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Abstract 
It is commonly assumed that a wire conducting an electric current is neutral 
in the laboratory frame of reference (the rest frame of the lattice of positive 
ions). Some authors consider that the wire is neutral only in a symmetrical 
frame of reference, in which the velocities of electrons and protons have equal 
norm and opposite direction. In this paper, we discuss the Lorentz transfor-
mation between different frames of reference in the context of the special 
theory of relativity for a current-carrying conducting wire and a probe charge 
in motion with respect to the wire. A simple derivation of the Lorentz force in 
the laboratory frame of reference for the assumed neutrality in a symmetrical 
frame of reference is presented. We show that the Lorentz force calculated 
assuming neutrality in the symmetrical frame of reference and the one as-
suming neutrality in the laboratory frame of reference differ by a term cor-
responding to a change in the test charge speed of one half the drift velocity 
of the electrons. 
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1. Introduction 

The Lorentz force between a current-carrying wire and a charge in motion in the 
laboratory frame of reference, where the conductor is at rest, is often expressed as: 
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q= ×F v B                          (1) 

where B is the magnetic flux density generated by the wire current, which can be 
calculated by using Biot-Savart’s Law [1]. B depends only on the current magni-
tude regardless of the physics of the motion of the charge carriers in the wire. In 
(1), q is the charge and v is its velocity. Equation (1) is correct only under the 
assumption that the wire is neutral in the laboratory reference frame. Otherwise, 
a second component of the force due to the electric field should also be consi-
dered.  

The question of the frame of reference, in which the current-carrying wire is 
neutral, has been the subject of debate in the past years [2]-[10]. Some authors 
suggest that a neutral wire corresponds to the rest reference frame of the lattice 
of positive ions (e.g., [2] [6] [7] [8]), considering that electrons are a free ensem-
ble and, therefore, their distances do not change upon acceleration [3]. Others 
(e.g., [4] [9]) assume that the distances between electrons are also subject to the 
Lorentz contraction and, therefore, the wire is neutral only in a symmetrical 
frame of reference in which both electrons and protons have the same speed but 
move in opposite directions. Although they are conceptually important, to the 
best of our knowledge none of these theories has been experimentally proven 
since the drift velocity of the electrons is small and, hence, the effects are neglig-
ible. It is therefore necessary to investigate the mechanisms involved in the tran-
sition process from no-current wire to current-carrying wire to answer the ques-
tion of the neutral frame. A more detailed discussion about the issue of the de-
termination of the reference frame in which the current-carrying wire is neutral 
can be found in [2] and [3]. 

In this paper, we will first present a simple derivation for the Lorentz force by 
assuming the Lorentz contraction of distances between electrons and assuming 
that the wire neutrality occurs in a symmetrical frame of reference (as in [4] [9]). 
This assumption leads to a modification of (1). The Lorentz force will depend on 
the physics of the motion of the charges. In Section 2, we will derive the Lorentz 
force for the classical example of a charge moving parallel to a current-carrying 
wire [10] (see Figure 1 for the geometry of the problem), for a symmetrical 
frame of reference. In Section 3, we will derive the same force considering a la-
boratory frame of reference (at rest with respect to the lattice of positive ions), 
by transforming the force from the symmetrical frame of reference. Conclusions 
will be given in Section 4.  

2. Symmetrical Frame of Reference 

Let us first examine the theoretical model from [10]. Figure 2 shows the prob-
lem considering two different reference frames moving with respect to each oth-
er at a speed v. The first one (left panel) will be labeled S, and the second (right 
panel) S'. 

Let us imagine that in the symmetrical frame of reference S, we have a straight, 
infinitely-long wire containing positive and negative charges, characterized by  
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Figure 1. Force between a current-carrying wire and a charge q at a distance r. The 
charge is moving in the direction parallel to the wire with a speed v. 
 

 

Figure 2. Frame of reference S (left panel) and frame of reference S' (right panel) for |v| > 
|v0|. Probe charge q. λ+ and λ− are the line charge densities in S. λ+′  and λ−′  are the line 
charge densities in S’. 
 
linear charge densities λ+ and λ−. The positive wire charges move with a constant 
velocity v0 in the positive x direction, while the negative wire charges move with 
a constant velocity-v0. These two charge densities are measured in the S frame of 
reference (Figure 2, left panel), with respect to which the positive and negative 
charges are moving. If we assume that both charge densities are equal in absolute 
value (|λ+| = |λ−|), the wire is electrically neutral. Now, let us examine a probe 
charge q at a distance r moving with a velocity v along a line parallel to the wire 
in S. In what follows, we will refer to q as the probe charge and to the charges 
composing the linear charge densities as wire charges.  

Let us calculate the force on the probe charge q. Frame S' is moving with a 
speed v relative to S so that the probe charge q is not in motion in S'. The veloci-
ties of the positive and negative line charges in S' can be calculated from the ve-
locities in S by way of the Lorentz transformation: 

( )
( )

00

0 0
2 2

,
1 1

v vv v
v v

vv v v
c c

+ −

− −−′ ′= =
−− −

                    (2) 

Clearly, if v is not equal to zero, v+′  and v−′  will have different values. Con-
sequently, the distance between the individual positive charges will experience a 
different contraction compared to the distance between the individual negative 
charges. We therefore expect different line charge densities λ+′  and λ−′  in S’. 
As a result, the wire will not be neutral in S'. 

Let us introduce the following parameters [10]: 
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By dividing (2) by c, we can now rewrite β+′  and β−′  as [10]: 

0 0

0 0

,
1 1
β β β β

β β
β β β β+ −

− +′ ′= = −
− +

                 (6) 

Let us now consider two other frames of reference: 1) the rest frame of refer-
ence of the positive wire charges S+ moving with respect to S with velocity v0 in 
the positive x axis direction, and, similarly, 2) the rest frame of reference of the 
negative wire charges, S− moving with respect to S with a velocity –v0. Since the 
linear charge densities are the same in S and since their rest reference frames, S+ 
and S−, are moving with the same speed with respect to S, they experience the 
same contraction. As a result, the linear charge density of the negative charges in 
S− will be the same in magnitude as the linear charge density of the positive 
charges in S+. If we label the magnitude of the linear charge density in S as λ (λ = 
|λ+| = |λ−|), the linear charge density in the rest frame of reference is simply 
±λ/γ0, where the sign depends on the wire charge polarity. Now, transforming 
from S to S', the linear charge density in terms of λ can be expressed as: 

0 0

,λ λλ γ λ γ
γ γ+ + −−′ ′ ′ ′= = −                       (7) 

From Equation (7), the overall charge density in S' can be expressed as [10]: 
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       (8) 

The electric field from a uniform line charge in S' at the position of the probe 
charge is given by: 

( )
02π

overall
yE r

r
λ′′ = −


                      (9) 

As mentioned before, no magnetic force is exerted on the charge since its 
speed is zero. The total force can therefore be calculated as  

( )
02π

overall
y

q
F r

r
λ′′ = −


                     (10) 

Making use of the Lorentz transformation, the force in reference frame S is 
[10]: 

( ) 0
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0π
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F q vv
F r
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Now, considering that 

( )( ) ( )0 0 0 2
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          (12) 

and plugging these relations into (11), we obtain the more familiar equation: 
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( )yF r qvB=                         (13) 

This classical example is often used to show the relativistic background of eq-
uation (1). In the following section, we will use this derivation to get an expres-
sion for the Lorentz Force in the laboratory frame of reference. 

3. Laboratory Frame of Reference (Rest Frame of Reference  
of a Lattice of Positive Charges) 

Let us now consider the same case of an infinitely-long current-carrying wire in 
a laboratory frame of reference. If there is no applied voltage, the random mo-
tion of the charges is described with quantum mechanics [11]. If we apply a vol-
tage on the wire, the motion of the electrons will be a superposition of their 
random motion and that caused by the applied electric field. To a first approxi-
mation, the motion can be described as if all electrons were moving with a con-
stant drift velocity [12]. Positive charges are stationary (in lattice) in the consi-
dered frame of reference, referred to as the laboratory frame of reference (shown 
in Figure 3). It is assumed that a voltage is applied between the wire ends at in-
finity, with the left end at a higher potential. The charge q is at a distance r to the 
wire and it moves with a constant velocity vqlab in the positive x direction, paral-
lel to the wire.  

We will now calculate the force applied on the charge in this frame of refer-
ence. First, we will transform to the symmetrical frame S (in which the wire is 
assumed to be neutral) where we will call the speeds of the positive and of the 
negative charges v+ and v− such that: 

ov v v+ −= − =                         (14) 

In this frame of reference, the force is given by Equation (11), in which the 
value of v, which will be calculated below, is the velocity of the test charge (vqlab 
in the laboratory frame of reference) with respect to the symmetrical frame of 
reference. The Lorentz transformation of the positive and negative wire charge 
velocities to S from Slab is given by 

( )
( )
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1

D S
S

S D

v v
v v v

v v
c

+ −

− −
= − =

−
−

                   (15) 

in which vs is the velocity of the frame of reference S with respect to Slab. 
Substituting Equation (15) in (14), we obtain: 

 

 

Figure 3. Laboratory frame of reference. Electrons are moving with the drift velocity vD 
and positive ions are stationary. The rectangle above the wire represents a differential 
wire segment illustrating the speeds of the positive and negative charges. 
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2
2 2 0D

S S D
v v v v
c

− − =                      (16) 

Since the drift velocity vD is in the order of a few mm/s and vS is even smaller, 
to a first approximation we can neglect the first term in Equation (16) and ob-
tain the classical Galilean transformation: 

2
D

S
vv = −                          (17) 

In the symmetrical reference frame S, the velocity of the charge is, therefore: 
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Using Equation (11), the force in the reference frame S becomes: 
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                       (19) 

In which λ is the magnitude of the positive or the negative charge density in 
the symmetrical frame of reference in the same way as it was defined in the pre-
vious section (λ = |λ+| = |λ|). The Lorentz transformation of this force to the la-
boratory frame of reference Slab can be expressed as: 
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where: 
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The negative charge density in Slab is: 

lab x
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Let us now define: 
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Plugging (18) into (20), expressing λ  in terms of labλ −  from (20), and us-
ing (23) and (24), the Lorentz force in Slab is: 

( )S

2
S 0
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



            (25) 

where B and I are defined for the laboratory frame of reference, and where the 
current is only due to the motion of the negative charges. 

Since Dv c , the relativistic coefficient in Equations (23) and (24) is ap-
proximately equal to one and (25) can be written as: 

2
D

ylab qlab
vF q v B ≈ + 

 
                   (26) 

In the laboratory frame of reference (rest frame of the lattice of positive 
charges), the negative wire charges are moving, as opposed to the positive 
charges that are stationary. Therefore, they have a higher linear charge density 
than the stationary positive charges. The overall wire is negatively charged and it 
produces an electric force in the direction of the magnetic force in the examined 
case. If the probe charge is moving in the positive direction of the x axis as in 
Figure 3 (opposite to the drift of the electrons), force in (1) is increased by 
qvDB/2 in (26). 

It is worth noting that in opposite case when drift velocity of negative wire 
charges is positive, the sign of force due to probe charge movement will change 
due to change of sign of current and consequently of magnetic field. However, 
contribution of this half drift velocity correction term will remain to be directed 
toward the wire due to change of sign in (17). This is because wire will again be 
negatively charged in laboratory frame. There will be also change in denomina-
tor of two terms in (24), but these terms can be neglected as in (26). 

Figure 4 shows comparison of forces calculated in the laboratory frame of 
reference assuming neutrality in Slab and in the symmetrical frame of reference S 
for the case of B = 1 T and q = 1 C. As the charge velocity increases, the differ-
ence between the forces becomes negligible. The drift velocity [12] is very small, 
making these effects hard to measure since they are hidden by some other 
real-scenario forces, such as the zero-order effect of the electrostatic force 
created by an image charge inside the conducting wire, the first-order force re-
sulting from the resistive nature of the wire, and second-order forces originating 
for example from the curvature of the wire [4] [13]. In order to mitigate the do-
minant effect of the zero-order effect force, one may exploit the fact that this 
force will decay as 1/r2 while (26) exhibits a slower 1/r decay. 
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(b) 

 
(b) 

Figure 4. Force applied on the charge calculated assuming neutrality in the laboratory 
frame of reference given with Equation (26) (dashed red curve) and in the symmetrical S 
frame of reference given by Equation (1) (solid blue curve). For low values of the vqlab/vD 
ratio (a) and for high values (b). For the case of vD < 0 and vqlab > 0. 

4. Conclusion 

In this paper, we presented a derivation of the Lorentz force in the laboratory 
frame of reference for the case of a metallic, current-carrying wire under the as-
sumption of neutrality in the symmetrical frame of reference. The Lorentz force 
is a combination of the electric and the magnetic forces and, depending on the 
physics of motion of the charges, the electric field will also be present. We 
showed that the Lorentz force calculated assuming neutrality in the symmetrical 
frame of reference and the one assuming neutrality in the laboratory frame of 
reference differ by a term corresponding to a change in the test charge speed of 
one half the drift velocity of the electrons. The derived equations make it in 
principle possible to experimentally test the hypotheses of neutrality. The drift 
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velocity being usually in the order of mm/s, an accurate measurement of these 
effects might be, however, very challenging, compared to other forces that are in 
play. 
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