

Also 

( )
( )

( )
( )

( )

( ) ( )
4

4 4

33
,3 ,0 4 1

3 3
, ,1 1

1
1 1

q
n in ii

n n n n nq qi i
n i n ii i

u x u x a u p
a a

ββ

β β
=

= =

− ≤ − + + −
− −

∑
∑ ∑   

(36) 

Continuing (k − 2) times, we have 

( )
( )

( )
( )

( )

( ) ( )

1

1

1

2
2 ,0 1

2
,1

2
,1

2
,1

1

1
1

k

k

k

k
k n k

n n n nq k i
n ii

q k
n i ii

nq k i
n ii

u x u x
a

a u p
a

β

β

β

β

−

−

−

−
− −

−
=

−
=

−
=

− ≤ −
−

+ + −
−

∑
∑
∑

           
(37) 

Moving a step more, we have 

( )
( )

( )
( )

( )

( ) ( )
11

,1 ,0 1
1 1

, ,1 1

1
1 1

k

k k

q kk
n ik n k ii

n n n n nq qk ki i
n i n ii i

u x u x a u p
a a

ββ

β β

−−
− =

− −
= =

− ≤ − + + −
− −

∑
∑ ∑  

(38) 

Substituting (35) into (34), (34) into (33), (33) into (32) and (32) into (31) re-
spectively, we obtain 

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

1 2 3 4

1

1 1

1 2 3
,0 ,0 ,0 ,0

1 2 3
, , , ,1 1 1 1

2 1
,0 ,0

2 1
, ,1 1

1
,0

1 1 1 1

1 1

1

k k

n n

n n n n
q q q qi i i i

n i n i n i n ii i i i

k k
n n

n nq qk ki i
n i n ii i

n

u x

a a a a

u x
a a

α β β β

α β β β

β β

β β

β

−

+ +

= = = =

− −

− −
= =

−

    
    ≤
    − − − −    
  
   −
  − −  

+
−

∑ ∑ ∑ ∑

∑ ∑
�

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

4

2 3 4

1 2

32
,,0 1

1 2 3
, , ,1 1 1

12 1
,,0 ,01

2 1 1
, , ,1 1 1

2
,1

1 1

1 1 1

k

k k

q
n in i

q q qi i i
n i n i n ii i i

q kk
n in ni

q q qk ki i i
n i n i n ii i i

k
n ii

a a a

a a a

ββ

β β β

ββ β

β β β

β

−

=

= = =

−−
=

− −
= = =

−
=

   
   
    − −   
    
    +
    − − −    

∑
∑ ∑ ∑

∑
∑ ∑ ∑

�

�
( )

( )

( ) ( )
1 2

1 2 1

1
, ,01

2 1
, , ,1 1 1

1
1 1 1

k

k

q q
n i n ii

nq q qk i i i
n i n i n ii i i

a u p
a a a

β α

β β α

−

−

=
−

= = =

     
     + + −

     − − −     

∑ ∑
∑ ∑ ∑  

(39) 

Recall that 

1

1

,0
, ,0

1,11

q
n i

n i nq i
in ii

a
a

α
α α

α =
=

≤ +
−

∑
∑                  

(40) 

Let 1ia a< < , then 

( )
1

, ,0 ,0 ,0
1

1
q

i
n i n n n

i
a aα α α α

=

 + ≤ − + ∑
               

(41) 

Using (36), (37) in (38), we have 
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( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( ) ( )( ) ( )

( )( )

1 1

1 1 2 2 3 3
,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0

2 2 1 1
,0 ,0 ,0 ,0

1 1 2 2 3 3
,0 ,0 ,0 ,0 ,0 ,0

2
,0

1 1 1 1

1 1

1 1 1

1

n n

n n n n n n n n

k k k k
n n n n n n

n n n n n n

k
n

u x

a a a a

a a u x

a a a

α α β β β β β β

β β β β

β β β β β β

β

+ +

− − − −

−

−

      ≤ − + − + − + − +       
   − + − + −   
     + − + − + − +     

−

�

� ( )
( )

( )
( )( ) ( )

1
,2 1 11

,0 ,0 ,01
,1

1
1

k

k

q k
n ik i

n n nq k i
n ii

a a
a

β
β β β

β

−
− =

−
=

 
    + + − +    − 

∑
∑

 

( )

( )

( )

( ) ( ) ( )

( )( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( )

1 2

1 2

2 1
, ,1 1

,0 ,02 1
, ,1 1

1 1 2 2
,0 ,0 ,0 ,0 ,0

3 3 2
,0 ,0 ,0

1 1
1 1

1 1 1 1 1

1 1

k

k

q qk
n i n i ii i

n n nq qk i i
n i n ii i

n n n n n n n

k
n n n

a a u p
a a

a u x a a

a a

β β
α α

β β

α β β β β

β β β

−

−

−
= =

−
= =

−

        + − + + −    − −    
    ≤ − − − − + − + − +     

 ⋅ − + − 

∑ ∑
∑ ∑

�

� ( )
( )

( )

( )( ) ( )
( )

( )

( )

( )

( ) ( )

1 2

1 2

1
,2 1

,0 1
,1

2 1
, ,1 1 1 1

,0 ,0 2 1
, ,1 1

,0 ,0

1

1
1 1

1 1

k

k

k

k

q k
n ik i

n q k i
n ii

q qk
n i n ii i

n n q qk i i
n i n ii i

i
n n n

a

a
a a

a a u p

β
β

β

β β
β β

β β

α α

−

−

−
− =

−
=

−
= =

−
= =

 
   +   − 

        + − + +      − −    
 ⋅ − + + − 

∑
∑

∑ ∑
∑ ∑

�

(42) 

Let ( )( ),01 1n n aλ α= − −  and 

( )( ) ( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( )
( )

( )

( )( ) ( )
( )

( )

( )1 2

1 1 2 2 3 3
,0 ,0 ,0 ,0 ,0 ,0

1
,2 2 1

,0 ,0 1
,1

2 1
, ,1 1 1 1

,0 ,0 2
, ,1

1 1 1

1
1

1
1 1

k

k

k

k

n n n n n n n

q k
n ik k i

n n q k i
n ii

q qk
n i n ii i

n n q k i
n i ni

e a a a

a
a

a
a

β β β β β β

β
β β

β

β β
β β

β β

−

−
− − =

−
=

−
= =

−
=

     = − + − + − +     
 

   − +   − 

 
   + − + +   − − 

∑
∑

∑ ∑
∑

�

�
( )

( ) ( )

2 1
1

,0 ,01 1

q i
ii

i
n n n

a

a a u pα α

=

  
  

 ⋅ − + + − 

∑

   

(43) 

Replacing (40) in (39), we have 

( )1 1 1n n n n n nu x u x eλ+ +− ≤ − − +                 (44) 

By Lemma 1.3 in (41), it follows that 

lim 0n nn
u x

→∞
− =

                       
(45) 

Since by the assumption, limn nu p→∞ = , 
then 0n n n nx p u x u p− ≤ − + − →  as n →∞  

Hence limn nx p→∞ = . 
Next is to show that (ii) implies (i). 
Assume, limn nx p→∞ = , then using (2), (8) and (27), we have 
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( )( ) ( )

( )

( )

1

1

1

1
1 1 ,0 , 1 1

1

1
,0 , 1 1

1

,0 1

,11

q
i i

n n n n n n i n n
i

q
i i i

n n n n i n n
i

n
n nq i

n ii

x u x u T x T u

x u a T x T u

x u
a

α α

α α

α

α

+ + + +
=

+ +
=

=

− ≤ − + −

≤ − + −

≤ −
−

∑

∑

∑         

(46) 

( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

2

2 2

2 2

1 1 2 1 1
,0 ,

1

1 2 1 1
,0 ,

1

1 2 1 1 1
,0 , ,

1 1

1 2 1 1 1
,0 , ,

1 1

q
i

n n n n n n i n n
i

q
i i i

n n n n i n n n n
i
q q

i i i
n n n n i n n n i n n

i i
q q

i i
n n n n i n n n i n n

i i

x u x u T x u

x u T x T u T u u

x u T x T u T u u

x u a x u T u u

β β

β β

β β β

β β β

=

=

= =

= =

− ≤ − + −

≤ − + − + −

≤ − + − + −

≤ − + − + −

∑

∑

∑ ∑

∑ ∑

� �

  

(47) 

By simplifying (42), we obtain 

( )
( )

( )
( )

( )

( )

2

2 2

11
,1 ,0 2 1

1 1
, ,1 11 1

q
n in ii

n n n n n nq qi i
n i n ii i

x u x u T u u
a a

ββ

β β
=

= =

− ≤ − + −
− −

∑
∑ ∑     

(48) 

But, 

( )1

i i i
n n n n

i i
n n

i
n n

i
n

T u u T u T p p u

T u T p p u

a u p u p

a u p

− ≤ − + −

≤ − + −

≤ − + −

≤ + −
               

(49) 

Substituting (44) in (43), we have 

( )
( )

( )
( )

( )

( ) ( )
2

2 2

11
,1 ,0 2 1

1 1
, ,1 1

1
1 1

q
n in ii

n n n n nq qi i
n i n ii i

x u x u a u p
a a

ββ

β β
=

= =

− ≤ − + + −
− −

∑
∑ ∑    

(50) 

Similarly, 

( )
( )

( )
( )

( )

( ) ( )
3

3 3

22
,2 ,0 3 1

2 2
, ,1 1

1
1 1

q
n in ii

n n n n nq qi i
n i n ii i

x u x u a u p
a a

ββ

β β
=

= =

− ≤ − + + −
− −

∑
∑ ∑   

(51) 

Also, 

( )
( )

( )
( )

( )

( ) ( )
4

4 4

33
,3 ,0 4 1

3 3
, ,1 1

1
1 1

q
n in ii

n n n n nq qi i
n i n ii i

x u x u a u p
a a

ββ

β β
=

= =

− ≤ − + + −
− −

∑
∑ ∑   

(52) 

Continuing the process upto (k − 2), we have 

( )
( )

( )
( )

( )

( ) ( )
1

1 1

22
,2 ,0 1 1

2 2
, ,1 1

1
1 1

k

k k

q kk
n ik n k ii

n n n n nq qk ki i
n i n ii i

x u x u a u p
a a

ββ

β β

−

− −

−−
− − =

− −
= =

− ≤ − + + −
− −

∑
∑ ∑

(53) 

For (k − 1), we get 
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( )
( )

( )

( )

( ) ( )
11

,1 ,0 1
1 1

, ,1 1

1
1 1

k

k k

q kk
n ik n ii

n n n n nq qk ki i
n i n ii i

x u x u a u p
a a

ββ

β β

−−
− =

− −
= =

− ≤ − + + −
− −

∑
∑ ∑  

(54) 

Substituting accordingly from (41) to (48), we get 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

1 1

1 1 2 2 3 3
,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0

2 2 1 1
,0 ,0 ,0 ,0

1 1 1 1

1 1

n n

n n n n n n n n

k k k k
n n n n n n

x u

a a a a

a a x u

α α β β β β β β

β β β β

+ +

− − − −

−

      ≤ − + − + − + − +       
   − + − + −   �

 

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )
( )

( )
( )( ) ( )( )

( )

( )

( )

( ) ( )( )

1

1

2

2

1 1 2 2 2 2
,0 ,0 ,0 ,0 ,0 ,0

1 2
, ,1 11 1

,0 ,01 2
, ,1 1

1
,1

,0 ,01
,1

1 1 1

1
1 1

1
1

k k

k k

k k
n n n n n n

q qk k
n i n ii i

n nq qk ki i
n i n ii i

q
n ii

n nq i
n ii

a a a

a
a a

a
a

β β β β β β

β β
β β

β β

β
α α

β

−

−

− −

− −
= =

− −
= =

=

=


+ − + − + − +

   
   ⋅ + − +
   − −   

 
 + − +

 − 

∑ ∑
∑ ∑

∑
∑

�

�

( )1i
na u p+ −

      

(55) 

(50) can be written as: 

( )( )

( ) ( )
1 1 ,0

,0 ,0

1 1 1

1 1 1

n n n n n

i
n n n

x u a x u

a a u p

α

α α

+ +  − ≤ − − − − 
 + − − + + −          

(56) 

Let 

( )( ) ( ) ( ),0 ,0 ,01 1 1 1 1i
n n n n n na e a a u pλ α α α = − − = − − + + −   

Therefore, 

( )1 1 1n n n n n nx u x u eλ+ +− ≤ − − +                 (57) 

It follows from Lemma 1.3 that: lim 0n n nx u→∞ − =  
Since by assumption, limn nu p→∞ =  Then,  

0,n n n nu p x u x p n− ≤ − + − → →∞ . 
This implies that limn nu p→∞ = . 
Since (i) → (ii) and (ii) → (i), it shows that the convergence of implicit 

Kirk-Mann iterative scheme (8) is equivalent to the convergence of implicit 
Kirk-multistep iterative scheme (2) when applied to the general class of map (14). 
This ends the proof. 

Theorem 2.3 leads to the following Corollaries: 
Corollary 2.4. Let ( ), .E  be a normed linear space, D a non-empty, convex, 

closed subset of E and :T D D→ , with ( )p F T∈ , satisfying 
i iT p a x p− ≤ −

                      
(58) 

where [ )0,1ia ∈ . If 0 0 0u z y D= = ∈ , then the following are equivalent: the 
a) (i) implicit Kirk-Mann iterative scheme { } 0n n

u ∞

=
 (8) converges strongly to 

p; 
(ii) implicit Kirk-Ishikawa iterative scheme { } 0n n

z ∞

=
 (7) converges strongly to 
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p. 
b) (i) implicit Kirk-Mann iterative scheme { } 0n n

u ∞

=
 (8) converges strongly to 

p; 
(ii) implicit Kirk-Noor iterative scheme { } 0n n

y ∞

=
 (6) converges strongly to p. 

Proof. The proof of Corollary 2.4 is similar to that of Theorem 2.3.This ends 
the proof. 

Corollary 2.5. Let ( ), .E  be a normed linear space, D a non-empty, convex, 
closed subset of E and :T D D→  an operator satisfying 

i iT p a x p− ≤ −
                      

(59) 

where [ )0,1ia ∈ . If 0 0 0 0u z y x D= = = ∈ , then the following are equivalent:  
i) implicit Kirk-Mann iterative scheme { } 0n n

u ∞

=
 (8) converges strongly to p; 

ii) implicit Kirk-Ishikawa iterative scheme { } 0n n
z ∞

=
 (7) converges strongly to 

p; 
iii) implicit Kirk-Noor iterative scheme { } 0n n

y ∞

=
 (6) converges strongly to p; 

iv) implicit Kirk-multistep iterative scheme { } 0n n
x ∞

=
 (2) converges strongly to 

p. 

3. Numerical Examples 

In this section, we use some examples to demonstrate the equivalence of con-
vergence between implicit Kirk-multistep (IKMST) iterative scheme (2) and 
other implicit Kirk-type [implicit Kirk-Noor (IKN)(6), implicit Kirk-Ishikawa 
(IKI)(7) and implicit Kirk-Mann (IKM)(8)] iterative schemes with the help of 
computer programs in PYTHON 2.5.4. We shall consider our results for in-
creasing and decreasing functions. The results are shown in Table 1 and Table 
2. 

3.1. Example of Increasing Function (See 5.12 of [4]) 

Let [ ] [ ]: 6,8 6,8f →  be defined by ( ) 3
2
xf x = + . Then f is an increasing func-

tion with fixed point 6.000000p = . By taking initial approximation as  

0 0 0 0 7.000000x y z u= = = =  (mid point of x and y) and  

,1 ,1
1

5 1
j

n n n n
α β β= = =

+
, (for 1,2,3, , 2j k= −� ), 1

,0 ,01 q
n n iiα α

=
= −∑ ,  

21 1
,0 ,0

q
n n iiβ β

=
= ∑ , � , 1 1

,0 ,0
kqk k

n n iiβ β− −
=

= ∑  for all the iterative schemes. The equiva-
lence of convergence results to the fixed point 6.000000p =  are shown in Ta-
ble 1. 

3.2. Example of Decreasing Function (See 5.11 of [4]) 

Let [ ] [ ]: 0,1 0,1f →  be defined by ( ) ( )21f x x= − . Then f is a decreasing 
function with fixed point 0.381966p = . By taking initial approximation as 

0 0 0 0 0.700000x y z u= = = =  and ,1 ,1
1

4
j

n n n n
α β β= = =

+
, (for  
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1, 2,3, , 2j k= −� ), 1
,0 ,01 q

n n iiα α
=

= −∑ , 21 1
,0 ,0

q
n n iiβ β

=
= ∑ , � , 1 1

,0 ,0
kqk k

n n iiβ β− −
=

= ∑  
for all the iterative schemes. The equivalence of convergence results to the fixed 
point 0.381966p =  are shown in Table 2. 

 

Table 1. Numerical example for increasing function: ( ) 3
2
xf x = + . 

n IKMSTP IKN IKI IKM 

0 7.000000 7.000000 7.000000 7.000000 

1 6.000124 6.194906 6.336163 6.579796 

2 6.000001 6.019386 6.072164 6.268634 

3 6.000000 6.001241 6.011546 6.107454 

4 6.000000 6.000057 6.001482 6.038496 

5 6.000000 6.000002 6.000159 6.012624 

6 6.000000 6.000000 6.000015 6.003844 

7 6.000000 6.000000 6.000001 6.001098 

8 6.000000 6.000000 6.000000 6.000297 

9 6.000000 6.000000 6.000000 6.000076 

10 6.000000 6.000000 6.000000 6.000019 

11 6.000000 6.000000 6.000000 6.000004 

12 6.000000 6.000000 6.000000 6.000001 

13 6.000000 6.000000 6.000000 6.000000 

14 6.000000 6.000000 6.000000 6.000000 

 
Table 2. Numerical example for decreasing function: ( ) ( )21f x x= − . 

n IKMSTP IKN IKI IKM 

0 0.700000 0.700000 0.700000 0.700000 

1 0.382001 0.382149 0.384209 0.409165 

2 0.381966 0.381968 0.382091 0.388393 

3 0.381966 0.381966 0.381972 0.383341 

4 0.381966 0.381966 0.381966 0.382236 

5 0.381966 0.381966 0.381966 0.382015 

6 0.381966 0.381966 0.381966 0.381974 

7 0.381966 0.381966 0.381966 0.381967 

8 0.381966 0.381966 0.381966 0.381966 

9 0.381966 0.381966 0.381966 0.381966 

10 0.381966 0.381966 0.381966 0.381966 
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4. Remark 

i) From Table 1, it is observed that for increasing function ( ) 3
2
xf x = + , the  

convergence of implicit Kirk-multistep iterative scheme (2) to the fixed point 
6.000000 is equivalent to the convergence of other implicit Kirk-type [implicit 
Kirk-Noor (IKN) (6), implicit Kirk-Ishikawa (IKI) (7) and implicit Kirk-Mann 
(IKM) (8)] iterative schemes to the same fixed point 6.000000; 

ii) from Table 2, it is observed that for decreasing function ( ) ( )21f x x= − , 
the convergence of implicit Kirk-multistep iterative scheme (2) to the fixed point 
0.381966 is equivalent to the convergence of other implicit Kirk-type [implicit 
Kirk-Noor (IKN)(6), implicit Kirk-Ishikawa (IKI) (7) and implicit Kirk-Mann 
(IKM)(8)] iterative schemes to the same fixed point 0.381966. 

5. Conclusion 

The numerical examples considered in this paper justified our claim on the 
equivalence results obtained. These results show that our implicit Kirk-type hy-
brid iterative schemes have good potentials for further applications. 
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