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Abstract 
Study of network dynamics is very active area in biological and social 
sciences. However, the relationship between the network structure and the 
attractors of the dynamics has not been fully understood yet. In this study, we 
numerically investigated the role of degenerate self-loops on the attractors 
and its basin size using the budding yeast cell-cycle network model. In the 
network, all self-loops negatively suppress the node (self-inhibition loops) 
and the attractors are only fixed points, i.e. point attractors. It is found that 
there is a simple division rule of the state space by removing the self-loops 
when the attractors consist only of point attractors. The point attractor with 
largest basin size is robust against the change of the self-inhibition loop. Fur-
thermore, some limit cycles of period 2 appear as new attractor when a 
self-activation loop is added to the original network. It is also shown that even 
in that case, the point attractor with largest basin size is robust. 
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1. Introduction 

Recently, some networks representing metabolic reactions in the cell and gene 
regulatory responses through transcription factors have been elucidated along 
with progress of experimental systems and accumulation technology in the da-
tabase [1]. In addition, researches on characterizing the state of the cells as a 
complex network utilizing these databases have been actively investigated [2] [3] 
[4] [5]. 

Moreover, the deterministic discrete-time dynamics for discrete-state model 
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with such network structures have been widely studied on the properties of the 
attractors that represent cellular activity states. This is because the state space is 
finite, so it is easy to search the fixed points and the periodic solutions using 
computer power. For example, Kauffman et al. modeled the early cells before 
differentiation with the dynamics of the network, and made the type of the at-
tractors correspond to the type of cells after the differentiation [6] [7] [8] [9]. On 
the other hand, Li et al. discovered that in the model of the gene regulatory net-
work related to the cell-cycle, there is a fixed point with a very large basin size, 
and the transition process to the fixed point corresponds to the expression pat-
tern of the gene in each process of the cell-cycle [10]. It should be noticed that in 
the network of the Kauffman et al., there is no self-regulating factor (self-loop), 
but in the model of Li et al. the existence of the self-loops has influence on the 
attractors. Very recently, in other systems such as fission yeast cell cycle and 
mammalian cell cycle, the Boolean network models for the regulation have also 
been studied [11] [12] [13].  

In this study, using the same gene regulatory network as Li et al. for the bud-
ding yeast, we clarify the relationship between the fixed points (point attractors) 
with large basin size and the presence of the self-loops in the network. It is found 
that there is a simple division rule of the state space by removing the self-loops, 
and the point attractors with largest basin size (BS) is robust against the chang-
ing the self-loops. The similar results are obtained for C. elegans early embryonic 
cell cycles as well [14]. 

2. Model 

Here, we give some basic properties of the Boolean network model of the 
cell-cycle regulation for the budding yeast. Let us take the binary value { }0,1  as 
the state iS  of each node i corresponding to the numbered genes as given in 
Table 1. The states 1 and 0 correspond to expressed and unexpressed genes, re-
spectively and the attractors of the dynamics are associated to cell differentia-
tion. The effect on the node i from the other node ( )j i≠  is defined as   

( )
,

N

i ij j
j i

B a S
≠

= ∑                           (1) 

where N is the total number of the nodes, and ija  denotes matrix element of 
the weighted adjacency matrix A representing the interaction between the genes. 
We take 1ija = +  when the node j positively regulates the node i (positive inte-
raction), and 1ija = −  when the node j negatively suppresses the node i (nega-
tive interaction). 

The node without the self-loop, i.e. 0iia = , follows a threshold dynamics from 
discrete time t to 1t +  ( t∈N ) by using the parallel updating scheme as follows:  
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Table 1. Seven attractors in the original gene regulatory network. (All are point attrac-
tors.) The third line shows that there is a degenerate self-loop when mark ○ is present in 
the node. In the decimal notation, each attractor is displayed as, ( )0

1 68A = , ( )0
2 384A = , 

( )0
3 580A = , ( )0

4 4A = , ( )0
5 0A = , ( )0

6 516A = , ( )0
7 64A = . The last column (BS) represents 

the basin size of the attractors. Note that Cln 1 represents Cln 1, 2, Clb 5 represents Clb 5, 
6, and Clb 1 represents Clb 1, 2.  

 Cln3 MBF SBF Cln1 Cdh1 Swi5 Cdc20 Clb5 Sic1 Clb1 Mcm1  

No. 1 2 3 4 5 6 7 8 9 10 11 BS 

 ○   ○  ○ ○    ○  

( )0
1A  0 0 0 0 1 0 0 0 1 0 0 1764 

( )0
2A  0 0 1 1 0 0 0 0 0 0 0 151 

( )0
3A  0 1 0 0 1 0 0 0 1 0 0 109 

( )0
4A  0 0 0 0 0 0 0 0 1 0 0 9 

( )0
5A  0 0 0 0 0 0 0 0 0 0 0 7 

( )0
6A  0 1 0 0 0 0 0 0 1 0 0 7 

( )0
7A  0 0 0 0 1 0 0 0 0 0 0 1 

 
where iθ  denotes the threshold value of the node i. Also, if the self-loop acts 
inactively when ( )i iB t θ= , the effect of the protein degradation called “degene-
ration”, which is distinguished from a simple inhibition effect, is given as fol-
lows;  

( )
( )( )
( )( )

0 , 1
1

1 , 1
i i ii

i
i i ii

B t a
S t

B t a

θ

θ

 = = −+ = 
= = +

               (3) 

The budding yeast cell-cycle network model (denoted by ( )0G ) by Li et al. is a 
special one in a sense that all nodes of the existing self-loops are given as 

1iia = − . The network is shown in Figure 1. We take the values 0iθ =  for all i 
in this report. Each regulatory factor is represented by each numbered node 
( 1,2, ,11i =  ), and the activation effect ( 1ija = + ) and suppression effect 
( 1ija = − ) are indicated by solid and dashed arrows between the nodes. There 
are self-degeneration loops on the 5 nodes, Cln3, Cln1-2, Swi5, Cbe/Cdc14, 
Mcm1/SFF. Note that this rule is the same as that of Refs. [5] and [10], but it 
differs from that of [15]. In this network, the total state number is 112 2048W = = , 
and all steady states are seven point attractors by numbering as  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }0 0 0 0 0 0 0 0
1 2 3 4 5 6 7, , , , , ,A A A A A A A=A . 

The state of the point attractor with the largest basin size among these is 
( )0
1 00001000100 68A = = , where the last number is in decimal. According to the 

study of Li et al. the following facts are known. 1) The attractor with the largest 
basin ( )0

1 68A =  corresponds to the stationary 1G  state in the cell-cycle of the 
budding yeast. 2) When creating the random network model of the same system 
size 11N = , there is no attractor that corresponds to ( )0

1A  with a very large  
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Figure 1. (Color online) Gene regulatory network of the cell-cycle of budding yeast [10]. 
Each circle represents a protein (cyclin or transcription factor) involved in the gene regu-
lation. For the links connecting the respective proteins, the blue-solid lines represent the 
effect of the activation control, and the red-dashed lines represent the effect of the sup-
pression control. In addition, the self-loops by green-dotted lines represent the effect 
(ubiquitin-proteasome system) of protein degradation in the absence of external input.  

 
basin size. 3) One of the trajectories to reach the attractor ( )0

1A  coincides with 
the trajectory of the actual biological cell-cycle. 4) The trajectory corresponding 
to the biological cell-cycle leading to ( )0

1A  is stable against external perturbation. 
In addition, the result for the basin size of the attractors in the similar random 

networks with same conditions of the structure as the ( )0G  is given in Appen-
dix A. We confirmed that the occurrence probability of the point attractors with 
the large basin size (≥1700) is less than 20 percent. This result is consistent with 
those in Ref. [4]. 

These results may be due to all self-loops being degenerate and threshold val-
ues being zero, and all the attractors are point attractors only. Generally, the 
threshold values are related to adding the active self-loops at each node. Note 
that for fission yeast cell-cycle model with similar network structure some limit 
cycles of period two appear as the attractor because some of the threshold value 
are not zero [15] [16]. Further, notice that when an active self-loop is attached to 
the node the state update rule becomes different from those of Tran et al. due to 
the existence of rule (3). 

3. Numerical Result  

In this section, we investigate the effect of the degenerate self-loops on the at-
tractors of the original network ( )0G . Therefore, we write the network from 
which the degenerate self-loop of the kth node is removed from ( )0G  as ( )kG − , 
and the network with self-activating loop is added to the mth node of ( )0G  as 
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( )mG + . Here, k selects from the nodes with the self-loop, and m selects from the 
nodes without the self-loop. The attractor sets are indicated as  

( ) ( ) ( ) ( ){ }1 2, , ,
k

kk k k
nA A A
−

−− − −=A  , ( ) ( ) ( ) ( ){ }1 2, , ,
m

mm m m
nA A A
+

++ + +=A  , 

and so on, respectively, where kn−  and mn+  means the number of attractors in 
the networks ( )kG −  and ( )mG + , respectively. We can numerically decide the all 
attractors and the basin size because the network has a state space of 112 2048=  
states.  

3.1. Case of Removing Degenerate Self-Loop 

In Figure 1 of the original network, degenerate self-loops are included in five 
control factors of Cln3, Cln1-2, Swi5, Cbc20/Cdc14, Mcm1/SFF, and Table 1 
shows the 7 attractors. We show in Table 2 the 11 attractors of the gene regula-
tory network ( )1G −  which removed the degenerate self-loop of Cln3 (the first 
node). 

We compare the attractors of the network ( )1G −  with those of ( )0G . It is 
found that ( ) ( )1 0

2 1A A− = , ( ) ( )1 0
3 2A A− = , ( ) ( )1 0

5 3A A− = , ( ) ( )1 0
8 4A A− = , ( ) ( )1 0

9 5A A− = , 
( ) ( )1 0
10 6A A− = , ( ) ( )1 0

11 7A A− = . That is, all of the attractor sets ( )0A  of the original 
network ( )0G  is included the attractor set of ( )1−A  of the network ( )1G − . 

Next, we focus on the change of the basin size. It follows that the basin size of 
the attractor ( )0

1A  with the largest basin size is reduced by the elimination of the 
degenerate self-loop. Also, the basin size of the other attractors are also reduced 
from those of ( )0A . Figure 2 shows the basin structure of the 2048 initial states  
 
Table 2. Eleven attractors in the gene regulatory network ( )1G −  which removed the de-
generate self-loop of Cln3 (the first node). (All are point attractors.) The last column (BS) 
represents the basin size of the attractors. In the decimal notation, each attractor is dis-
played as, ( )1

1 1979A − = , ( )1
2 68A − = , ( )1

3 384A − = , ( )1
4 1459A − = , ( )1

5 580A − = , 
( )1
6 1595A − = , ( )1

7 1971A − = , ( )1
8 4A − = , ( )1

9 0A − = , ( )1
10 516A − = , ( )1

11 64A − = .  

No. 1 2 3 4 5 6 7 8 9 10 11 BS 

    ○  ○ ○    ○  

( )1
1A −  1 1 1 1 0 1 1 1 0 1 1 888 

( )1
2A −  0 0 0 0 1 0 0 0 1 0 0 856 

( )1
3A −  0 0 1 1 0 0 0 0 0 0 0 87 
( )1
4A −  1 0 1 1 0 1 1 0 0 1 1 61 
( )1
5A −  0 1 0 0 1 0 0 0 1 0 0 57 
( )1
6A −  1 1 0 0 0 1 1 1 0 1 1 52 
( )1
7A −  1 1 1 1 0 1 1 0 0 1 1 23 
( )1
8A −  0 0 0 0 0 0 0 0 1 0 0 9 
( )1
9A −  0 0 0 0 0 0 0 0 0 0 0 7 

( )1
10A −  0 1 0 0 0 0 0 0 1 0 0 7 

( )1
11A −  0 0 0 0 1 0 0 0 0 0 0 1 
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Figure 2. (Color online) The point attractors and the basin structures of the network 

( )1G − . The 7 red circles present the common point attractors to ( )0G  and ( )1G − . The 
blue and green circles present attractors newly added by the network becoming ( )1G − . 
The poin attractor with the largest basin of ( )1G −  is indicated by green circle.  
 
flowing to the fixed points given in Table 2. The red circles are the point attrac-
tors of ( )0G , and the blue circles indicate the four point attractors newly added 
by the network becoming ( )1G − . Obviously, the basin size of the same attractor 
of ( )1G −  to those of attractor of ( )0G  is smaller than those of ( )0G , and they 
are caused by branching from the basin of ( )0G . Accordingly, it is also easy to 
understand that all attractors (attractor sets) of the original network ( )0G  are 
included in the attractor set of ( )1G − . The attractor of the large BS of ( )0G  cor-
responds to the attractor of the relatively large BS of ( )1G − . 

In Figure 3, we show the coloring basin structure of ( )0G  depending on each 
basin of the attractors of ( )1G − . (Figure 4 shows the one that removed the col-
or-coded state other than red from the attractor of the largest basin.) It is found 
that the newly appearing attractors of ( )1G −  are created by connecting the the 
leaf states to the other leaf states in the original gene state in the transition dia-
gram. 

Although above results are for the specific case which the degenerate self-loop 
of Cln3 has been removed, but also it is found that the similar results are also 
true for the cases removing the other degenerate self-loops. Furthermore, if we 
apply this rule repeatedly in the process of removing the self-loops, we can see 
that in general the above relations of the attractors and the basin size also applies 
to the relationship before and after removing the self-loops. 

3.2. Case of Adding Active Self-Loop  

It is noting that in the general network which both the self-regression loops and 
self-activation loops exist, limit cycles can appear as the attractors, as shown in 
case of the fission yeast. In networks which the self-activation loop is added to  
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Figure 3. (Color online) The basin structure of ( )0G  classificated by colors depending 
on the basins for each attractor of ( )1G − . The states are color-coded so that we can see 
basins of the 11 attractors of ( )1G − .  
 

 
Figure 4. The basin structure that removed the color-coded states other than red in Fig-
ure 3 from the attractor with the largest basin of ( )0G .  
 
the original network ( )0G , not only point attractors but also other types of peri-
odic attractors exist. 

As an example, the attractors ( )8+A  of the network ( )8G +  which an active 
self-loop added to Clb5 (the 8th node) of the ( )0G  is given in Table 3. It follows 
that the attractors ( ) ( )8 0

1 1A A+ = , ( ) ( )8 0
5 4A A+ = , exist also in the network ( )0G , and 

the limit cycle attractors of period 2, ( )8
2A + , ( )8

3A + , ( )8
4A + , are newly emerging as 

the attractors of the network ( )8G + . Also, it follows that many attractors of ( )0G  
have disappeared, but the attractor with largest basin size has survived. The ba-
sin structure of the attractors in the Table 3 is shown in Figure 5. It is found  

 

DOI: 10.4236/ojbiphy.2019.91002 16 Open Journal of Biophysics 
 

https://doi.org/10.4236/ojbiphy.2019.91002


S. Kinoshita, H. Yamada 
 

Table 3. Five attractors present in gene regulatory network ( )8G +  which an active 
self-loop is added to Clb5 (the 8th node). The three attractors ( )8

2A + , ( )8
3A + , ( )8

4A +  are 
limit cycle. 2PLC  means the limit cycle with the period 2. The last column (BS) 
represents the basin size of the attractors. In the decimal notation, each attractor is dis-
played as, ( )8

1 59A + = , ( ) ( )8
2 933,956A + = , ( ) ( )8

3 613,633A + = , ( ) ( )8
4 549,572A + = , 

( )8
5 4A + = .  

No. 1 2 3 4 5 6 7 8 9 10 11 BS 

 ○   ○  ○ ○ +   ○  

( )8
1A +  0 0 0 0 1 0 0 0 1 0 0 1897 

( ) ( )8
2 2PA LC+  0 1 1 1 0 1 0 0 1 0 1 110 

 0 1 1 1 0 1 1 1 1 0 0  

( ) ( )8
3 2PA LC+  0 1 0 0 1 1 0 0 1 0 1 25 

 0 1 0 0 1 1 1 1 1 0 0  

( ) ( )8
4 2PA LC+  0 1 0 0 0 1 0 0 1 0 1 9 

 0 1 0 0 0 1 1 1 1 0 0  

( )8
5A +  0 0 0 0 0 0 0 0 1 0 0 7 

 

 

Figure 5. The attractors and the basin structures of ( )8G + . The 2 red circles present the 
point attractors. The 6 blue circles represent the states that belong to the three limit cycles 
of period 2 two each, respectively.  
 
that the limit cycles are constituted by combining the gene states with the rela-
tively small basin size. In such a case the limit cycles with large basin size do not 
occur. 

These features occur even if the self-activated loop is added to the other nodes 
without the self-loop. Furthermore, the similar phenomena can also be confirmed 
by changing any of the degenerate self-loop of the five nodes to the active one. 
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4. Summary and Discussion 

In this short report, we investigated the influence of the degenerate self-loop on 
attractor of the gene regulatory network model of the cell-cycle of budding yeast. 

In the case of networks with degenerate self-loops removed from the original 
network ( )0G , only the point attractor appears because all of the self-loops are 
degenerate. The attractor set of the network without the degenerate self-loops 
includes all attractors of the original network ( )0G . In addition, when 
self-regression loops and self-activation loops coexist, limit cycles with the pe-
riod more than 2 appear other than point attractor, and many attractors of ( )0G  
are not included in the attractor set, but the attractor with the largest basin size 
was relatively stable against the deletions and additions of the self-loop. Above 
result can apply to Boolean genetic network model of C. elegans early embryonic 
cell-cycle network as it is, because the self-loops of network are only 
self-inhibitation loops, and the attractors are only fixed points [4] [14]. 

Note that necessary and sufficient condition that the network attractors does 
not become limit cycle but only point attractors is not known yet [5] [15] [17]. 
However, we expect that the result in Subsec. 3.1 holds when at least the attrac-
tors are only fixed points in the random network with only degenerate 
self-loops. 

There is a theorem in the graph theory [15]: Consider a Boolean network such 
that each gene is governed with a threshold function. Then, if the associated in-
cidence graph, without considering the diagonal elements, is a directed acyclic 
graph (DAG) and the thresholds are non negative, 0iθ ≥ , then the attractors 
are only fixed points. The network of the budding yeast satisfies the following 
sufficient condition for the fixed points. The result of the Subsec. 3.2 seems to 
contradict above theorem at first glance. However, considering that the update 
rule (3) is different from one in Ref. [15], we can see that it is not necessarily 
contradictory to the theorem. 
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Appendix A: Case of the Random Network Models 

We randomly construct the cell-cycle network with the same number of nodes 
and links as the budding yeast, and examined the attractors and its basin size x 
by re-linking in the network. The number of nodes is 11, the number of active 
links is 14, number of suppressing links is 15, and (suppressing) self loop num-
ber is 5. For each sample, attractors with the largest basin size were examined. In 
the cases, all are point attractors because the networks satisfy the sufficient con-
dition. Figure 6 shows the probability distribution ( )BSPr x x≤  of the random 
network that the largest basin size LBSx  is smaller than x. It follows that about 
20 percent even on a random network maintaining the same structure as the 
budding yeast have attractor with the similar or the larger basin size (≥1700) 
than the budding yeast. The result is similar with those for ES cell network of C. 
elegans in Ref. [4]. 
 

 
Figure 6. The probability distribution ( )BSPr x x≤  of the random network that the 

largest basin size BSx  is smaller than x. We used 1000 network samples that the number 
of nodes is 11, the number of active links is 14, number of suppressing links is 15, and 
(suppressing) self-loop number is 5.  
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