
Applied Mathematics, 2018, 9, 1395-1423 
http://www.scirp.org/journal/am 

ISSN Online: 2152-7393 
ISSN Print: 2152-7385 

 

DOI: 10.4236/am.2018.912091  Dec. 28, 2018 1395 Applied Mathematics 
 

 
 
 

Development of a Tool Cost Optimization  
Model for Stochastic Demand of  
Machined Products 

Francisco G. Pantoja1, Victor Songmene1, Jean-Pierre Kenné1, Oluwole A. Olufayo1,  
Michael Ayomoh2 

1Mechanical Engineering Department, École de Technologie Supérieure (ÉTS), Montreal, Canada 
2Industrial and Systems Engineering Department, University of Pretoria, Pretoria, South Africa  

  
 
 

Abstract 
Cutting tool management in manufacturing firms constitutes an essential 
element in production cost optimization. In order to optimize the cutting tool 
stock level while concurrently minimizing production costs, a cost optimiza-
tion model which considers machining parameters is required. This inclusive 
modeling consideration is a major step towards achieving effectiveness of 
cutting tool management policy in manufacturing systems with stochastic 
driven policies for tool demand. This paper presents a cost optimization 
model for cutting tools whose utilization level is assumed to be optimized in 
respect of the machining parameters. The proposed cost model in this re-
search incorporated the effects of diversified machining costs ranging from 
operational through machining, shortage, holding, material and ordering 
costs. The machining of parts was assumed to be a single cutting operation. 
Holt-Winters forecasting technique was used to create a stochastic demand 
dataset for a test scenario in the production of a high-end automotive part. 
Some numerical examples used to validate the developed model were imple-
mented to illustrate the optimal machining and tool inventory conditions. 
Furthermore, a sensitivity analysis was carried out to study the influence of 
varying production parameters such as: machine uptime, demand and cutting 
parameters on the overall production cost. The results showed that a desired 
low level of tool storage and holding costs were obtained at the optimal stock 
levels. The machining uptime had a significant influence on the total cost 
while tool life and cutting feed rate were both identified as the most influenti-
al cutting variables on the total cost. Furthermore, the cutting speed rate had 
a marginal effect on both costs and tool life. Other cost variables such as 
shortage and tool costs had significantly low effect on the overall cost. The 
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output trend showed that the feed rate is the most significant cutting para-
meter in the machining operation, hence influencing the cost the most. Also, 
machine uptime and demand significantly influenced the total production 
cost.  
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1. Introduction 

Research in the field of cost optimization modelling for stochastic inventory 
management and control has significantly intensified over the past few decades 
[1]. The ability to minimize the overall production cost of a machining process 
while adapting to the ever growing levels of stochasticity in the open market can 
be considered a major step towards its competitiveness. This capability must, 
however occur without adversely affecting throughput and production quality 
amidst multiplicity of inherent market conditions. Machining operations gener-
ally constitute a large segment in the manufacturing sector with costing effec-
tiveness serving as a critical success factor. In a machining process, the cutting 
tool represents an essential element to the entire machining system. This is so 
because its effect is directly linked to a multiplicity of factors such as: the quality 
of finished product, cycle time of operation and ultimately the cost of machining 
amongst others. The significance of the influence of machining parameters on 
the cutting tool, workpiece and other machining components during an opera-
tion is quite crucial to deciding the overall production cost. Some notable com-
ponents that make up an ideal machining operation are as presented in Figure 1. 
The optimum behavior of a machining operation can be influenced by any one 
of these member elements.  
 

 
Figure 1. An illustration of factors influencing tool performance optimization. 
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1.1. Predictive Challenges to Manufacturing 

Companies that focus on industrial metal works are often faced with predictive 
challenges even though there are several quantitative techniques that can be used 
to improve production processes such as forecasting, probability distributions 
and optimization related methods amongst others [2]. Very often, applicability 
within this research space can be limited hence, resulting in a significant pro-
duction planning problem. Some of these problems are traceable to inefficiencies 
in the administrative and production processes derived from a poor strategic 
planning.  

In most companies, the behavior of product sales is random, since it is diffi-
cult to absolutely predict demand to determine sales. Due to this challenge, the 
focus is often placed on alternate areas where the lack of a sound process design 
can be mitigated and controlled. Some of these areas include: 
 Production: The lack of a future programming and being left with the expec-

tation of the needs of the clients, manufacturing companies are forced to ful-
fill the demand of their clients by incurring additional time in the productive 
processes. 

 Inventories. To the poor management of inventory levels, such as the case of 
high inventory level, this causes high costs and prevents the expansion of the 
business. 

 Finances: Given the high costs of inventories, companies limit their growth 
in the purchase of new equipment to make production processes more effi-
cient. 

To mitigate these and other problems caused by poor planning of the produc-
tion, it is necessary to design a methodology that provides accurate predictions 
of the sales of industrial metal mechanical products or mitigate alternate costs 
generated elsewhere in production [3]. Actual modeling of industrial systems is 
complicated because of the variability of factors, in many cases it is necessary to 
make complex combinations of several distribution functions to resolve such 
problems. 

1.2. Optimization Modelling in Manufacturing 

Existing machining models more often than not, are seen to be analyzing the 
combination of different cutting materials by focusing on their conditions while 
conducting analytical, numerical, empirical and artificial intelligence based ob-
servations. Robust predictive models are often required to accommodate the 
complex interaction that exists amongst the trio of a workpiece, the cutting tool 
and the machine tool [4] [5] [6] [7]. 

Modeling a cutting process often constitute integrating a system’s planning 
process to improve productivity and enhance product quality. However, to have 
a significant progress in the modelling of machining processes, especially on 
metallic work pieces, some notable variables capable of improving the quality of 
output should be taken into cognizance. Some of these include the effect of 
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stress, strain rate and temperature amongst others. From the point of view of 
demand, when a product with intricate properties such as high strength (e.g. 
aerospace superalloys) is seasonally or randomly produced, it often becomes dif-
ficult for industries machining these materials to adequately estimate the quan-
tity of cutting tools needed to meet the demand. On the other hand, working 
with high strength materials increases the tendency of tool penalty cost due to 
short tool life. These effects are central to the increase in the cost of products and 
a reduction in the overall profit margin. These costs could be associated with 
storage costs, ordering costs, stock-out or shortage costs. 

1.3. Recent Studies on Cost Optimization in Machining 

Traditional procurement policies are subjective and often premised on periodic 
supply decisions. These policies are usually based on simplified and idealistic 
assumptions, as well as on the expected cost criterion, without considering ma-
chining factors as well as the finished goods throughput. Some research works 
[8] [9] [10] [11] [12] have considered more inclusive views into production cost 
in manufacturing by considering machining conditions. However, the need for a 
more generalized and adaptable model based on a stochastic demand is needed 
to optimize production cost in the manufacturing sector.  

The rate of tool depletion was found to be a function of tool life and machin-
ing conditions. Finding the optimal machining conditions related to tool life and 
obtaining the optimal order quantity could stabilize cycle length and ordering 
cycle. A study into production cost in the milling of titanium alloys by consi-
dering machining conditions, was conducted by Conradie, Dimitrov and Oos-
thuizen [12]. In their paper, they designed a cost model which considered 
pre-cost of manufacturing and auxiliarycost incurred based on machining pa-
rameters. Their approach generated means to estimate the cost of titanium mil-
ling based on actual machining and pre-manufacturing conditions. Further-
more, due to tools supply unpredictability and market demand variability, nu-
merous researchers have sought to design models which would be used to max-
imize the efficiency in tool management to mitigate the adverse costs incurred in 
shortage conditions [9] [10] [11]. 

Li, Sarker and Yi [9] in their research into an optimal stocking policy for ma-
chining tools, designed a model for stochastically distributed demand and tool 
lifespan. Their model considered the economic penalty for tool breakdown and 
its influence on lifespan. They also investigated these effects under a certainty 
distributed demand scenario [10]. Kouedeu, Kenne, Dejax, Songmene and Po-
lotski [8] in their research on stochastic optimal control of manufacturing sys-
tems under production-dependent failure rates, proposed a stochastic dynamic 
programming formulation and derived numerical optimum policies to satisfy 
the challenge. Their research focuses on a part inventory production policy, 
however it does not take into consideration in its estimation the influence of the 
machining parameters. 
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In their research work on cost modelling in milling operations, Parent, Song-
mene and Kenné [11] used an optimization technique premised on operations 
research to minimize machining time and evaluate the cost of milling operation 
hence, demonstrating the practicality of the algorithm in solving cost related 
problems and as a decision-making aid for a central controller flexible manu-
facturing cell. Their approach yet only considers an optimization of the ma-
chining cost in the overall production cost and ignores the inventory manage-
ment. This approach can be deployed for analysis of the impact of setup time 
while computing for the capacity of a system emanating from a new design and 
in determining the manufacturing price of parts. 

The above mentioned works, as most resources from the literature, do not 
consider the attributes that influences the productive length of a tool-life while 
solving the general optimization problem. It is however important to recognize 
that the tool-life productive length has a great impact on tool procurement and 
management of its inventory systems as well as indirectly influence total operat-
ing cost. 

1.4. Problem Statement 

Based on the reality of market variability, which has got so much impact on 
production processes, modern day manufacturing firms are faced with a rising 
level of supply uncertainty and demand variability. These fluctuations are char-
acterized with challenges capable of impacting negatively on the optimum per-
formance level and general sustainability of the manufacturing sector. Industrial 
firms involved in the production of high-valued parts such as the automotive or 
aerospace industry amongst others are often posed with these challenges [13]. 
These firms often seek to identify optimum machining parameters to increase 
tool life while maintaining a high quality production level. Optimization of ma-
chining time as well as tool inventory cost management are key factors for at-
taining high production efficiency for these high-value parts. A functional tool 
optimization policy capable of reducing costs and sustaining the overall tool op-
timum conditions has become a major priority in production systems function-
ality. 

Other factors of significant importance in manufacturing processes include 
machine unit costs, machine uptime costs, ordering costs and lead-time due to 
their impact on procurement, tool inventory policy and influences on tool life-
span. These considerations if well managed, can reduce the costs associated with 
production activities, decrease the levels of inventory of tools with low demand 
and increase the level of service for products considering their seasonality and 
cyclicality.  

This paper presents a combined tool acquisition and cost optimization model 
capable of predicting and reducing the degree of uncertainty in demand. With 
this collective information, this will assist in determining the lot-sizing and cy-
cle-time of cutting tools for a better manipulation of the supply chain system. 

https://doi.org/10.4236/am.2018.912091


F. G. Pantoja et al. 
 

 

DOI: 10.4236/am.2018.912091 1400 Applied Mathematics 
 

This paper develops a nonlinear cost optimization model based on an inventory 
policy for cutting tools at optimum machining parameters for the production of 
high-value mechanical parts. Finally, the study inclusively offers information to 
a production manager regarding the life of his cutting tools in a production 
process and permits the flexibility to adapt a production process to suit demands 
consumer requirements. 

Figure 2 shows a flowchart that depicts the overall production cost optimiza-
tion process developed in this study. The optimization process carried out using 
LINGO software utilized a combined modelling effect of cost minimization and 
optimum quantity computation as presented in Figure 2. This results in a 
minimized production cost and optimized ordering quantity. However, these are 
achievable only when the ordering quantity is optimized. 
 

 
Figure 2. Flowchart of the proposed cost optimization process. 
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2. Model Formulation 

In this section, the model development is introduced with the mathematical 
formulations, assumptions and constraints. Prior to the model formulation, an 
illustration of the interaction between main cost components and effect of cost 
modelling is presented as seen in Figure 3. Herein, the dynamical relationship 
amongst cost, productivity and basic machining parameters are presented. The 
optimization process of the model in this research seeks to find the lowest point 
on the total cost curve amidst diverse production costs. This point marks the be-
ginning of the high efficiency zone in choice of machining parameters where ef-
ficient machine and tool life utilization is achieved.  

From Figure 3, it could also be seen that the drop in total cost crosses the ris-
ing productivity of operations hence, creating an efficient range in production. A 
subset of this range was found between the lowest cost and highest productivity 
for the highest machining efficiency. This range is based on a set of machining 
parameters which indicates the most favorable machining conditions. Beyond 
the efficient performance zone, the occurrence of severe tool damage creates a 
proportionate rise in production costs and drop in productivity. On the other 
hand, below the optimal machine utilization point, the tool utilization is not 
maximized hence leading to a reduction in tool costs yet resulting in a relatively 
high machining costs due to poor efficiency. 

2.1. Hypothesis 

This sub-section presents the assumptions considered in the model development 
process: 

1) Tool orders are made on request and not in predefined cyclic batches.  
 

 
Figure 3. Schematic illustration of interaction between main cost components and effect 
of cost modelling (adapted from [12] [14]). 
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2) The cutting operations tools are mainly divided into two groups, namely: 
tools for roughing and finishing operations. However, this research will focus on 
the use a single cutting operation. 

3) Once a cutting tool has reached its life span, it is no longer used to avoid 
tool breakage and the occurrence of a defective process. This also eliminates the 
penalty cost for tool break. 

4) The life span of a tool is considered based on empirical models with the 
experimentation of similar conditions. 

5) Tool vendors are located nearby resulting in a fixed lead time. Hence, all 
tool demands are satisfied in real-time without any need for back orders. 

6) Labor cost is included within machine usage cost and considered to be a 
constant. 

7) Inventory is considered as the average between the initial and final inven-
tory. 

8) The demand of part product is random, however, it presents patterns of 
seasonality, cyclic tendencies that can be followed through forecasting methods 
such as triple exponential smoothening as premised in (Holt-Winter’s Method). 
Some examples of these patterns are festive yearly seasons, economicfactors, re-
cession and inflation. 

9) Machine time used is inclusive of both operational, setup and installation 
time. 

10) Price per unit product is constant 
11) Ordering costs are constant 
12) The holding cost is a constant and includes both the warehouse and pres-

ervation costs. 
13) Initial purchases are below demand quantity. 

Objective Function 
The focus of this research is to optimize production by obtaining the minimum 
total cost of operations supported by the inventory system as a complete manu-
facturing process. This can be represented by an objective function which con-
sists of the cost optimizations elements, these are; the cost of operations, cost of 
holding, cost of shortage, annual ordering and raw material costs. 

Total cost operational cost shortage cost holding cost
raw material ordering cost

= + +
+ +

 

( ) ( ) ( ) ( ) ( ) ( )TC $ $ $ $ $ $op sh h B oC C C C C= + + + +  

*TC = total cost of production in over a production time period i. 
The next sub-sections present the details of the elements of the objective func-

tion: 

2.2. Cost Optimization Elements 
2.2.1. Operational Cost 
Machining time is vital in determining the factor of tool life. The cutting time 
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during production is defined by the material volume to be cut (Length × Width 
× Height) and the depths of cut (radial and axial) as presented in Figure 4. A 
representation of Taylor’s extended tool life model was applied in this research. 
The machining workpiece in this research is a rectangular prism which requires 
different operational schedules ranging from rough cuts through smoothened 
finish cuts. This research would however focus on the rough cut hence a single 
cutting operation. The decision variables associated with the material removal 
process include: width of cut ( rw  and fw ), depth of cut ( rd  and fd ) and 
feeds ( frv  and ffv ).  

To estimate the life span of a tool using Taylor’s empirical model as presented 
in Equation (2), it is necessary to determine the tool cost. The following equa-
tions are a derivation of the original Taylor’s model: 

0 r

kt
v f d wα β ε=  

In application for milling operations, the tool life expression ( 0t ) was ex-
tended by adding the radial width of cut with α, β and ε serving as parametric 
constants. Equations based on this type of operation could be devised for either 
roughing or finishing operations i.e. 0rt  or 0 ft . However, this research is fo-
cused on the roughing operation as presented in Equation (3) below: 

0r
r r r r

kt
v f d wα β γ λ=  

The parametric constants defined in this model need to be obtained through 
experimentation due to the fact that the machining conditions such as the tool 
material-make, workpiece, cutting fluid, rigidity of the assembly and the system 
vibration amongst other factors, vary significantly from one machine to the 
other. These can be determined using a statistical design of experiment (DOE) 
[11]. 

The cost of tools utilization per hour is defined here as the ratio of the current 
market price to the tool life as presented in Equation (5). The tool life is usually 
expressed in terms of the operations the tool is subjected to over time: 
 

 
Figure 4. Schematic illustration representation of the material 
volume to be machined [11]. 
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0

pr
hr

r

c
c

t
=  

In this research, the primary focus is the cutting operation. Apart from iden-
tifying and analyzing the cutting operations, a special consideration is also given 
to the respective quantities of cutting tools ( pQ ) deployed during the overall 
production task. A combination of all these results in the models below: 

( ),operational cost op pr fC c Q= = ⋅  

where, 

( )0r opr hr oprc k t c t⋅ ⋅= +  

( )0f opf hf opfc k t c t⋅ ⋅= +  

( ) ( )roughing finishingp r fQ Q Q= +  

where 0fQ =  in roughing only operations.  
Thus: 

( ) ( )0$op op hr op pC k t c t Q= +⋅ ⋅ ⋅  

2.2.2. Holding Cost 
The holding cost represents all the costs associated with the storage of the in-
ventory until its depletion. These costs usually include tied-up capital, space, in-
surance, protection, taxes attributed to storage amongst others. The holding cost 
can be assessed either continuously or on a period-by-period basis. A common 
consideration for the holding cost is that an initial inventory level exists at the 
beginning of every period. Based on this, the inventory cost at the beginning of a 
period I can be obtained from: 

( ) { }$h h i sC c I Q= +  

where iI  is considered as the average inventory level required to avoid short-
age of cutting tools. This is computed based on the summation of the initial and 
final inventory levels divided by two. 

( )initial final

2i

I I
I

+
=  

Furthermore, iI  as presented below, represents the total amount of tools 
required to meet the demand for a given product. 

i s iI Q I= +  

In addition, considering the likely physical limitations of a warehouse in terms 
of its holding capacity, the capacity of storage can be represented as: 

i iI A≤  

Considering that the average inventory, we can add it directly to the objective 
function as follows: 

( )$h h iC c I= ⋅                          (6) 
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2.2.3. Shortage Cost 
The shortage cost ( shC ) represents the costs incurred during the time produc-
tion has a depleted inventory. This is the cost incurred between this time and the 
period of a re-order. It includes costs of not using the machine and equipment 
involved in production.  

sh sh tC c F= ⋅                           (7) 

 i
t

s

y
F D

Q
=  

where iy  service as an indicator for when shortage is present in the equation. It 
can be activated or switched off during computation and holds two statuses 
which are 0 or 1. Whereas tF  stands for the amount of missing tools in system. 

2.2.4. Material Cost 
The material cost of purchasing the workpiece used in production is included for 
a more inclusive and comprehensive review of the total costs involved in pro-
duction. It is a factor of the quantity of material and the cost per unit material 
purchase.  

( )$B B BC Q c= ⋅  

2.2.5. Ordering Cost 
The ordering cost is described as a function of the unit cost of ordering tools, cy-
cle time between orders and a variableterm. The variable term iz  is used to 
consider the alternate conditions which are assumed constant in this present 
model. Such conditions for variability in unit ordering, shipping, delays and al-
ternate reasons which could influence this cost could be expanded through this 
variable in future research modifications of this model. However, in this re-
search work, the ordering cost is considered as constant of value 1. 

( )$O f i
DC C z
Q

=  

2.3. Basic Objective Function for Single Operations 

The objective function formed to minimize the production cost that involves the 
operation cost, shortage cost, holding cost, material cost and ordering cost is 
shown in the Equation (11). The cost of labor is not included in this function. 
The focal point of this function lies in the operational costs which is derived 
from the machining parameters and tool conditions.  

( )MinTC p c op sh h B OQ T i C C C C C= + + + +  

( )
( )0 0 0

Minimised Total Cost ,p c

i
op hr op p sh hi i B B f ii i

s

n

o

n

Q T i

y Dk t c t Q c D c I Q c C z
Q Q= =

= + + +⋅+ +∑ ∑
 

2.4. Constraints 

Tool restrictions 
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Some decision variables found in the model are the radial width of cut for the 
roughing operation ( rw ) and the axial depth of cut ( rd ). This radial width ( rw ) 
is connected to the number of passes and the width of the volume to machine 
(W): 

r ww N W⋅ =  

Also, the axial depth of cut ( rd ) which is connected to the number of axial 
passes ( pN ) and the height (H) of the volume to machine is a decision variable: 

r pd N H⋅ =  

Limits are given to the width of radial cuts ( rw ) by the diameter of the tool 
( tD ): 

r tw D≤  

The depths of axial cuts ( rd ) are also limited by the length of the tool flutes 
( maxfh ): 

maxr fd h≤  

Machine-tool constraints 
The power needed for the operation relies on the material removal rate (MRR) 

and the specific power rating of the workpiece material as seen in Equation (12). 
It can thus be inferred that at maximum machine power, the maximum metal 
removal rate (MRR) can be determined. This rate depends on the width of cut 
( rw ), the feed ( rf ) to the depth ( rd ), as shown in the equation below: 

r r r RRw f d M≤∗ ∗  

The material removal rate ( RRM ) can be denoted as: 

( ) maximum machine cutting powerenergy coefficent
Unit power for the workpiece materialRRM η≤ ⋅   (12) 

In this case,  
 The cutting speed rate is constrained by the machine’s maximum spindle speed.  

max
1000

;
π

r

t

v N
D
⋅

≤
⋅

 

 The achievable power is constrained by the maximum safe operational force. 

max
60

;r

r

HP F
v
⋅

≤  

 The cutting feed rate is constrained by the machine’s maximum feed rate. 

maxr mf f≤  
where maxmf  is the maximum feed of the machine, maxF  are the maximum 
forces obtained from the machine and maxN  is the maximum spindle speed of 
the machine. 

Inventory and shortage restrictions 
With restrictions of inventory as follows: 

( )1i p i tI Q I Q i− + − =  

i iI A≤  
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Restrictions of shortage: 

t p tQ Q F− =  

( ) 0p i iQ I y− ≤  

Finally, non-negativity is assumed for all the decision variables and binary 
variables: 

, , 0t i iF I A ≥  and 0,1iy =  

This project focuses on optimizing the process thought for quantity of tool in 
an inventory. Therefore the study remains within basic machine limitations or 
overlooks tool immersion and surface finish as constraints. 

3. Solution Methodology and Illustrative Example 

The model was implemented in “LINGO” by LINDO® systems. “LINGO” is a 
commercially available optimization modelling software used for building and 
solving mathematical optimization models. Its package build-up provides a lan-
guage tool needed to build and design models as well as include needed solving 
tools within a compact integrated environment. It could be applied to linear, 
nonlinear, quadratic, integer and stochastic optimization problems. A seven core 
computer with 8 gigabytes of memory was used for the LINDO analysis to 
minimize processing time. Note that for each result the LINGO solver provided, 
it declared the solution as being only a local optimum, i.e. it could not fully 
guarantee a global optimum. 

3.1. Graphical Illustration 

The illustration in below depicts the policy of the model for the annual optimi-
zation of production in a manufacturing company whose primary task and op-
erations is focused at metal works. This new tool policy includes the forecast of 
sales and the annual tool planning for production. The main objectives of this 
illustration is to show how the model can meet a high level of service in sales and 
a low inventory level of production. As the proposed model is founded on the 
principle of the Economic order quantity model (EOQ) [15], a generic inventory 
system adapted to include the influence of machining parameters is produced 
(Figure 5). 

From the figure, the tool inventory system shows two different ordering quan-
tity cycles which changes based on the variation of tools inventory depletion. By 
evaluating an accurate estimate of the production demand and correlating it 
with the productive tool life for machining tools, it is possible to determine the 
optimal order quantity ( tQ ) and optimal-order cycle ( cT ). A steep quantity slope 
due to reduced tool life or frequent tool damage would reduce the order cycle 
length. This can be prevented by accurately estimating the reorder point from 
the lead time in obtaining new tools [16]. A minimum safety threshold is also 
needed to protect against the impact of back-orders and offer enough time  
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Figure 5. A generic review inventory system (adapted from Li and Cheng [10], Shang, Tadikamalla, J. Kirsch and Brown [17]) To 
the other sections. It is a result with more explanantion. 

 
to react to depleting stock. Beyond this threshold the risks of reaching shortage 
is high.  

It is worth noting that a machining tool has an expected productive life 
around its mean value; therefore, there exists more risk of failure cost for pro-
longed use of machining tool over this value. However, a reduction in running 
time of these tools will potentially increase the replacement quantity and thus 
re-ordering cost. Therefore, production inventory estimation is contingent on 
requirement needs based on trends and controlling the utilization time for the 
tools could be used to regulate the inventory system without influencing the in-
tegrity and quality of the product. 

3.2. Numerical Sample Case 1 

The example shown below was adapted from the work of Wang, Kim, Katayama 
and Hsueh [18]. In the study, the cost analysis of face milling amedium carbon 
steel (150 NHB) block, with a three-flute cemented carbide mill is performed. 
The tool diameter used is 25 mm. The Taylor’s tool life parameters utilized in 
this study were also obtained from literature [19]. Table 1 and Table 2 lists all 
the machine tool, cost and production parameters. The solution represented for 
this initial example, considers only a fixed demand of 2500 produced parts and 
determines ideal parameters needed to optimize inventory use and reduce cost. 
All constraints are based on realistic machine parameters. 
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Table 1. Sample data utilized in numerical example 1; machine constants. 

Machine data 

Nmax (rpm) 1200 max feed speed 8000 

HPs(w/mm3/min) 59.2 max cutting forces (kN) 2000 

Hpmax (kw) 22,000 max spindle speed (rpm) 12,000 

Energy efficiency η (%) 0.85   

 
Table 2. Sample data utilized in numerical example 1; cutting parameters, workpiece 
dimension and cost values. 

Cutting data Cost data 

feed per tooth (mm/tooth) 0.1 - 0.6 Quantity of workpiece purchased (kg) 500 

cutting speed (m/min) 50 - 300 price of the tool ($) 49.5 

Height (mm) 30 cost per minute operation ($/min) 4 

Length (mm) 240 raw material cost ($) per unit 0.5 

Width (mm) 60 Inventory cost 0.5 

axial depth of cut (mm) 4 Per ordering cost $25 

α 0.2 Holding cost per unit year $9 

β 4.0 Time of operation (min) 6 

γ 1.0 Initial inventory 100 

Taylor constant K 2.086E+12   

Results and Discussion 
Solving the developed model using the LINGO® solver in Equation (11) gave the 
following cost breakdown as presented in Figure 6. From the figure, the main 
contributors to the total production costs were identified as the ordering costs, 
machine operations costs and holding costs. Ordering costs are known to vary 
based on the lead-time and unit cost of ordering a tool. As the lead-time to deli-
very increased, the ordering costs simultaneously increased. The operational cost 
on the other hand, is greatly susceptible to changes in tool life. An increment in 
the amount of tools following a poor performing tool life, was seen to signifi-
cantly increase the incurred costs. The model also indicates the significant cost 
incurred from inventory of tools. Tool quantity stored during the production of 
the product bares an influence on its selling price. However, due to the success-
ful minimization of the model, the separate cost of holding the safety stock as 
well as the shortage costs has become insignificant in the summation.  

This elevated holding cost is due to the short cycle period of 5.5 days for reor-
dering. A set of approximately 65 orders per year was obtained. The average 
forecast quantity of 7 units per order cycle was obtained from Equation (5). This 
resulted in an optimal order quantity 0Q  of about 38 units to minimize total 
costs of production. This can also be seen from Figure 7 and Figure 8. The value 
obtained in contrary to an ideal EOQ model contains the inclusions of the sum 
of operational, shortage, holding, and material costs. An optimal ordering  

https://doi.org/10.4236/am.2018.912091


F. G. Pantoja et al. 
 

 

DOI: 10.4236/am.2018.912091 1410 Applied Mathematics 
 

 
Figure 6. Bar chart result of the influence of various costs on total operating cost. 

 

 
Figure 7. Schematic representation of the order optimization model with added machin-
ing op-erational cost. 
 

 
Figure 8. Schematic of inventory control system with a fixed demand. 
 
quantity was obtained at the intersection of the ordering, sum of operations and 
safety holding costs. The results also indicated that a safety stock level of 28 units 
indicating the least amount in the inventory is needed to prevent a shortage 
situation. Furthermore, a value for re-ordering of stock to match lead time was 
deduced to be 52 units.  
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3.3. Numerical Sample Case 2 

Table 3 summarizes the data used in this numerical sample case 2. This example 
was adapted from the work of Parent, Songmene and Kenné [11] and modified 
to suit machining setup proposed in this study. A typical end milling operation 
of an alloyed steel part (4140, 4340), with a four-flute uncoated high speed steel 
(HSS) end mill is proposed for evaluation. The diameter of the tool is 19.05 mm 
(0.375”). The chip load per tooth is estimated to be 0.05 mm/tooth and the speed 
between 30 - 45 m/min with a hardness between 30 - 38 HRC. The milling ma-
chine setup and initialization values, cost parameters as well as parameters for 
production are listed in the Table 1 & Table 3. The solution represented in this 
initial part, considers only a fixed demand of 5000 produced parts and deter-
mines ideal parameters needed to optimize inventory use and reduce cost. All 
constraints are established on realistic machine parameters.  

Results and Discussion 
Figure 9 presents results acquired using the LINGO® solver. The following cost 
breakdown presented in the Figure 10 was obtained solving the developed model  
 

 
Figure 9. Bar chart result of the influence of various costs on total operating cost. 

 
Table 3. Sample data utilized in numerical example 2; cutting parameters, workpiece 
dimension and cost values. 

Cutting data Cost data 

Cutting feed rate (mm/min) 4.01 Mean Demand/year 5000 

feed per tooth (mm/tooth) 0.05 Quantity of workpiece purchased (kg) 200 

cutting speed (m/min) 41 price of the tool ($) 90 

Height (mm) 25 cost per minute operation ($/min) 4 

Length (mm) 100 raw material cost ($) per unit 0.75 

Width (mm) 60 Inventory cost 0.5 

axial depth of cut (mm) 0.063 Per ordering cost $30 

α 5 Holding cost per unit year $6 

β 1.75 Time of operation (min) 6 

γ 3.5   

λ 0   

Taylor constant K 5.0E+11   
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Figure 10. Schematic representation of tool quantity per order cycle needed at minimum 
total cost. 
 
in Equation (11). From the figure, the main contributors to the total production 
costs were identified as the ordering and machine operations cost. However, this 
example presents a lower inventory holding costs. This is due to the lower cost 
of purchasing HSS tools and its influence in the combined optimization func-
tion. Due to the successful minimization of the model, the holding costs in-
curred for safety stock as well as the shortage costs remain insignificant in the 
overall summation.  

For the numerical example, a set of 22 orders per year over an approximate 16 
days cycle was obtained. The average forecast quantity of 13 units per order cycle 
was obtained from Equation (5). This resulted in an optimal order quantity 𝑄𝑄0 
of about 54 units to minimize total costs of production. This can also be seen 
from Figure 11 and Figure 12. The value obtained in contrary to an ideal EOQ 
model contains the inclusions of the sum of operational, shortage, holding, and 
material costs. An optimal ordering quantity was obtained at the intersection of 
the ordering, sum of operations and safety holding costs. The results also indi-
cated that a safety stock level of 57 units indicating the least amount in the in-
ventory is needed to prevent a shortage situation. Furthermore, a value for 
re-ordering of stock to match lead time was deduced to be 105 units. An analysis 
of a controlled inventory system for the numerical example is illustrated in Fig-
ure 12.  

3.4. Sensitivity Analysis 

An in-depth sensitivity analysis of numerical sample case 2 is performed to es-
tablish influencing factors relevant to changes in operational costs, determine 
the influence of demand on inventory optimization and ascertain the key cost 
drivers of the model using actual industrial stochastic demand data. 

3.4.1. Cutting Parameters 
From an overview of the factors influencing the total cost of consequence, op-
erational machining costs are selected to assess the effect of cutting factors. The  
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Figure 11. Schematic representation of the order optimization model with added ma-
chining op-erational cost. 
 

 
Figure 12. Schematic of inventory control system with a fixed demand. 
 
most important variables for minimizing this cost area are the cutting speed and 
the feed rate. These significantly affect the tool life criterion and could create a 
rising cost avalanche during production. By fixing other factors involved to op-
timal levels, a plot of the relationship between speed and feed to total cost is 
shown in the Figure 13.  

From Figure 13, it can be seen that as the speed increases a corresponding in-
crease in machining cost is observed. This is expected based on the increased 
wear at such cutting parameters, however, with increased tool life a correspond-
ing increase in machining cost was also observed. This situation can be ex-
plained by the factors controlling an optimum inventory ordering system. The 
improvement in the tool life changes the tool usage frequency and in conse-
quence increases the holding costs of tools. Based on these changes and the con-
sideration of lead time for ordering, a new optimal order quantity is calculated 
which is more than the previous to minimize the overall total cost of production. 
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(a) 

 
(b) 

Figure 13. Trend of the machining cost based on cutting speed and tool life (a) 3D graph 
(b) Contour plot. 
 

Similar observations are seen from the feed in Figure 14. An increase in feed 
to a maximum value of 0.09 mm/tooth also increases the machining cost. How-
ever, this increase and effect on the machining cost is more pronounced than 
that experienced by an increase in speed. Over the whole range of feed rates, a 
maximum costs increase of $4000 was seen as compared to $2400 with speed in-
crease. The tool life changes based on changes in feed pose a significant effect of 
the optimal ordering quantity and thus the total cost. The most important vari-
able to consider in estimating machining costs is therefore the feed rate.  

3.4.2. Demand Analysis and Cost Effects 
The estimated demand ideally influences total production cost since inclusive 
components costs do increase (Figure 15). However, a cost intensive phase is 
identified where optimal ordering quantity and safety stock levels are within  
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(a) 

 
(b) 

Figure 14. Trend of the machining cost based on feed and tool life (a) 3D graph (b) 
Contour plot.. 
 
proximity (Figure 16). It can be seen that there are two points in these graphs 
which should be identified when establishing cost expectations in production. 
The phase before point 1, indicates a non-profitable area of production with a 
steep increase in costs over a minimal demand. Within this stage fixed costs such 
as holding costs and inventory costs form a bulk of the total costs in production. 
As the demand increases, an increased effect of ordering and machining costs is 
experienced. 

From Figure 16, we can also see an interplay between the safety stock and the 
optimum ordering quantity for minimized costs, which eventually steady out by 
increasing the safety stock to obtain optimize production costs. Overall costs 
from point 2 infer that an increased amount of safety stock is to higher demand 
is preferable. It is postulated that improved demands, reduces the costs impact of 
fixed expenses and thus increases profits. At such levels, an optimal safety stock 
quantity higher than the optimal ordering quantity is needed. 
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Figure 15. Trend showing the influence of change in demand to total cost. 

 

 
Figure 16. Trend showing the influence of change in demand tool quantity. 

3.4.3. Application of Demand Stochasticity 
A sensitivity analysis was carried out to ascertain the key cost drivers of the 
model using actual industrial stochastic demand data. The application of 
Holt-Winters (HW) forecasting was used to establish the trend for future de-
mands. The current Holt-Winters method of exponential smoothing displays 
trend and seasonality and is characterized by three smoothing equations: the 
smoothing for level, equation for the trend and equation for seasonality [16] 
[20]. As the seasonal component is variable in unit production demand, the 
multiplicative method is used [21]. This applies when the size of the seasonal 
component is proportional to the trend level [22]. Figure 17 shows the results of 
the triple exponential smoothing HW method on the demand for produced 
units. 

The basic equations for the Holt-Winters additive method are: 
Equation for level (Overall smoothing): 

( )( )1 11t
t t t

t s

Y
L L b

S
α α − −

−

 
= + − + 

 
                (12) 

Equation for trend (Trend Smoothing): 
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Figure 17. Trend showing Holt-Winters demand forecasting model for finished alloy 
steel parts. 
 

( ) ( )1 11t t t tb L L bβ β− −= − + −                   (13) 

Equation for seasonality (seasonal index): 

( )1t
t t s

t

Y
S S

L
γ γ −= + −                      (14) 

Forecast for m period equals: 

t m t t t smF L b m S+ −= + +                      (15) 

where tY  are the observed value, tL  represent the smoothing of variable in 
time t, tb  the trend estimation and tS  is the estimation of seasonality. The 
smoothing constants α, β, γ are in the interval [0, 1], m is the number of forecast 
periods and s stands for the duration of seasonality (e.g. in months or quarters in 
a year).  

Manufacturing industrial data figures utilized to establish the adequacy of the 
model can be found in Table 3. The sensitivity analysis of these results was con-
ceivable by applying maximum and minimum ranges to the machine and user 
inputs considering what values may realistically be found in industry and ac-
counting for price fluctuations. Industry indexes were used to collect average 
values for variables and rates. To identify the most important variables of the 
model, a One-Factor-at-a-Time (OFAT) sensitivity analysis approach was taken 
[23]. This would be a step in verifying the results of the cost comparison as well 
as a start in identifying the variables where variable uncertainty would have the 
highest cost impact. Sensitivity indices were calculated using an equation: 

max min maxSensitivity index D D D= −               (16) 

where minD  and maxD  are the minimum and maximum output costs resulting 
from changing dependent variables to the model. 

The machine data and user inputs selected for sensitivity analysis and the ap-
plied maximum and minimum values are presented in Table 4.  

The results of the sensitivity analysis for the variables in the model is shown in 
Table 4. Sensitivity analysis of the cost for the daily production period showed  

https://doi.org/10.4236/am.2018.912091


F. G. Pantoja et al. 
 

 

DOI: 10.4236/am.2018.912091 1418 Applied Mathematics 
 

Table 4. Industrial varied data ranges for SA utilized in industrial application sample. 

Cost variables 
Minimum Maximum Sensitivity 

(%) Quantity Cost value Quantity Cost value 

Machine Uptime (hr) 1 $17,646.62 8 $89,777.68 80.34% 

Demand ($/year) 1500 $3547.49 8000 $7644.05 53.59% 

Ordering Costs ($/unit) 10 3764.443 50 7737.640 51.35% 

Machining tool life (min) 5 9646.872 160 5019.712 47.97% 

Machine unit cost (Ko) ($) 3 $5784.02 20 $9962.62 41.94% 

Cutting Feed (mm/tooth) 0.04 5708.877 0.1 8360.683 31.72% 

Cutting Speed (mm/min) 30 5092.900 45 6741.792 24.46% 

Machining tool cost per ($/unit) 60 $5423.33 120 $6494.90 16.50% 

Lead time (days) 3.5 $6117.26 14 $6560.08 6.75% 

Shortage Costs ($/unit) 5 $6112.16 40 $6119.85 0.13% 

 
that Machining uptime has a significant influence on the total cost. An increase 
in cost of approximately ±10% per additional 1000 units demand was also iden-
tified as significant. Machine tool life and cutting feed rate have been identified 
as the most influential cutting variables to total costs. The cutting speed rate had 
marginal effect on both costs and tool life. Other costs variable such as shortage 
costs per unit and tool costs had low sensitivity values as their effects were miti-
gated from the minimization process. Optimization trend of ordered quantity 
over changing demand displayed a correlation with stochastic changes premised 
on a smoothing factor. This is shown in Figure 18 with the corresponding cal-
culated production costs.  

3.5. Discussion of Influence of Production Variables 

From the results in Table 4 we can see that the time of operation of the machine 
as well as the demand are fundamental to deciding the total cost. The ordering 
cost in the numerical example shows some significant influence, however, this 
cost is not expected to exceed the machining costs during full production cycles. 
The core parameter of influence on machining is the cutting speed, which also 
affects the tool life. A scaled chart is shown in Figure 19 to illustrate the trends 
between factors and the influence of on cost. From the Figure 19, an increase in 
machining parameters (speed, feed rate) will cause a fall in tool-life and a corre-
sponding increase in machining costs.  

The implications of the research to industrial practice, shows an adequate 
method to estimate tools needed in a production system based on machining 
and clearly define the correlations between costs to process machining condi-
tions. An enterprise could thus estimate create a production process which op-
timizes machining conditions while at the same time finding the optimal settings 
to tool allocation for storage.  
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Figure 18. Optimal tool ordering quantity and cost for stochastic demand data. 

 

 
Figure 19. Graphical illustration of cost components against machining parameters and 
tool-life. 

4. Conclusions 

This study has presented an inventory control analysis premised on stochastic 
demand of machining tools. The model developed in this research is an opti-
mum cost model governed by experimented machining conditions. Further-
more, the model is proposed to serve as a tool management policy for manufac-
turing industries. The fundamental considerations of the developed model in-
cludes the cutting tool, machining conditions and applied constraints. All of 
these are related to realistic conditions adapted to a practical production envi-
ronment.  

Optimization of the model solution was performed using Lingo, a commer-
cially available optimization software. The simulation results obtained indicates 
that the feed rate is the most significant cutting parameter following its effect on 
machining costs.  This in turn has a significant incremental effect on the overall 
production cost. Machine uptime and demand also showed significant effect on 
the total production cost. The process of optimizing the demand quantity, re-
sulted in a cost-efficient optimum demand range characterized with a low safety 
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stock and optimum ordering quantity. Additionally, an increase in the level of 
demand beyond the optimum range indicated that higher safety stock would be 
required. The application of Holt-Winters exponential smoothing forecasting 
technique further validates the outputs from this research.  

Some limitations apply to the results of this research. Some of which are that 
the study focuses mainly on the use of a single cutting operation. In addition, an 
in-depth breakdown of cost influences from personnel, tool refurbishing and 
penalty costs are not considered. Fluctuations in ordering, holding, and unex-
pected inventory conditions are also not assessed.  

In conclusion, several practical applications of this model can be obtained. 
This beginning with a single production operation concept as illustrated in this 
research to a more robust multi-operation manufacturing assembly. Future con-
siderations of this research involve the development of a multiple-operational 
production approach with the inclusion of labor and penalty costs. 
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Appendix 

1) Cost function components and intermediate variables 

opC : Total cost of operation ($) 

shC : Total shortage cost ($) 

BC : Total workpiece material cost ($) 

hC : Total holding cost ($) 

oC : Total ordering cost ($) 
TC: Total production cost ($) 
2) Decision variables 

pQ : Quantity of cutting tools required for production (tool/order) 

rQ : Quantity of cutting tools required for roughing operation (tool/order) in 
period i 

fQ : Quantity of cutting tools for finishing operation (tool/order) 

cT : Tool ordering cycle length i.e. (length of time between placement of rep-
lenishment of tool orders) (time units) 

3) Cost function components and intermediate variables 
,hr hfc c : Tool utilization cost per hour ($/hr) 

hc : Expected unit holding cost ($/tool) 

Bc : Cost per unit of workpiece ($/unit) 
,pr pfc c : Tool Market price ($/tool) 

0k : Cost of machine use per hour ($/hr) 

shc : Expected total annual shortage cost ($/tool) 
L: Length per unit of workpiece to be cut (mm) 
W: Width per unit of workpiece to be cut (mm) 
H: Height per unit of workpiece to be cut (mm) 

rw : Width (radial) of cut (mm) 

rd : Depth (axial) of cut (mm) 

tD : Diameter of the tool (mm) 
,opr opft t : Cutting time per unit of workpiece, roughing and finishing opera-

tions, (min/unit) 

0 0,r ft t : Tool life, roughing and finishing operations (min) 
k: Taylor’s equation constant 

,r fv v : Cutting speed, roughing and finishing operations (m/min) 

f rf f : Feed per tooth, roughing and finishing operations (mm/tooth) 
, , ,α β γ λ : Tool life parameters  

tQ : Demand for tool required per year (in units) 

sQ : Quantity of tool shortage (units) 

BQ : Quantity of material ordered (units) 
D: Demand rate of products (products/year) 

tF : Amount of missing tool in system (units) 

iI : Average inventory at the end of the current period (units) 

1iI − : Previous inventory (units) 
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iA : Total capacity of inventory (units) 

iI : Possible holding inventory (units) 

iz : Factor indicating variable ordering cost (1,0) 
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