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Abstract

In this paper, a modified implicit Kirk-multistep iteration scheme and a
strong convergence result for a general class of maps in a normed linear
space was established. It was also shown that the convergence of this itera-
tion scheme is equivalent to the convergency of some other implicit
Kirk-type iteration (implicit Kirk-Noor, implicit Kirk-Ishikawa and implicit
Kirk-Mann iterations) for the same class of maps. Some numerical exam-
ples were considered to show that the equivalence of convergence results to
the fixed point is true. The results unify most equivalence results in litera-
ture.
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1. Introduction

In 1971, Kirk introduced the Kirk iterative scheme as follows: Let (E ,||||) be a

normed linear space and D a non-empty, convex, closed subset of £and

T:D—> D beaselfmap of D,let x, € E, the sequence {x, }:):1 is defined by
k ) k
X =2.aT'x,n20, Ya =1 (1)
i=0 i=0

Various authors have written inspiring papers on Kirk-type iterative schemes.
Worthy to mention are the following: the explicit Kirk-Mann, Olatinwo [1], ex-
plicit Kirk-Ishikawa, Olatinwo [1], Kirk-Noor, Chugh and Kumar [2] and
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Kirk-multistep, Akewe, Okeke and Olayiwola [3] iterative schemes.

In 2014, Akewe, Okeke and Olayiwola [3] proposed an explicit Kirk-multistep
iterative schemes and proved strong convergence and stability results for con-
tractive-like operators in a normed linear space, the researchers also gave useful
numerical examples to back up their schemes. The authors in Chugh, Malik and
Kumar [4] made the following statements in their introduction: “Implicit itera-
tions have an advantage over explicit iterations for nonlinear problems as they
provide better approximation of fixed points and are widely used in many ap-
plications when explicit iterations are inefficient. Approximation of fixed points
in computer oriented programs by using implicit iterations can reduce the
computational cost of the fixed point problems”. They considered a new implicit
iteration and study its strong convergence, stability, and data dependence and
also proved through numerical examples that newly introduced iteration has
better convergence rate than well known implicit Mann iteration as well as im-
plicit Ishikawa iteration and that implicit iterations converge faster as compared
to corresponding explicit iterations. However, it was observed that little work
has been done on equivalence of implicit scheme.

The main aim of this work is in three folds: firstly, to develop a modified im-
plicit Kirk-multistep scheme and prove strong convergence results for a general
class of mapping introduced by Bosede and Rhoades [5]. Secondly, to show that
the convergence of the implicit Kirk-multistep iteration scheme is equivalent to
the convergency of implicit Kirk-Noor, implicit Kirk-Ishikawa and implicit
Kirk-Mann iterations for the same class of mapping under consideration.

Let (E,"") be a normed linear space and D a non-empty, convex, closed
subset of £and 7:D — D be a selfmap of D, let x, € D . Then, the sequence
{xﬂ}jzo defined by

_ 1 aq i a _
xn+l - an,O'xn +Zi:1an,iT xn+17 Zizoan,i _1

J — R .+l qj+1 pj iJ qj+t pj | = /-

x, = B x, +Zl_:] T x;, Lo Bli= L j=L2,---,k-2, (2)
k-1 k-l A pk—lmi k-1 G k-1 _

X _IBn,O X, + izlﬂn,i Txn b ,':()ﬂn,i _1’ kzz’rlZl

where ¢, 2¢, 2 ¢y 2---2q,, for each a,. 20, a,,#0, ﬂnj,i20> :an,o #0,

J
nidrHn,i

for each j, « €[0,1] for each jand g¢,, q, are fixed integers (for each )).
(2) is called implicit Kirk-multistep iterations.

Equation (2) serves as a general formula for obtaining other implicit Kirk-type
iterations. Infact, if k=3 in (2), we obtain a three step (implicit Kirk-Noor)

iteration as follows:
aQ _
n+1s i=0 an,i =1

1 1 2 q 1 i 1 q 1

xn = ﬂn,Oxn + ;; ﬂn,[Tlxn s ,'j() ﬂn,i = 1’ (3)
2 2 q3 2 i 2 43 2

xn = IBn,Oxn + Zi:l ﬂn,iTan 4 i=0 ﬁn‘i = 1’

_ 1 aQ i
X = Qg% + 0, T'x

n+

1 1 2 2
where ¢, 2¢,2¢q;, @,,20, a,,#0, ﬂn,iZO, ,Bn,oio, ﬁn’iZO, ,Bn,oio,

an’i,ﬂ;’i,ﬁii € [0,1] and ¢q,,q, and ¢, are fixed integers.
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If k=2 in (2), we obtain a two step (implicit Kirk-Ishikawa) iteration as

follows:

_ 1 aQ i @ _
X1 = an,Oxn + Zizl an,iT X, a,; =1

n+l2 i=0 " n,i

1 _ pl 4l il 3ol
xn _ﬂn,O‘xn + [:|ﬂn,[T xn’ ,':()ﬁn,i - 1’

(4)

where ¢, >¢q,, a,,20, a,,#20, B,20, B,#0, a,.B, €[0,1] and

g, and g, are fixed integers.
Finally,if k=2 and ¢, =0 in (2), we obtain a one step (implicit Kirk-Mann)

iteration as follows:
. q1 . q1
— 1 —
xn+1 - an,Oxn + Zan,iT xn+1’ zan,i - 1’ (5)
i=1 i=0

where @,,20, a,,#0, a,, €[0,1] and g, isafixed integer.

Equations (3)-(5) will be rewritten in the following forms to help us prove our
equivalence result:

Let (E,"") be a normed linear space and D a non-empty, convex, closed
subset of £and 7:D — D be a selfmap of D, let y, € D. Then, the implicit

Kirk-Noor scheme is a sequence { Y, }:0 defined by

=0

yn+1 = an,oy;: + Zil an.iTiyn+l’ Z:“:o an,i = 1
1 1 2 q 1 i1 q 1
yn :ﬂn,()yn + ,'jlﬂn,iT yn’ izz()ﬂn,i :1 (6)
Vo =Byt 20BN DB =1
where ¢, 2¢,2¢q,, a,, 20, a,,#0, B,,>0, B,#0, B.,20, B =0,
an’i,ﬂ;’i,ﬂji € [0,1] and ¢,,q, and g, are fixed integers.
Also, for z, € D, the two step (implicit Kirk-Ishikawa) iteration scheme is a

sequence {zﬂ}j:() defined as follows:

_ 1 qa i q _
Zpn = an,OZn + z,'zlan,iT Zpits Zi:O an,i =1

7)
1 1 q 1 il q 1
Zn = ﬂn,Ozn +Z,‘i]lgn,iTlZn’ l’joﬂn,i :1

1 1
where ¢, >¢,, «,,20, a,,#20, 3,20, B,,#0, «

n,i

n,i? rlt,i E[O’l] and
g, and ¢, are fixed integers.
Finally, for u, € D, the implicit Kirk-Mann iteration scheme is a sequence

{u,}” defined by:
un+1 = an,Ou:l + qzlan,iTiunH’ qzlan,i :1 (8)
i=1 i=0

where «,,20, a,,#20, @, € [0,1] and ¢, is a fixed integer. We shall now
consider some of the contractive mappings useful in proving our main results.

Let Ebe a normed linear space and D a non-empty, convex, closed subset of £
and T:D — D be a selfmap of D. There exists a real number ae [0,1) and
all x,ye D such that

-3l <ale— ®

Zamfirescu [6], discussed mappings 7 satisfying the following contractive
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condition:

|Tx - Ty|| < §[}x - y||+ 28 |x - Tx| (10)

where O € [0,1). Inequality (10) becomes (9) if xis a fixed point of 7.

Osilike [7] proved several stability results which are generalizations and ex-
tensions of most of the results of Rhoades [8] using the following contractive de-
finition: for each x,y € E, there exist a € [0,1) and L >0 such that

|7x - Ty|| < afx - y||+ L|x - Tx| (11)

In 2003, Imoru and Olatinwo [9] proved some stability results using the fol-
lowing general contractive definition: for each x,y e E, there exists J € [0,1)

and a monotone increasing function ¢:R* — R* with ¢(0)=0 such that

|7~ 73] < 5 e = v+ o (e~ 7]). (12)

In 2010, Bosede and Rhoades [5], made an assumption implied by (9) and one
which attempted to put an end to all generalizations of the form (12). That is if
x=p (is afixed point) then (12) becomes inequality (9).

In 2014, Chidume and Olaleru [10] gave several examples to show that the
class of mappings satisfying (9) is more general than that of (10), (11) and (12)
provided the fixed point exists.

We shall need the following lemma in proving our result.

Lemma 1.2 [11]: Let & be a real number satisfying 0<5<1 and {e,}

©

n=0

a sequence of positive numbers such that lim, _, e =0, then for any sequence
of positive numbers {u, }” = satisfying
u,, <ou, +¢;n=0,1,2,- (13)
we have lim ,_u, =0.
Lemma 1.3 [12]: Let {a,}  and {e} be nonnegative real sequences

n+l —

satisfying the following inequality a,,, <(1-4,)a, +e,, where 4, €(0,1), for
all n2>n,, z:;oln:oo and e, =0(4,). Then lim,  a, =0

n n—o n

2. Main Result

Theorem 2.1. Let (E,"") be a normed linear space, D a non-empty, convex,

closed subset of Eand 7':D — D, a self map satisfying the inequality:
"T’k—Tp"Sai ||x—p|| (14)

where a'€[0,1) and peF(T). For x,eD, let {x,}| be the implicit
Kirk-multistep iteration scheme defined by (2) with Z:;l (1 - an’o) =o0. Then

i) the fixed point p of 7'defined by (14) is unique;

ii) the implicit Kirk-multistep iteration scheme converges strongly to the
unique fixed point p of 7.

Proof:

i) The first thing is to establish that the mapping 7 satisfying the contractive

condition (14) has a unique fixed point.
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Suppose there exist p,, p, € F;, and that p, # p,, with || DD, || >0, then,
(l—ai)||pl—p2||30. (15)

Since a' €[0,1), then 1-a' >0 and ||p1 -p, || <0. Since norm is nonnega-

tive we have that ||p1—p2||=0. That is, p, =p, =p (say). Thus, T has a
unique fixed point p.

ii) Next, we prove that (2) converges strongly to p. In veiw of (2) and (14),

||xn+ -

41
i i
+ n,i ||T xn+1 _T p"
1

x<l>-pH+f’2'a,,, [~ ] a9

Also, using (2) and (14), we have:

-2 D=1
e w o o
I
: I—Zfiloﬁ,,“?a’ £
Again, using (2) and (14), we have:
5= pll< A |+ T'p|
< B o+ 382 [0 [ - | (18)
i=1
i
i

Continuing the process using (2) and (14), we have

“ (k-2) p”<ﬂk2 (k-1) k2||Txk2_Tp||
(k-2) q“ (k-2) (k-2)
<Al Zﬂ @' - p 19)

ﬁ(ko_z) “ (k-1) _ H
T i p
Finally, using (2) and (14) for (k - 1) we have:

(k-1)
o] <2

WAl

+ nk[l [ai
-l

]

Sﬁn(,koi X -

=] (20)
Ay
XA
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Substituting (20) in (19), (19) in (18), (18) in (17) and (17) in (16), we obtain:

b p | B B Ay |
it ~ P = 1 a i @ (1) i @ p(2) i
- i=1 an,ia 1_ i=1 ﬁn,ia 1_ i=1 ﬂn,i a

_ ﬂ,g,kofz) ﬂ,gf(ofl) “ *) H
_ k-1 p(k=2) i _ @ pk-1) i T p
1 Zizl ﬂn,i a 1 Zizlﬂ"si a
Note that

1—[ "o d+a ] g
(04 i=1 7n,i n,0 1 .
1- 0 = : 21—{20{}1’1.(1’ +an’0} (22)

-3 o - o P

i=1"n,i i=1 7n,i

(21)

hence
a a .
n,0 i
————<>Ya,d +a,,

q i T4
1_21':] an’ia i=1

Let o' <a<]1,then

41 )
Zan,ial +an,0 S (l_an,o)a+an,0 (23)
i=1
That is,
[04
qn’o i < (l_an,O)a+an,0 (24)
1-> " a,.ad
Therefore,

BT (T
[(1 - ﬂrg,ko_z) )a + :Br(z,ko_z) :| |:(1 - :Bn(,ko_l) )a + ﬂrg,ko_l):|
<[1-(1-a,,)(1-a)]

Hence, using Lemma 1.2 in (25), then lim,

x,— | (25)

x, = |

X, —p" =0 This ends the
proof.

Theorem 2.1 leads to the following corollary:

Corollary 2.2. Let (E , ||||) be a normed linear space, D a non-empty, convex,
closed subset of Eand T:D — D, with pe F(T) , such that:

"T’jc—p" <d ||x— p" (26)

where a' €[0,1). For y,=z,=u,eD, let {y,} {z,} {u,} be the implicit
Kirk-Noor, implicit Kirk-Ishikawa and implicit Kirk-Mann iteration scheme re-
spectively defined by (6), (7) and (8) with Z:O:l (1 - an’o) =, (1 —ﬂ,l,o ) =,
(l—ﬂnz’o ) =o00. Then

i) T'defined by (26) has a unique fixed point p;

ii) { yn} (6) converges strongly to the unique fixed point pof T}

iii) {zn} (7) converges strongly to the unique fixed point p of 7}

iv) {un} (8) converges strongly to the unique fixed point p of 7.

Theorem 2.3. Let (E,"") be a normed linear space, D a non-empty, convex,
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closed subset of Fand T:D — D an operator satisfying
"T’jc—Tp" <d ||x—p|| (27)

where a' €[0,1) and peF(T).If u,=x, €D, then the following are equiv-
alent: the
i) implicit Kirk-Mann iterative scheme {u, }::0 (8) converges strongly to p;

ii) implicit Kirk-multistep iterative scheme {x,} = (2) converges strongly to

D
Proof:
We prove that (i) = (ii).
Assume lim, ,_ u, = p, then using (8), (2) and (27), we have
un+l _er—l = Of (M _‘x ) ZantTl Zan,iT[‘an
i=1 (28)
= an,O u, _xill)”—i_zan,i T U,y =L X, ]|
i=1
Using condition (27) in (28), we have
| 4 )
Uy =X < an,O u, _xfz )”—i_zan,ial Uy =X
i=1
(29)
a
< # u, — xil)
1- a, .a

llnt

From (29),

-]

i i i (1)
u—x o, — T, +T'u, —T'x, “

<A, t, Ti”n||+iﬂif? ru,-T| - (0)

n l

<, u zﬁ,,l NS ] el
From (30),
(1) 72 p(1)
- 5’1) < ﬂn,O . ”u" N i1 ﬁn,i N, —Tiun 31)
-3 Ald 1= Al
But from (31),
u, —T'u, | = "un -p+Tp-T'u, " < ||un - p" + "Tp ~T'u, (32)
Applying condition (27) on (31), we get
"u" ~T'u, ” < (1 + ai) ; p” (33)
Using (33) in (31), we have
(1) 2 pll)
u, _x(l) ﬂn 0 Hu NE) ” ﬂ (1 ta ) p" (34)
1208 1- Z
Similarly,
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(2) s p(2)
u -] < ﬂn() _x(s)H ¢(1+G) -p| (35)
n n 1 Z n 1 Z n
Also
(3) % (3)
-l s, 2P (1 -l 9
-3 Ala -3 plla
Continuing (£ — 2) times, we have
(k-2)
A )
l_ i=1 ﬂn,i a (37)
D YA A T
G-t p(k=2) i n
1- iillﬁn,i a
Moving a step more, we have
(k-1) U pk-1)
s~ (1, -
u —x < _ + -(1+a pll (38)
n n Gk plk-1) |l " n G pk-1) i
1 ii]ﬂn,i a 1_ ,:lﬁn,i a

Substituting (35) into (34), (34) into (33), (33) into (32) and (32) into (31) re-

spectively, we obtain

u —X

n+l

n+l

%y A B B
1- qul i 1_221 ﬂ,(,}l?ai 1_221 ﬂrg,zi)ai 1_27:1[35,31')“[
n O ﬂrEkO_l)
fIk 1 i 1— Z c i u

- X

n

}( ﬂ,ﬁzo) ][ “ AL ] (39)
94 p(3) i
Z 1_2111 ﬂn,ia
_ 'B(kf‘) ﬂ(l)
qkl 4 l;: n{k—l) i + qjo (1) i
l_ izlﬁn,i a l_ izlﬂn,ia
G- p(k-2) a2 )
ﬂ 2B a,, .
i=1 n,i i=1"n,i n, i
1 G-t p(k=2) i + @ () i q i (1+a ) n
- i=1 ﬂn,i a 1_ i:llgn,ia 1_ i:lan,ia

Recall that

P

an 0 & i
< Zan,ia + an,O (40)

1 z: 171, l =1
Let o' <a<]1,then
ian,iai ta,, < |:<1_an,0)a+an,0] (41)

i=1

Using (36), (37) in (38), we have
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||”n+1 T Xt "
<[(1-ayo)a+ o |[(1-A0)a+ 8O |[(1-82)a+ 53 ][ (1- ) a+ 553
(157 Yo T (=2 a4 o=,

+{[(1—ﬂ£3)a+ﬂ§f3][(1—ﬂ,£i3)a+ﬂ,£i3][(1—ﬂ£?3)a+ﬁ,5?3]

(k-2) (k-2) - 'B(k_l) (1) (1)
k=2 k=2 i=1Fni 1 1
|:(l —,Bn,o )a +Puo :I S ﬁ(kfl)a" + |:(l - ﬁn,o)a + n,0:|

i=1"n,i

U1 glk=2) 2 gl) |
..-L_ i1 ﬂn’lk,z) i}{l— 1P }}[(1_%’0)a+an,&(l+a’)

-1 @ 1) i
i=1 ﬂn,i a izlﬁn,ia

u, = p

<[1-(1-a,,)(1-a)]

uVl _'xn

S ()

k1)

a p
|:(1_IB;£33 )a +ﬂ§?g:|"'|:(l_ﬁr(fo_2))a + ﬁi{‘&”]l:%] (42)

gl LA
0 0 T i g
+[(1—ﬂ,,fo)a+ﬂnfo]”L- g Ty g
.[(1—0[”’0)(1 +a,,,0](1+ai)

Let /1n=(1—an‘0)(l—a) and

2 ={[(1—ﬂ5f%)a+ﬂif%}[(l—ﬂf3)awfg][(l—ﬂfg)awfg}
- 5 L
[(l_ﬂr(,ko ))a+ rEf(O )]lw} 3

-1 p(k=2) 72 p(l)
+[(1—ﬂ:%)a+ﬂ,9;]--[ o H S ]}
' ’ 1-) " B "a 1-> = pla
i=17"n,1 i=1/"nt

-[(1—05}1’0)a+an’0](l+ai)||un -p

u, - p|

Replacing (40) in (39), we have

U, =X, < (1 — ln) u,—x,|+e, (44)
By Lemma 1.3 in (41), it follows that
lim|u, —x,|[=0 (45)

Since by the assumption, lim, , u, =p,
+u, = p| >0 as n—>o0

then ||xn —p|| < ||un - X,

Hence lim,_ _x =p.

n—o0 n
Next is to show that (ii) implies (i).

Assume, lim = p, then using (2), (8) and (27), we have

n—»0 'xn
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Xyt “Upp|| S
i=1
= n,i [||Tixn+1 l n+l (46)
i=1
0 - xfll) u,
1->" a,.d
-] < ﬂ,ffé(x,(f)—un)+§lﬂ§f?(T"x,§”—un)
i=1
<p —u, |+ Zﬁm T — Ty, +T'u, —u, |
(47)
10 x,,2 —unH+ZﬂnL HT"xn1 —T'u, |+
< nt H n“-i_qzzﬂfgfl) Tiun _un"
i=1
By simplifying (42), we obtain
(1) a2 (1)
Ry S% Ay ++ﬁ”é)i"T"un—un (48)
1- i:lﬂﬂaia 1- i:]ﬂ”sia
But,
-l <lre -7,
<|T'w, -T' -
<da|u, +/u, p||
S(ai +1) =D
Substituting (44) in (43), we have
(1) 2 p(l)
x,(:)_un S% )(12)_ n l;lﬂ"(’l) ,‘(ai+1) n p" (50)
1- i:lﬂn,ia 1- i:lﬂn,ia
Similarly,
(2)
Ay B “ B (" +1)e, - p| 51
o lﬂ(Z)a
Also,
(3) 9 )
Xy 'B"O ,(,4) —u, ¢(a +1) p| 52
1 dEB 1->" B)a
Continuing the process upto (k — 2), we have
(k-2) Gk p(k-2)
Wy < L IR %W T
1 Z‘ikl 1 i

1 Z‘lk 1

For (k- 1), we get
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(k-1 (k)
ﬂn,O ?i]ﬁn,i (ai +1)

u, - p| (54)

S—————|x, —u,||+ -
1— qk ﬂ(k—l)ai 1— ;Iilﬂn(fci—l)az

i=11"n,i
Substituting accordingly from (41) to (48), we get

xn+l - un+1

s[(-c)arany] (1=t )a 0 ] (1) 23 | (1- A} 12
(- s e (157 s 0

le _un

+[((1—ﬂ,ffé)a+ﬁ§f3)((1—/3,(,,23)a+/3§,23)-“((1—ﬁ5,ko2))a+/3§,ko2))

qr ﬂ(k_l) o " Qi1 ﬂ(k.—z)
| +(1—ﬁ,,1 a+p, ) — (55)
=X AL (=) =X A

i=1

?2 ﬂ(l) .
{T-z'?%ﬁilzafJ ((1=a)a+ao)(a" 41l ]

(50) can be written as:

X

ntl T U X, —U,

<[1-(1-a,,)(1-a)]

1-(1-ay0 )a+ay (@ +1), ol o
Let
4 =(1=a,,)(1-a)e, =[1-(1-a,,)a+a,, |(a'+1)|u, - |
Therefore,
X — U] <(1=2,)|x, —u, | +e, (57)
It follows from Lemma 1.3 that: lim,__ [x, —u,[=0
Since by assumption, lim,, u, = p Then,

e, = p|| < +|x, = p| > 0,n > 0.

This implies that lim ,_ u, =p.

‘xn _ui'l

Since (i) > (ii) and (ii) > (i), it shows that the convergence of implicit
Kirk-Mann iterative scheme (8) is equivalent to the convergence of implicit
Kirk-multistep iterative scheme (2) when applied to the general class of map (14).
This ends the proof.

Theorem 2.3 leads to the following Corollaries:

Corollary 2.4. Let (E , ||||) be a normed linear space, D a non-empty, convex,
closed subset of Eand T:D — D, with p e F(T), satisfying

"Ti —p" <d ||x—p|| (58)
where a' €[0,1).If u, =z, =y, € D, then the following are equivalent: the

a) (i) implicit Kirk-Mann iterative scheme {un}j:o (8) converges strongly to

b
(ii) implicit Kirk-Ishikawa iterative scheme {zn }:O: o (7) converges strongly to
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D

b) (i) implicit Kirk-Mann iterative scheme {un}j:o (8) converges strongly to
y2

(ii) implicit Kirk-Noor iterative scheme { Y, }j:o (6) converges strongly to p.

Proof. The proof of Corollary 2.4 is similar to that of Theorem 2.3.This ends
the proof.

Corollary 2.5. Let (E, ||||) be a normed linear space, D a non-empty, convex,

closed subset of Fand T:D — D an operator satisfying
"T' —p" <d' ||x—p|| (59)

where a' €[0,1).If u, =z, =y, =x, € D, then the following are equivalent:
i) implicit Kirk-Mann iterative scheme {u, }::0 (8) converges strongly to p;
ii) implicit Kirk-Ishikawa iterative scheme {z,}” = (7) converges strongly to

P
iii) implicit Kirk-Noor iterative scheme {y, }

::0 (6) converges strongly to p;
iv) implicit Kirk-multistep iterative scheme {xﬂ }:;0 (2) converges strongly to

y2

3. Numerical Examples

In this section, we use some examples to demonstrate the equivalence of con-
vergence between implicit Kirk-multistep (IKMST) iterative scheme (2) and
other implicit Kirk-type [implicit Kirk-Noor (IKN)(6), implicit Kirk-Ishikawa
(IKI)(7) and implicit Kirk-Mann (IKM)(8)] iterative schemes with the help of
computer programs in PYTHON 2.5.4. We shall consider our results for in-
creasing and decreasing functions. The results are shown in Table 1 and Table
2.

3.1. Example of Increasing Function (See 5.12 of [4])

Let f:[6,8] >[6,8] bedefinedby f(x)= %+3. Then fis an increasing func-

tion with fixed point p = 6.000000 . By taking initial approximation as
Xy =Yy = 2y = U, =7.000000 (mid point of xand y) and

: 1
a,, :IBn,l = ﬂnj = , (for Jj= 1,2,3,---,k=2), a,, ZI_Z?IZOan,i >

Von+1

Bro=2 0 Buis s Brg =2 Br;' for all the iterative schemes. The equiva-

n,i? n i=0
lence of convergence results to the fixed point p =6.000000 are shown in Ta-
ble 1.

3.2. Example of Decreasing Function (See 5.11 of [4])

Let f:[O,l]—)[O,l] be defined by f(x):(l—x)z. Then fis a decreasing
function with fixed point p=0.381966. By taking initial approximation as

; 1
X, =Yy =2, =1, =0.700000 and «a,, =8, =8 = , (for

Vn+4
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j:1,2,3,“‘,k_2 )’ an,o =1- l'qioan,i > ﬂnl,O = :Ijoﬂnl,i > ﬂf’gl = Zoﬂrﬁzl
for all the iterative schemes. The equivalence of convergence results to the fixed
point p=0.381966 are shown in Table 2.

Table 1. Numerical example for increasing function: f(x)= g +3.

n IKMSTP IKN IKI IKM

0 7.000000 7.000000 7.000000 7.000000
1 6.000124 6.194906 6.336163 6.579796
2 6.000001 6.019386 6.072164 6.268634
3 6.000000 6.001241 6.011546 6.107454
4 6.000000 6.000057 6.001482 6.038496
5 6.000000 6.000002 6.000159 6.012624
6 6.000000 6.000000 6.000015 6.003844
7 6.000000 6.000000 6.000001 6.001098
8 6.000000 6.000000 6.000000 6.000297
9 6.000000 6.000000 6.000000 6.000076
10 6.000000 6.000000 6.000000 6.000019
11 6.000000 6.000000 6.000000 6.000004
12 6.000000 6.000000 6.000000 6.000001
13 6.000000 6.000000 6.000000 6.000000
14 6.000000 6.000000 6.000000 6.000000

Table 2. Numerical example for decreasing function: f(x)=(1- )c)2 .

n IKMSTP IKN IKI IKM

0 0.700000 0.700000 0.700000 0.700000
1 0.382001 0.382149 0.384209 0.409165
2 0.381966 0.381968 0.382091 0.388393
3 0.381966 0.381966 0.381972 0.383341
4 0.381966 0.381966 0.381966 0.382236
5 0.381966 0.381966 0.381966 0.382015
6 0.381966 0.381966 0.381966 0.381974
7 0.381966 0.381966 0.381966 0.381967
8 0.381966 0.381966 0.381966 0.381966
9 0.381966 0.381966 0.381966 0.381966
10 0.381966 0.381966 0.381966 0.381966
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4. Remark

i) From Table 1, it is observed that for increasing function f(x)= §+ 3, the

convergence of implicit Kirk-multistep iterative scheme (2) to the fixed point
6.000000 is equivalent to the convergence of other implicit Kirk-type [implicit
Kirk-Noor (IKN) (6), implicit Kirk-Ishikawa (IKI) (7) and implicit Kirk-Mann
(IKM) (8)] iterative schemes to the same fixed point 6.000000;

ii) from Table 2, it is observed that for decreasing function f (x)=(1 —x)z,
the convergence of implicit Kirk-multistep iterative scheme (2) to the fixed point
0.381966 is equivalent to the convergence of other implicit Kirk-type [implicit
Kirk-Noor (IKN)(6), implicit Kirk-Ishikawa (IKI) (7) and implicit Kirk-Mann
(IKM)(8)] iterative schemes to the same fixed point 0.381966.

5. Conclusion

The numerical examples considered in this paper justified our claim on the
equivalence results obtained. These results show that our implicit Kirk-type hy-

brid iterative schemes have good potentials for further applications.
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