
Journal of Applied Mathematics and Physics, 2018, 6, 2589-2599 
http://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

 

DOI: 10.4236/jamp.2018.612216  Dec. 26, 2018 2589 Journal of Applied Mathematics and Physics 
 

 
 
 

Extremal Problems Related to Dual Gauss-John 
Position 

Tongyi Ma 

College of Mathematics and Statistics, Hexi University, Zhangye, China  

 
 
 

Abstract 

In this paper, the extremal problem, min{ ( ) : , GL( )}pl K o K L nφ φ φ∈ ⊆ ∈ , of 

two convex bodies K and L in n
  is considered. For K to be in extremal po-

sition in terms of a decomposition of the identity, give necessary conditions 
together with the optimization theorem of John. Besides, we also consider the 
weaker optimization problem:  

1
2min{( ( )) : , , GL( )}p n n

pl K K B K S nφ φ φ φ−⊆ ∩ ≠ ∅ ∈ . As an application, we 

give the geometric distance between the unit ball 2
nB  and a centrally sym-

metric convex body K.  
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1. Introduction 

Let nγ  be the classical Gaussian probability measure with density
2| |

21
( 2 )

x

n
e

π

−
,  

and || ||K⋅  is the Minkowski functional of a convex body nK ⊂  . An impor-
tant quantity on local theory of Banach space is the associated l-norm: 

( ) || || d ( ).n K nl K x xγ= ∫


 

The minimum of the functional 

d ( )n nKx x
φ

γ∫


 

under the constraint 2
nK Bφ ⊆  is attained for nIφ = , then a convex body K is 

in the Gauss-John position, where GL( )nφ ∈ , 2
nB  is the Euclidean unit ball 
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and nI  is the identity mapping from n
  to n

 . 
For \{ }nx o∈ , the map : n nx x⊗ →   is the rank 1 linear operator 

,y x y x〈 〉 . 
Giannopoulos et al. in [1] showed that if K is in the Gauss-John position, then 

there exist ( 1) / 2m n n≤ +  contact points 1
1 2, , , n

mx x x K S −∈∂ ∩ , and con-
stants 1 2, , , 0mc c c >  such that 

1
1

m

i
i

c
=

=∑  and 

1
( ) || || d ( ) || || d ( ) .n n

m

n K n K n i i i
i

x x I x x x x c x xγ γ
=

 ⊗ − = ⊗ 
 
∑∫ ∫

 

 

Note that the Gauss-John position is not equivalent to the classical John posi-
tion. Giannopoulos et al. [1] pointed out that, when K is in the Gauss-John posi-
tion, the distance between the unit ball 2

nB  and the John ellipsoid is of order
/ logn n . 

Notice that the study of the classical John theorem went back to John [2]. It 
states that each convex body K contains a unique ellipsoid of maximal volume, 
and when 2

nB  is the maximal ellipsoid in K, it can be characterized by points of 
contact between the boundary of K and that of 2

nB . John’s theorem also holds 
for arbitrary centrally symmetric convex bodies, which was proved by Lewis [3] 
and Milman [4]. It was provided in [5] that a generalization of John’s theorem 
for the maximal volume position of two arbitrary smooth convex bodies. Bastero 
and Romance [6] proved another version of John’s representation removing 
smoothness condition but with assumptions of connectedness. For more infor-
mation about the study of its extensions and applications, please see [7]-[13]. 

Recall that a convex body K  is a position of K if K K aφ= + , for some 
non-degenerate linear mapping GL( )nφ ∈  and some na∈ . We say that K is 
in a position of maximal volume in L if K L⊆  and for any position K  of K 
such that K L⊆  we have vol ( ) vol ( )n nK K≤ , where vol ( )n ⋅  denotes the vo-
lume of appropriate dimension. 

Recently, Li and Leng in [14] generalized the Gauss-John position to a general 
situation. For 1p ≥ , denote pl -norm by 

( )
1

||( ) d ( ) .||n
p p

p K nxl K xγ= ∫


                (1.1) 

They consider the following extremal problem: 

{ }min ( ) : , GL( ) ,pl K o K L nφ φ φ∈ ⊆ ∈             (1.2) 

where L is a given convex body in n
  and K is a convex body containing the 

origin o such that o K L∈ ⊆ . 
Li and Leng [14] showed that let L be a given convex body in n

  and K be a 
convex body such that o K L∈ ⊆ . If K is in extremal position of (1.2), then 
there exist 2m n≤  contact pairs 1( , )i i i mx y ≤ ≤  of ( , )K L , and constants 

1 2, , , , 0mc c c >   such that 

1 1
( )d ( ) , 1,n

m m

n i i i i
i i

I x x x p c x y cµ
= =

= ⊗ − ⊗ =∑ ∑∫
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where d ( )xµ  is the probability measure on n
  with normalized density 

d ( ) || || d ( ) / ( ( )) .p p
K n px x x l Kµ γ=  

In this paper, we first present a dual concept of pl -norm ( )pl K . The genera-
lizations of John’s theorem and Li and Leng [14] play a critical role. It would be 
impossible to overstate our reliance on their work. 

For 1p ≥ , we define the dual pl -norm of convex body K by 

( )
1

( ) ( ) d ( ) ,n
p p

p K nl K x xρ γ= ∫


                   (1.3) 

where Kρ  is the radial function of the star body K about the origin. 
Now, we consider the extremal problem: 

{ }min ( ) : , GL( ) ,pl K o K L nφ φ φ∈ ⊆ ∈               (1.4) 

where L is a given convex body in n
  and K is a convex body containing the 

origin o such that o K L∈ ⊆ . 
Then we prove that the necessary conditions for K to be in extremal position 

in terms of a decomposition of the identity. 
Theorem 1.1. Let L be a given convex body in n

  and K be a convex body 
such that o K L∈ ⊆ . If K is in extremal position of (1.4), then there exist 

2m n≤  contact pairs 1( , )i i i mx y ≤ ≤  of ( , )K L , and 1 2, , , 0mc c c >  such that 

1 1
( )d ( ) , 1,n

m m

n i i i i
i i

I x x x p c x y cµ
= =

= ⊗ − ⊗ =∑ ∑∫


  

where d ( )xµ  is the probability measure on n
  with normalized density 

d ( ) || || d ( ) / ( ( )) .p p
K n px x x l Kµ γ−= 

  

Next the following result is obtained, which is an restriction that is weaker 
than the extremal problem (1.4): 

( ){ }1
2min ( ) : , , GL( ) .

p n n
pl K K B K S nφ φ φ φ−⊆ ≠ ∅ ∈

       (1.5) 

Theoren 1.2. Let K be a given convex body in n
 . If nI  is the solution of 

the extremal problem (1.5), then there exist contact points ,u u′  of K and 2
nB  

such that 

( )2 21, ( ) || || ( ), , ( ) , ,on

p p
p K nK

u l K x h x x d x uθ θ θ γ θ− −′ ≤ ∇ ≤∫


   (1.6) 

for every 1nSθ −∈ . 
The rest of this paper is organized as follows: In Section 2, some basic nota-

tion and preliminaries are provided. We prove Theorem 1.1 and Theorem 1.2 in 
Section 3. In particular, as an application of the extremal problem of 

( ){ }2min ( ) : , GL( ) ,
p n

pl K o K B nφ φ φ∈ ⊆ ∈            (1.7) 

Section 3 shows the geometric distance between the unit ball 2
nB  and a cen-

trally symmetric convex body K. 
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2. Notation and Preliminaries 

In this section, we present some basic concepts and various facts that are needed 
in our investigations. We shall work in n

  equipped with the canonical Eucli-
dean scalar product ,〈⋅ ⋅〉  and write | |⋅  for the corresponding Euclidean 
norm. We denote the unit sphere by 1nS − . 

Let K be a convex body (compact, convex sets with non-empty interiors) in 
n

 . The support function of K is defined by 

( ) max{ , : }, .n
Kh x x y y K x= 〈 〉 ∈ ∈  

Obviously, ( ) ( )t
K Kh x h xφ φ=  for GL( )nφ ∈ , where tφ  denotes the trans-

pose of φ . 
A set nK ⊂   is said to be a star body about the origin, if the line segment 

from the origin to any point x K∈  is contained in K and K has continuous and 
positive radial function ( )Kρ ⋅ . Here, the radial function of 1, : [0, )n

KK Sρ − → ∞ , 
is defined by 

( ) max{ : }.K u u Kρ λ λ= ∈  

Note that if K be a star body (about the origin) in n
 , then K can be uniquely 

determined by its radial function ( )Kρ ⋅  and vice verse. If 0α > , we have 
1( ) ( )K Kx xρ α α ρ−=  and  ( ) ( ).K Kx xαρ αρ=  

More generally, from the definition of the radial function it follows imme-
diately that for GL( )nφ ∈  the radial function of the image { : }K y y Kφ φ= ∈  
of star body K is given by 1( ) ( )K Kx xφρ ρ φ−= , for all nx∈ . 

If , n
oK L∈  and , 0λ µ ≥  (not both zero), then for 0p > , the pL -radial 

combination, n
p oK Lλ µ+ ∈  , is defined by (see [15]) 

( , ) ( , ) ( , ) .p p p
pK L K Lρ λ µ λρ µρ+ ⋅ = ⋅ + ⋅             (2.1) 

If a star body K contains the origin o as its interior point, then the Minkowski 
functional || ||K⋅  of K is defined by 

|| || min{ 0 : }.Kx x Kλ λ= > ∈  

In this case, 
1|| || ( ) ( ),K K K

x x h xρ °
−= =  

where K °  denotes the polar set of K, which is defined by 

{ : , 1 for all }.nK x x y y K° = ∈ 〈 〉 ≤ ∈  

It is easy to verify that for GL( )nφ ∈ , 

( ) ,tK Kφ φ° − °=  

where tφ−  denotes the reverse of the transpose of φ . Obviously, ( )K K° ° =  
(see [13] for details). 

Let K and L be two convex bodies in n
 . According to [4], if 

no K L∈ ⊆ ⊆  , we call a pair ( , ) n nx y ∈ ×  a contact pair for ( , )K L  if it 
satisfies: 
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1) x K L∈ ∩∂ , 
2) y L K° °∈ ∩∂ , 
3) , 1x y〈 〉 = . 
If , nx y∈ , we denote by x y⊗  the rank one projection defined by 

( ) ,x y u x u y⊗ = 〈 〉  for all nu∈ . 
The geometric distance ( , )G K Lδ  of the convex bodies K and L is defined by 

( , ) inf{ : 0, 0, (1/ ) }.G K L L K Lδ αβ α β β α= > > ⊂ ⊂  

3. Proof of Main Results 

First, we prove that ( )pl ⋅  is a norm with respect to pL -radial combination in 
n
o . Apparently, ( ) 0pl K ≥  and ( ) 0pl K =  if and only if { }K o= . At the 

same time, ( ) ( )p pl cK cl K=   if real constant 0c > . In addition, it is follows 
that 

( ) ( ) ( ).p p p pl K L l K l L+ ≤ +  

  

Indeed, we have 

( )
( )
( ) ( )

1

1

1 1

( ) ( )d ( )

( )d ( ) ( )d ( )

( )d ( ) ( )d ( )

( ) ( ).

n p

n n

n n

p p
p p K L n

p p p
K n L n

p pp p
K n L n

p p

l K L x x

x x x x

x x x x

l K l L

ρ γ

ρ γ ρ γ

ρ γ ρ γ

++ =

= +

≤ +

= +

∫

∫ ∫

∫ ∫





 

 





 

 

Therefore, ( )pl ⋅  is a norm with respect to pL -radial combination and n
o  

is normed space for ( )pl ⋅ . 
Now, we prove the optimization theorem of John [2] (see [10] also). 
Lemma 3.1. Let : N →   be a 1C -function. Let S be a compact metric 

space and : N S× →   be continuous. Suppose that for every s S∈ , 
( , )z z s∇   exists and is continuous on N S× .  

Let { : ( , ) 0, for all }Nz z s s S= ∈ ≥ ∈   and 0z ∈  satisfy 

0( ) min ( ).zz z∈=    

Then, either 0( ) 0z z∇ = , or, for some 1 m N≤ ≤ , there exist 

1 2, , , ms s s S∈  and 1 2, , , mλ λ λ ∈   such that 0( , ) 0, 0i iz s λ= ≥  for 
1 i m≤ ≤ , and 

0 0
1

( ) ( , ).
m

z i z i
i

z z sλ
=

∇ = ∇∑   

Using a similar argument as that in [1], we give the proof of Theorem 1.1. 
Proof of Theorem 1.1. For 2N n= , we define : N →   by 

( )
1

1( ) ( ) || || d ( ) ,n
p p

p K nl K x xφ φ φ γ− −= = ∫


             (3.1) 

where Nφ ∈  is the linear mapping from n
  to n

 . Clearly   is 1C . For 
S K L°= × , define : N S× →   by 
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( , ( , )) 1 , .x y x yφ φ= − 〈 〉  

The set  

{ : ( , ) 0, }Nz z s s S= ∈ ≥ ∈   

is just the set of elements Nφ ∈  such that K Lφ ⊆ . If K is in extremal posi-
tion of min{ ( ) : , GL( )}pl K o K L nφ φ φ∈ ⊆ ∈ , then   attains its minimum on 
  at nI , namely, 

( ) ( ) min{ ( ) : , GL( )}.n p pI l K l K o K L nφ φ φ= = ∈ ⊆ ∈   

Now we prove ( )nIφ∇  . It follows from (3.1) that 

( )
2

2

1
1

1
| |

12 2

1
| |

2 2

( ) || || d ( )

(2 ) || || d

(2 ) (det ) || || d .

n

n

n

p p
K n

pn x
p

K

pn x
p

K

x x

x e x

x e x
φ

φ φ γ

π φ

π φ

− −

− −− −

− −−

=

 
 =
 
 

 
 =
 
 

∫

∫

∫









 

It is easy to obtain that for non-degenerate φ , we have 

( , ( , )) , ,x y x y x y x yφ φ φφ φ φ∇ = −∇ 〈 〉 = ∇ 〈 ⊗ 〉 = − ⊗  

and 

2

2

2

1
| |

2

| |
12

| |
2

1( ) (2 ) (det ) || || d

(2 ) (det )( ) || || d

(2 ) (det ) || || d ,

n

n

n

qxn
p x

K

xn
p x

K

xn
p x

K

x e x
p

x e x

x e x x x

φ

φ

φ

φ

φ π φ

π φ φ

π φ

−
−− −

−− − ∗ −

−− −

 
 ∇ =
 
 


×



− ⊗


∫

∫

∫









 

where 1 1 1
p q
+ = , 1 *( )φ−  denotes conjugate of transposed transformation of 

1φ− , and 1φ−  is inverse transform of GL( )nφ ∈ . 

Since   attains its minimum on   at 0 nz I= , combining with Lemma 
3.1, it follows that for some m N≤ , there exist 0iλ ≥ , is S∈ , ( , )i i is x y= ,
1 i m≤ ≤ , such that 

, 1 ( , ( , )) 1, 1 ,i i n i ix y I x y i m〈 〉 = − = ≤ ≤  

and 

( )

1

1

1( ) ( ) ( ) || || d ( )

( , ( , ))

.

n

p
pq

n p n K n

m

i n i i
i

m

i i i
i

I l K I x x x x
p

I x y

x y

φ

φ

γ

λ

λ

− −

=

=

∇ = − ⊗

= ∇

= − ⊗

∫

∑

∑





        (3.2) 
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From , 1, ,i i i ix y x K L y L K= ∈ ⊆ ∈ ⊆  , we yield ix L∈∂  and iy K∈∂  . 
Taking the trace in (3.2), we have 

( )

( )

( )

( )

( )

2 2

1

2

1 12 2
0 0

Tr ( )

1Tr ( ) ( ) || || d ( )

1 ( ) || || d ( ) | | || || d ( )

1 ( ) d d || || d ( )

1 ( ) ||

n

n n

n

n

p
pq

p n K n

p
p pq

p K n K n

r rp
n p n p pq

p KS

p
q

p

I

l K I x x x x
p

l K n x x x x x
p

l K n r e r r e r S
p

l K p x
p

φ

γ

γ γ

θ θ−

− −

− − −

− −− ∞ ∞− − − + −

−

∇

 
= − ⊗  

 

 = − 

 
 = −
  

=

∫

∫ ∫

∫ ∫ ∫



 











( )|| d ( ) ( ).n
p

K n px l Kγ− =∫




 

Suppose ( )i i pc l Kλ =  . Together with (3.2), we obtain 

1
( ) || || d ( ) ( ( )) ( ),n

m
p p

n K n p i i i
i

x x I x x p l K c x yγ−

=

⊗ − = ⊗∑∫


  

where 
1

1
m

i
i

c
=

=∑ . This completes the proof.                               

If 2
nL B=  and 2( , ) 1 | |x xφ φ= − , then using the same method in the proof 

of Theorem 1.1, we obtain 
Corollary 3.2. Let K be a convex body such that 2

no K B∈ ⊆ . If K is in ex-
tremal position of (1.7), then there exist contact points 1

1 2, , , n
mu u u K S −∈∂ ∩  

with 2m n≤  and 1 2, , , 0mc c c > , such that, 

1 1
( )d ( ) , 1,n

m m

n i i i i
i i

I x x x p c u u cµ
= =

= ⊗ − ⊗ =∑ ∑∫


  

where d ( )xµ  is the probability measure on n
  with normalized density 

d ( ) || || d ( ) / ( ( )) .p p
K n px x x l Kµ γ−= 

  

Proof of Theorem 1.2. Suppose that ( , )n nLφ ∈    and 0ε >  is small 
enough. Then 

1
1

1 : (min || || )( )n K nu S
u u Iφ εφ εφ−

−
∈

= − −  

satisfies 1
1 2 1,n nK B K Sφ φ −⊆ ∩ ≠ ∅ . Therefore 

1|| || d ( ) ( .( )) (min || || )nn
p p p

K n p Ku S
x x x l K u uεφ γ εφ−

− −
∈

− ≤ −∫


  

Let uε  be a point on 1nS −  at which the minimum is attained. Observe that 

1 2|| || || || || || ( ), ( )p p p
K K K K

x x x p x h x x Oεφ ε φ ε°
− − − −− = + 〈∇ 〉 +  

and 

2| | 1 , ( ).pu u p u u Oε ε ε εεφ ε φ ε−− = + 〈 〉 +  

Since 1nu Sε
−∈  and || || | |K⋅ ≥ ⋅ , we have 
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( ) ( )

( )
( ) ( )

1

1|| || ( ), d ( ) ( )

min || || 1
( )

| | 1
( )

( ) , ( ) .

n

n

p
K nK

p
p Ku S

p

pp

p

p

p

p x h x x x O

u u
l K

u u
l K

l K p u u O

ε ε

ε ε

φ γ ε

εφ

ε
εφ
ε

φ ε

−

− −

−

∈

−

∇ +

− −
≤

− −
≤

= +

∫ 









            (3.3) 

If u is a contact point of K and 2
nB , then 

1 || || || || || || || || || || .K K Ku u u u uε ε εε φ εφ εφ ε φ+ ≥ − ≥ − ≥ −  

It follows that 

1 || 1 2 ||| | || .Kuε ε φ≤ ≤ +                       (3.4) 

In order to obtain a sequence 0kε →  and a point 1nu S −∈  such that 

k
u uε → . If k →∞ , it follows from (3.4) that || || lim || || 1

kK k
u uε→∞

= = . Namely, u 
is a contain point of K and 2

nB . By (3.3), we obtain 
1|| || ( ), d ( ) ( ( )) , .n

p p
K n pK

x h x x x l K u uφ γ φ°
− − 〈∇ 〉 ≤ 〈 〉∫



  

Taking φ  for φ− , we can find another contact point u′  of K and 2
nB  

such that 
1|| || ( ), d ( ) ( ( )) , .n

p p
K n pK

x h x x x l K u uφ γ φ°
− − ′ ′〈∇ 〉 ≥ 〈 〉∫



  

Choosing ( ) ,x xθφ θ θ= 〈 〉  with 1nSθ −∈ , we get (1.6).                   

4. Estimate of the Distance 

Lemma 4.1. (see [16]) Let 1 2( , , , ) n
nx x x x= ∈   and  

1 2( , , , ) n
ny y y y= ∈  . If 

1 1 2 20 , 0 , 1, , ,k km x M m y M k n< ≤ ≤ < ≤ ≤ =   

then 
2

1 2 1 2
2

1 2 1 22 2

1 1 1
.

2

n n n

k k k k
k k k

M M m m
m m M M

x y x y
= = =

 
+ 

     ≤           
 

∑ ∑ ∑  

Lemma 4.1 implies that if , nx y∈ , then there exist a constant (0,1)c∈  
such that 

| , | | || | .x y c x y≥                         (4.1) 

Suppose that K is a centrally symmetric convex body in n
  such that K is in 

the extremal position of (1.7). Now we estimate the geometric distance between 
K and 2

nB . 
Theorem 4.1. Let 2

nK B⊆  be a centrally symmetric convex body in n
 . If 

K is in the extremal position of (1.7) and 1 3p≤ < , then 

, 2 2 ,n n
n pc B K B⊆ ⊆  
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where 
1

2
,

1
2

( ) ( 1) , (0,1).
32 ( )

2

p
n

p
n p p

l B cpc c
n p

π
−

 
 + = ∈
 −

Γ 
 



  

Proof. It follows from Corollary 3.2 that K satisfies 

1 1
( )d ( ) , 1,n

m m

n i i i i
i i

I x x x p c u u cµ
= =

= ⊗ − ⊗ =∑ ∑∫


  

where d ( )xµ  is the probability measure on n
  with normalized density 

d ( ) || || d ( ) / ( ( )) .p p
K n px x x l Kµ γ−= 

  

For y K °∈  and 1n
iu S −∈ . By (4.1), there exists a constant (0,1)c∈  such 

that | , | | |iy u c y〈 〉 ≥ . So we obtain 

2 2 2 2

1
( | , | | | )d ( ) | | | | .n

m

i
i

x y y x cp y c cp yµ
=

〈 〉 − ≥ =∑∫


  

That is, 
2 2( 1) | | | , | d ( ).ncp y x y xµ+ ≤ 〈 〉∫



  

Since || || | , |Kx x y≥ 〈 〉 , we have 

2

1

2 2

2 12 2
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− −

− −∞− − +

− − −

〈 〉 ≤ 〈 〉
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∫ ∫

∫ ∫

 

 

From John’s theorem, for every centrally symmetric convex body K in n
 , 

there is a corresponding to the ball 2
nBλ  such that 2 2 ( 0)n nB K n Bλ λ λ⊆ ⊆ > . 

Take 1/ nλ = . We obtain 2 2
1 n nB K B
n

⊆ ⊆ . Thus, 

2 2
1 ( ) ( ) ( ).n n

p p pl B l K l B
n

≤ ≤    

Therefore, we get 
1

1
2

2

32 ( )
2| | ,

( ) ( 1)

p p

n
p

p
ny

l B cpπ

− −
Γ 

 ≤
 +
 
 



 

and the result yields.                                                 
Giannopoulos et al. in [5] proved that if K is in a position of maximal volume 

in L, then K L nK⊆ ⊆ , which is equivalent to 
1 || || || || || ||K L Kx x x
n

≤ ≤  for all 

nx∈ . Hence it follows that 
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( )
1 .

( )
p

p

l L
n

l K
≤ ≤




 

Furthermore, let GL( )nφ ∈ . Since 2
nK Bφ ⊆  is in the maximal volume posi-

tion of K contained in 2
nB , we have 2 2

1 n nB K B
n

φ⊆ ⊆ . Thus 

2

( )1 1.
( )

p
n

p

l K
l Bn

φ
≤ ≤




 

Finally, we propose the following concept of 0l -norm: Let K be a convex 
body in n

 , we define 0l -norm by 

0 ( ) exp( || || ( )).n K nl K log x xγ= ∫


 

We propose an open question as follows: How should we solve the extreme 
problem 

0min{ ( ) : , GL( )}?l K o K L nφ φ φ∈ ⊆ ∈  
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