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Abstract 
The objective was to gain proof of genome damage-repair induced mitotic 
slippage process (MSP) to 4n-diplochromosome skewed division-system, ear-
lier suggested to have “cancer-deciding” consequences. Our damage-model 
showed two succeeding phases: molecular mutations for initiation of fit-
ness-gained cells, and large chromosomal changes to aneuploidy from inhe-
rited DNA-breakage-repair inaccuracies. The mutations were gained while 
DNA-repair and DNA-replication, co-existed in the route to tetraploidy, a 
phenomenon also expressed for some existing unicellular organisms. These 
organisms also showed genome reductive, amitotic, meioticlike division, and 
was the origin of human genome conserved, self-inflicted 90˚ reorientation of 
the 4n nucleus relative to the cytoskeleton axis. In the in vitro DNA-damage 
model, this remarkable 4n-event deciding “flat-upright” cell-growth charac-
teristics showed several consequences, for example, cancer-important, E-cad- 
herin-β-catenin cell-to-cell adherence destruction, which gave diploid proge-
ny cells, mobility freedom from cell contact inhibition, likely in renewal tis-
sues. This 4n-skewed division-system with inheritance in progeny cells for 
repeat occurrences as mentioned for flat-up-right growth patterns is similar 
to claimed concepts of metaplasia-EMT/MET embryogenesis events in cancer 
evolution. A scrutiny of this literature, proof-wise invalidated this embryo-
logical concept by tetraploid 8C cells occurring in MET events and, was noted 
for small cell occurrence, i.e., diploidy from 4n-8C reductive division, an also 
event for tumor relapse cells, derived from genome damaging therapy agents. 
Pre-cancer hyperplasia reported MSP, cadherincatenin destruction and 90˚ 
perpendicularity to basal cell membrane. The DNA-damage-repair model can 
weed-out therapy-agents triggering 4n-skewed division. Cancer-control, be-
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ginning-information, is likely from mutational identity of the 4n derived fit-
ness-gained cells.  
 

Keywords 
Cancer Evolution, DNA-Damage-Repair, Mitotic Slippage, Hereditary  
Primitive Tetraploidy, 90˚ Amitotic Skewed Division, Fitness-Gain,  
Embryogenesis-Type EMT/MET, Human Cell Conservation 

 

1. Introduction 

Have we made cancer disease into a mysterious, complex issue much more than 
it really is, if so, why? The “big picture”, if staying within scientific reasons (aside 
from commercial interest), is that too much faith has been placed on cancer cell, 
molecular sequencing for mutational know-ledge, being the definitive answer to 
a solution of the cancer-riddle [1] [2]. Now 30+ years later, there is an immense 
quantity of difficult to interpret mutational data, showing various types of mo-
lecular nucleotide lesions [1] [3]. This overall “unsolvable” data has even led to 
the suggestion of needed mathematics for the understanding of tumorigenesis 
[4], which is actually occurring [5] [6] [7]. These theoretical models of tumori-
genesis have included second generation sequencing results, but these finer and 
finer dissections of the cancer genomes, have only led us further away from bio-
logical thinking. So far away that the reality of biological, mitotic, cause of muta-
tions do not exists in the minds of “reigning” cancer-chemists. Integration from 
their mutation data, specific mutations in faulty mitosis for potential mitot-
ic-targeted therapy, is impossible. But life goes on with schools teaching cancer 
biology as cancer chemistry, completely ridding this job-market of biology 
thinking also needed from another perspective of cancer development, the huge 
data-bank on karyotype aneuploidy [8] [9]. All in all, the now, massive available 
data on cancer development is a complex mess with “trees not being seen for the 
forest”, more precisely expressed by cancer-investigation lacking a paradigm 
[10]. Thus, if a decision is made that the first goal/paradigm is to investigate 
cancer-beginning/initiation, which is an agreed-upon feature of gain in fitness of 
a normal human cell [11] [12], then the cancer relevant literature becomes con-
siderably shrunk. If a further weeding excludes carcinogen/viral experiments, 
which are not happenings for sporadic cancers, and a further elimination is done 
for ideas of initiation, deducted from cancer cell line-experiments, then there are 
only a few qualifying sources left. This latter dismissal (not effecting “progres-
sion” literature) is necessary, because such cancer cells are already positive for 
activated telomerase gene, associated with immortality, which normal human 
cells must gain. These gains however, have yet to be shown evidentially, directly 
from “disturbed” normal human cells, although claimed. The observations of 
benign pre-cancer diploid, cell-proliferation (hyperplastic), preceding a senes-
cent arrest, associated with oncogenic transformation to immortality cells, will 
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be the accepted route herein. Another agreed-upon cancer occurrence is that 
cancer is a multistep process [10] [13], known as initiation and progression to 
malignancy [14]. Somewhat debated is the suggestion of chromosomal instabili-
ty (CIN) and/or a mutator mechanism in this multiyear evolution to malignancy 
[15]. 

2. Cancer Pathology in Sense-Making of Cancer Literature 

As mentioned, in cancer pathology the first “warning” phenotype is pre-cancers 
with hyperplastic cell proliferation, which are cells having gained a proliferative 
advantage (fitness-gain), and with origin from normal human cells. This occur-
rence leads back to the question of how normal cells in renewal tissues where 
cancers originate, gained this fitness increase? The literature has many sugges-
tions, but zeroing in on those from normal human cells, the most likely occur-
rence from a genetic point of view is tetraploidy with asymmetric chromosome 
segregation to chromosome altered (aneuploidy) progeny cells. Experiments 
with induced endoreplication to 4n cells, did not show the desired result, but in-
stead the 4n cells became division-arrested, being referred to as the tetraploid 
paradox [16] [17] [18]. Contrary to these results we found that another type of 
tetraploidy from DNA-repair induced mitotic slippage process (MSP) with 
re-replication of diploid cells, giving rise to tetraploid cells, but with 4-chromatid 
chromosomes (diplochromosomes), divided without any arrest-disturbances 
(absence of mitotic checkpoints). These orderly divisions were of course, differ-
ent from mitosis/meiosis, because of chromosome structure, but were meiot-
ic-like in that the chromosome segregation process was genome reductive to ka-
ryotype normal diploid cells [19] [20] [21]. The diploid progeny cells unexpec-
tedly showed gained “generational” fitness-increase, meaning dilutions were ne-
cessary for cell culture passage from the first proliferative-burst in 25-T-flasks. 
The normal karyotype suggests fitness-gain from molecular mutations, which is 
in agreement with very limited tolerance of aneuploidy of normal human cells 
[22]. This in vitro machinery, is herein evaluated for causation of pre-cancer 
hyperplasia, and is “dissected” for tumorigenic “single chain of causality” [15] 
which provided unanticipated answer to assumed, embryological metapla-
sia-EMT/MET in cancer evolution. 

3. The Development of a New-Look Mutation Theory 

Accepting that the goal for tumor initiation is gain of fitness in normal human 
cells, the mutation data from tumor sequencing demonstrated that certain 
gene-specific, mutations occurred more frequently than others, i.e., mountains 
versus hills [10] [23]. The mountain mutations were considered to be cancer 
causative with tumor driver capacity, and the hill mutations, were named pas-
sengers without driver capacity. The driver mutations have become the focal is-
sue in immunotherapy in which, some 50 of them, in proprietary secrecy, are 
being tested for antibody-T-cell production against the tumor cells [24] [25]. At 
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this time there has been some extraordinary cure-treatments, and many more 
are hoped-for, but awaiting FDA approval for patient-use. But, there are also va-
ried results, suggested to come from patient, specific immune-response, or from 
other problems, adding “missing-links” for this invaluable approach to can-
cer-therapy. These driver, mutated genes, called cancer-genes (CAN-genes), and 
cells carrying them being “tumor initiating cells” (TICs) [26], appear to need 
re-evaluations from original articles, describing them [10] [23], and also from a 
later description [27]. It is clearly expressed that today believed characteristics of 
these CAN-gene-mutations were from interpreted functions awarded to them in 
the carcinogenic process. Thus, tumor driver capacity dealt to the mountain 
mutations has no real. factual evidence, it was explained as follows: “This new 
view of cancer is consistent with the (note) idea that a large number of muta-
tions, each associated with a small fitness advantage, drive tumor progression”. 
Moreover: “Driver mutations are causally involved in the neo-plastic process 
and are positively selected for during tumorigenesis” [23]. The predicted fitness 
increase of the driver mutations, was calculated from a tumorigenic model, and 
shown to be “surprisingly low” (0.4%) [10]. The authors themselves, pointed out 
that experimental proof in cell culture for fitness increase, was prohibited. Of 
note (see below), in addition to these CAN-gene mutations being in structural 
genes there was identification of molecular “mutations” (deficiencies) twice as 
frequent in noncoding DNA, which is a repair unsolved issue, not mentioned in 
MT [10] [23], and neither in a rather, succinctly described “cancer genome” [7] 
[28]. Unsolved is also whether mutations can be caused by a mutator mechanism 
[29] [30] [31], and/or by CIN [32]. But the critical question is whether the 
“awarded” CAN-gene mutational characteristics are deserving of todays, central 
role they have in immunotherapy [24] [25]. Noteworthy, is the absence of cancer 
eradication, a promise some years ago, which we think can be achieved by vac-
cine development [33] from our herein, focused approach to biomarkers of init-
iation. 

4. A Cellular Mechanism in Cancer Initiation and Evolution 

To this “mountain/hill” mutation data, there is also a huge data-bank on ab-
normal karyotypes from both solid and hematological cancers, which also has 
been unyielding to interpretation(s) of their origins [34] [35] [36]. In 1987, some 
9000 cancer-cases had been karyotyped with some results, especially baffling, 
defying any type of explanation, as for example, that specific chromosomes were 
more often involved in aberrations than others [37] [38]. But, most peculiar was 
that different patients could present with same type of primary, karyotype ab-
normality, per-haps suggestive of a repeatable event in normal cells, which was 
difficult to assign to a specific mutation according to the MT. Instead, a repeata-
ble cellular event, causing aneuploidy with specificity in renewal tissues from 
micro-environmental selection, appears more likely. For this to occur we suggest 
the mentioned 4n-skewed division-system, having from known inducer system 
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and detailed chromosomal analyses, shown integrity in repeatability and, in 
production of fitness increased cells from normal human cells. 

1) Normal human cells going through MSP, giving rise to special diplochro-
mosome tetraploid 

From a series of experiments with normal human cell strains near senescence 
with unstable double strand, broken (DSBs) telomeres, tetraploid diplochromo-
somal (4 chromatids) cells were observed [20] [21], capable of division without 
arrest from cell cycle checkpoint control [39] [40]. The telomeric DSBs had long 
since been a subject matter in studies of non-homologous end-joining [41], and 
the specific diplochromosome tetraploidy at this DSB-senescent stage was veri-
fied some years later [42]. These observations gave the idea of DNA-DSB-repair 
being the origin to chromosomes with 4 chromatids, and with described tetrap-
loidy from mitotic slippage process (MSP) [43], two and two made four: 
DSB-repair, inducer of MSP cycling to the special tetraploidy. This idea was 
tested in young normal human cells, made to carry genomic damage by transient 
exposure to culture medium deficient in amino acid glutamine, previously shown 
to induce polyploidy, and being a significant metabolic-source for DNA nucleo-
tides [44]. Daily harvests of chamber slide-cultures for in situ analyses, indeed 
revealed diplochromosomal cells, which surprisingly showed an orderly, divi-
sion-system to fitness-gained diploid cells. Summarily, the division-system was 
an amitotic (no spindle apparatus), two-step meiotic-like, first segregation of 
whole complements, and secondly a simple fission-division of the first division 
products (4n/4C), giving rise to the diploid cells [45] [46]. Of note, is that the 
first division was equational and the second was reductive, which is reverse of 
meiosis and, with occurrence in hermaphroditic animal species [47]. This event 
and the number of diplochromosomes being 46, preclude any involvement of 
meiosis, which should have shown 23 chromosomes from homologous pairing. 
Whole complement-segregation have been reported in human placental tro-
pho-blasts in the absence of a spindle apparatus, and for “meiotic-like” division 
of PtK-1 cells, lacking centrioles [48] [49]. 

2) DNA-double strand breaks repairing during replication process 
Genomic damage-repair of DSBs in a cancerous process, is a frequent litera-

ture encounter, and only two are mentioned here for special reasons (see below) 
[50] [51]. For the former see title and reasoning, and for the latter, the 2% of 
X-ray induced DSB-repairs was by homologous recombination (HR) between 
“—non-allelic repetitive elements—”, which is a rather unusual repair-mecha- 
nism likely involved in cancer-observed chromothripsis [52] [53]. Another fea-
ture of DSBs, occurring in S-period of the cell cycle, is that repair-mechanisms 
can be expressed while the cell continues DNA replication, but with a slowed 
down speed, which has the consequence of disturbing cell cycle-timing [54]. 
These peculiarities are mentioned (in prep.), because cell cycle time of 4n, dip-
loid progeny cells, PtK-1 & 2, was measured from autoradiography of tritiated 
thymedine incorporation, and found to be about 3 hours shorter than for con-
trol, normal marsupial, Potoroo cells (2002 [55]. Autoradiographs of present 
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human diplochromosomal cells [56] demonstrated non-randomness in chroma-
tid replication process, and extensive, sister chromatid chiasmata from recom-
bination repair-processes [20], emphasizing “break and repair” in this 4n-situ- 
ation. Of note, is that reduced cell cycling time is in itself a proliferative advan-
tage, which for the fitness gained 4n-derived diploid cells, may well have been in 
addition to mutations created by inaccurate repair [57]—the mutator phenotype 
[30]. Today, the Mayo Clinic (2018 Cure Cancer Drive Letter) acknowledges 
“DNA strand damage” in tumor development, and has a protein (L3MBTL2) ac-
tivated in repair (otherwise unknown), which ought to be investigated for links 
to the 4n-skewed division-system. Repair of DSBs is also known to be associated 
with conserved, cohesin down-load [58] [59], which no doubt conferred struc-
tural stability in re-replication to the 4-chromatid chromosomes, and also se-
cured orderly whole complement segregation. As said (Mayo Clinic letter), mo-
lecular discovery of repair—“missing links” may lead to “more effective thera-
py”, which earlier-on was a “given” co-operative situation for cancer-related bi-
ology [60]. But, is the “will” and trained scientists there today? 

5. Cell Contact Inhibition of Proliferation: A Tumor  
Suppressive Mechanism in Renewal Tissues 

Cancer development almost exclusively in renewal tissues must overcome this 
proliferation prohibiting condition, but barely mentioned as such in cancer re-
search. The variously differentiated tissues prevent unscheduled cell prolifera-
tion by a cell-to-cell, patterned architectural structure, determined by several 
features “gluing” cells to each other [61] [62] [63]. This elaborate, proliferation 
controlling-system must somehow be glued-dissolved with cells gaining freedom 
and movability for potential cancer-initiating proliferation. From carcinogenesis 
studies it was concluded that cancer development was “development gone awry” 
[64]. This suggestion has had historic support by cancer development in von 
Hansemann’s time, thought to have an embryo-logical origin [65]. But, von 
Hansemann, a keen microscopist with photography capacity, came to the con-
clusion that cell-shape changes from epithelioid tissues occurred on a more or 
less continuing bases with the cancer cell gaining roundness shape, facilitating 
independent living. This gradual gain of roundness morphology of mature can-
cer cells however, suggests repeated cytoskeleton axial, cell-polarity changes, ne-
cessary for cell division. But change/loss of cell polarity is more or less an absent 
issue in cancer studies today, the less proven idea of development gone awry, is 
glibly accepted, and is now fueling an intense search for biomarkers of embryo-
logical epithelial cell transition to mesenchymal cells (EMT reverse MET), 
thought to be operating in cancer evolution [66]. 

1) Epithelial cell changing to cuboidal cell growth—flat versus upright  
The EMT/MET occurrences in embryology are based on one cell-type chang-

ing into another, which likely has many effectors [66] [67] [68]. One rather well 
know example, known from very early tumorigenesis, is effected by disruption 
of the E-cadherin-β-catenin linkage [26] [69]. These cell-to-cell adherence pro-
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teins occur in tight junctions between epithelial cells, and has time and again 
been observed with disruptured function, latterly reported in pre-cancer hyper-
plasia with causation of skewed cell growth [70] [71]. Interestingly, in cancer 
evolution, they show a gradual, quantitative decrease with almost absence in the 
carcinoma phenotype [69]. In normal contact inhibited cells, these proteins are 
united to form a bridge to the cytoskeleton by E-cadherin being cell-external 
(causing neighbor cell adherence) with a trans-membrane extension being linked 
to β-catenin, which bridges the gap for attachment to the cell polarity axis, the 
cytoskeleton. Today, this assembly has been described from Hippo signaling 
pathway [63] [72], and disruptions, from β-catenin becoming located in the 
nucleus and not in the normal cytoplasm place (see below) [69]. Such cadhe-
rin-catenin functional destruction has been shown to be a basic operational fea-
ture in embryological EMT [73], which causes a near basal membrane cell to 
turn 90˚ to the membrane with start of skin thickness growth (upright). In other 
words the EMT was effected by a perpendicular, whole cell turn, changing the 
cell polarity to upright with consequent mitoses in this new axial change. 

2) In vitro cell-events leading to disruption of cadherin-catenin function— 
consequences  

Recently, cell contact inhibition of proliferation was concluded to be a ques-
tion of “spatial constraint” [74], which agree with our finding of a similar situa-
tion in cell culture, monolayer contact inhibited cells [75] [76]. Only in small cell 
islands (300 - 500 cells) with somewhat loose, contact between the cells, and not 
in confluent cultures, were the special 4n cells (above) observed. These “flakes” 
of cells had been made to carry genomic damage (amino-acid-AA) glutamine 
deficiency treated), and showed mitoses only at the peripheries. The occurring 
4n cells could show a peculiar, self-inflicted 90˚ nuclear rotation relative to the 
cytoskeleton axis. Such cells were microscopy followed, and showed the familiar, 
amitotic division-system in this perpendicular direction relative to the cell cy-
toskeleton axis. The cytology firstly revealed a pear-shape “mother-cell”, which 
became more flattened from apical and basal cell regions with-drawing from 
immediate, neighboring normal diploid cells. This continuous division sequence 
ended with cytokinesis into two more or less flattened progeny cells also in a 
perpendicular or highly skewed orientation relative to the normal cell sur-
rounding. This peculiar, self-generated 4n division-sequence had effected a 
“whole-cell” change from “flat to upright” possibility of cell proliferation. This 
inescapable conclusion demonstrated fitness gained, diploid cell propagation in 
a changed direction from original fibroblastic, striated pattern, freed from con-
tact inhibition. Next the question is whether the mother-cell “withdrawal”, de-
stroying cadherin-catenin mole-cules, was helped by endocrine secretion and/or 
kallikreins (metallo-proteinases), early observed tumorigenic events [77]. Nev-
ertheless, the flattened progeny cells would be doomed to build a new cytoskele-
ton in polarity direction of the nucleus. Strong support for this conclusion, is 
from aggressive oral cancer cells with the cytoskeletons in a skewed position 
[78]. And, change/loss of cell polarity, has been suggested to be the “gateway” to 
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cancer [79] [80]. 
3) Does this self-made 4n-cell-sequence occur in vivo contact inhibited re-

newal tissues?  
Of note, is that pre-cancers with hyperplasia from different types of renewal 

tissues, have been reported to accumulate 4n/4C/G1 cells in the diploid hyper-
plastic cell growth [40] [70] [71] [81] [82]. In the DNA-damage-repair, MSP in 
vitro model, such 4n cells were products from first equational division of 
4n/8C/M > 4n/4C/G1, followed by more rarer, reductive fission-division of the 
4n/4C/G1 cells to the fitness gained diploid cells (see above). In hyperplasia (fit-
ness gained cells) of BE, 4n/8C cells were found to segregate with reductive divi-
sion to hyperplastic diploid cells [21] [81], and in colon crypt cells with mutated 
APC gene, MSP was implicated in the production of the 4n/4C/G1 accumulating 
cells [70]. But most importantly, the hyperplastic crypt cells showed, measured, 
90˚ cell polarity axial change, relative to the basement membrane [70]. Mea-
surements discarded up to 30˚—cell-changes as accidental, emphasizing the re-
ality of this peculiar in vivo happening. Furthermore, these crypt cell studies 
[71], showed destruction of the E-cadherin protein linkage to β-catenin by the 
β-catenin protein being observed in nuclei, and not in the normal cytoplasmic 
place. These two special observations, are undoubtedly consequences from the 
extraordinary, 4n-cell, self-inflicted 90˚ machinery. The evidences for special 
4n-cell division-sequence in initiation of tumorigenesis are becoming unques-
tionable, especially because the APC mutated crypt cells showed change to 3n-4n 
cycling, dysplastic cells, which culminated in the carcinoma phenotype [70] [71] 
[82] [83]. Only one study has been found, commenting on this cancer causative, 
chain of events, which acknowledged genome reductive behavior of 4n cells as a 
source for the diploid, hyperplastic cells [84]. The cancer-related reality of the 4n 
cell division-system with spontaneous 90˚/skewed geno-phenotype, is hence, 
called “4n-skewed division-system”, setting it apart from other types of tetrap-
loidy.  

6. How Is DNA-DSBS Created for Spontaneous  
Tumorigenesis? 

In the above crypt cell experiments with mutated APC gene, an article also pub-
lished in 2007 reported on mutated APC, causing chromosome damage in nor-
mal cells [85]. The truncated, mutated protein from loss of the carboxyl-terminal 
sequence, needed for proper microtubule interactions, caused mitotic chromo-
some miss-segregation, anaphase bridges, and bi-nucleated cytokinesis. Abnor-
mal spindle apparatus in anaphase is a known cause of bridge-breakage to DSBs 
with mentioned B-F-B repair cycles [81] [82] [83] [86] [87] [88]. Moreover, the 
truncation of the protein with loss of binding sites to other normal proteins, was 
suggested to affect other normal signaling pathways. The pro and con of these 
observations in normal human cells, are not unexpected (see 85 for refs), be-
cause most of the other data was derived from cancer cell lines and mouse cells. 
However, a consideration of the normal functions of the APC gene is quite re-
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vealing, and is predictive of the observed mitotic abnormalities from the muta-
tion. The normal protein is first located in the centromere regions, followed by a 
move to microtubules in mitosis where together with other proteins, normal 
function of the spindle apparatus is secured. The final move is to the centro-
somes, which safeguards normal cytokinesis (Googl). Thus, it is no accident that 
a high incidence of bi-nucleated cells from centrosome dysfunction was ob-
served in mutated APC crypt cells [71]. This gross chromosome damage effect 
from mutated APC is in line with other hyperplasia being preceded by genome 
damaged normal cells, in BE and ulcerative colitis, respectively from acid reflux 
disease and bacterial-cell induced damage [81] [82]. Furthermore, mutated APC 
“discoverers” in colorectal types of cancers, noted that the mutation caused early 
tetraploidy [38], which is expected from DNA-damage-repair, leading to 
4n-skewed, amitotic division-system. All in all, it is becoming more and more 
difficult to refute the idea of genome-repair, triggering MSP cycling to  
4n-skewed division-system, is initiating hyperplastic cells.  

7. Distictions between Initiation and Oncogenic  
Transformation, i.e., Cells Producing Tumors in Mice  

There is no clear understanding of whether initiation and immortality are one or 
two processes [89]. And experiments with vector-transfusion of cellular “ele-
ments” into human cells, including TERT subunit of the telomerase protein, 
have not clarified the problem [90] [91]. However, more recently, the TERT-unit 
was not included, and the cells were normal human, epithelial breast cells [92] 
[93]. For these normal human cells the early anti-proliferative stasis-phase (se-
nescence-like phase) was avoided by the targeting of tumor suppressive p16 gene 
(CDKN2A) with shRNA, which prevented raised expression of mutated CDKN2A 
(p16ink4a), the inducer of the stasis phase. This was followed by MYC oncogene 
transduction, annulling TP53 protein accumulation for senescence induced stop 
of proliferation. Thus, cells were kept in a proliferative state, which resulted in 
non-clonal reactivation of the telomerase gene with associated immortality of 
diploid proliferative cells, which was different from the expected in vivo hap-
pening of trip-tetraploid cell cycling [83]. The authors [92] [93] suggested unst-
able telomeres (genomic damage) in the senescent phase of pre-cancers (i.e., 
adenoma, in situ pre-cancers) causing genomic errors, needed for telomerase 
re-activation. They stressed the importance of the telomerase-associated im-
mortalization process as an oncogenic, cancer-deciding event, but poorly, can-
cer-research attended-to. In a model on this oncogenic transformation event, it 
was calculated that three mutations, were sufficient to instigate the can-
cer-important change [6]. Whereas, we suggested [20] that two mutations (e.g., 
p16ink4a and Rb) occurring in accumulated, tetraploid 4n/4C/G1 cells in the 
senescent phase, could trigger S-period entry (G1 > S) with resultant cell cycling 
in the 3n-4n range [82] [83]. The absence of this type of 3n-4n cell cycling in the 
above immortalization, we suggest was precluded from the used methodology, 
perhaps specifically from shRNA, gene silencing.  
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8. Unicellular Origin of Self-Inflicted 4n Nuclear,  
90˚-Rotation 

Primitive fission yeast has been reported to undergo, 90˚ self-inflicted nuclear 
re-orientation before division [94] [95] [96], which suggests that the perfor-
mance in normal human cells is evolutionary conserved. But why is this extraor-
dinary, phenomenon, specifically observed for 4n cells, having gone through a 
genome-repair induced MSP cell cycle? The answer is hidden in basal to apical 
cytoplasmic and nuclear differentiation of unicellular organisms [97], especially 
true for moving and exoskeleton differentiated organisms. In mammalian cells, 
cell/-nuclear division would be according to axial polarity of the cytoskeleton, 
which if followed for these unicellular organisms would be fatal. The nucleus in 
simple propagation has to turn 90˚ to the axial differentiated conditions, before 
organismal division to two mirror halves. There are several today-living unicel-
lular organisms undergoing such “perpendicular division-system”, best de-
scribed from Aulachantha scoolimantha [98] [99], and note, the division-system 
was also amitotic, whole genome segregation. The similar occurrence in primi-
tive yeast and in human cells is indeed evidence of evolutionary conservation of 
this primitive division-system [100]. But, why is the 90˚ rotation occurring for 
4n cells, derived from a DNA-damage-repair cell cycle? 

Before meiosis evolution, genome damage repair has been suggested to in-
volve doubling of the unicellular organism’s genome [101] [102] [103]. The 
many evolutionary early/early developed differ-rent, DNA-repair, enzyme-systems 
[104], indicate archaic organism’s “fight” for survival in genome-destabilizing 
environments. From a haploid organism’s DNA-repair process, a doubling of 
the genome certainly makes sense, but any such type of doubling would demand 
evolved “genome reductive” processes for back-to vegetative, genome propaga-
tive constitutions. With the DNA damage occurring in pre-division, vegetative 
phase, the genome doubled nucleus would be in a differentiated basal-axial 
orientation. This of course as above, would demand a perpendicular reorienta-
tion of the 2n-4n nucleus before genome reductive division back to vegetative 
constitution. One wonderment however, is why this linkage between DNA-repair, 
nuclear perpendicularity and genome-reductive division has had metazoan, 
evolutionary selective advantage, all the way to the human genome? Even in 
highly evolutionary, specialized “end-point” animals, such as in Diptera, Dro-
sophila larval cells responded to nutrition-deficiency induced genomic damage 
with “special” 4n cells, undergoing amitotic, whole genome segregation, to dip-
loid cells with “skewed” proliferation from progeny cells to cancer-like growth 
[105]. 

9. Predictive Cellular Events from 4n-Skewed  
Division-System in 3-Dimensional Tissues 

In renewal tissues in which cancer originate, the 4n-skewed division system can 
explain the occurrence of two basic types of cancer cell growths, the flat squam-
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ous and the basal “columnar” types. Thinking in terms of an X - Y 90˚ angle, es-
pecially in three dimensional (3-D) tissue-structure, the nuclear perpendicularity 
to the cell cytoskeleton, polarity axis, can either be according to X or Y, in other 
words along two different axial planes. In two studies, analyzing BE pre-cancers 
for mutational contributions to paired carcinomas, the pre-cancerous mutations 
were present in the carcinomas, and strangely, there were few new mutations 
acquired by the carcinomas [106] [107]. And, in the latter study both squamous 
and basal-cell (columnar) carcinomas, were observed. The authors suggested 
that the carcinomas originated, not from accumulated mutational changes, but 
from a “more direct path”, involving epigenetic change and “genome doubling”, 
succeeded by “oncogenic amplifications” [107]. Not only is the prediction of two 
types of cancer growth from the 4n-skewed system fulfilled, but occurrence of 
this tetraploidy is hinted-at in early tumorigenesis. Another BE carcinoma se-
quencing analysis detected “recur-rent driver events”, CAN-gene-mutations, 
which raises the question of how the 4n-skewed system can be the cause of these 
gene mutations (in prep.) [108].  

10. What Is Metaplasia? Claimed in Embryology and in  
Cancer Evolution 

The word metaplasia was coined by Virchow in the 1850th and is a historic ex-
pression of the transition of one cell type into another in embryology, and simi-
larly claimed to occur in cancer evolution. At that time it argued against the 
concept of “each cell from a cell like itself”, eagerly debated [65]. This histologi-
cally baffling observation from “transition images” in embryology, descriptively 
also seen in cancer evolution became, metaplasia. This historic term is surviving 
today as such in cancer research, also with embryological-like events. In other 
words there are two existing terminologies for “one-same” cancer idea, which is 
powering the quick assertion of cancer evolution being “development gone 
awry” cited in numerous articles. This dangerous theory has no references to the 
fact that the Virchow-time, scientists in their debates of metaplasia from transi-
tion images concluded that: one cell type could be “replaced” by another, or a 
type of cell could respond to environmental change and be shape-changed (his-
tological accommodation). Additionally, von Hansemann, as mentioned, from 
microscopy with camera facility, approached metaplasia (EMT/MET) from “the 
study of cell division”, assuming “various advantages over mere contemplation 
of non-dividing cells” ([65], p. 188). He agreed with other colleagues that “epi-
thelium can never form connective tissue and connective tissue can never form 
epithelium”. He further argued against tumor cells having embryological cell 
functions, and saw metaplasia (EMT/MET) in tumor development being a route 
to increases in cell polarity-changes, causing advances in cell roundness shape, 
conferring tumor-autonomy existence. From his chromosome observations, he 
even speculated that metaplasia was connected to a genomic doubling process 
with multiple chromosome arms, which can mean diplochromosomes. 

Having established that metaplasia and EMT/MET are one and the same con-
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cept for embryo-logical developmental processes in cancer evolution, the de-
tailed cellular events revealed in pathological hyperplasia give clues about causa-
tive mechanism. The most frequently referred to example of one cell type 
changing into another, is in Barrett’s esophagus (BE), where columnar cells re-
place the flat squamous cell epithelium [109] [110] [111]. But, there is confusion 
of whether: 1) intestinal columnar cells have transited through the gastroeso-
phageal junction into the esophagus and displaced squamous epithelium, or 2) 
whether the presence of columnar cells in normal esophagus epithelium is de-
rived from a metaplastic process. On the other hand, the agreements were that 
the “columnar” BE lesions showed signifycant increased risk of changing to on-
cogenic dysplasia with further carcinoma-development. Secondly, this BE oc-
currence was preceded by acid reflux disease, which caused genomic damaged 
cell-lesions in normal epithelium. Another interesting observation, hinting 
4n-skewed cell division from the lesion with chromosomal damage (acid caused), 
is that in BE hyperplasia pre-cancer lesions, 4n-cells, cytometry isolated, in cell 
culture, were shown to cycle with reductive division back to shape-changed proli-
ferative diploid cells [21] [81]. Other such pre-cancers have shown activated, 
genome-damage repair foci (γH2AX) distributed over the genome with chro-
mosome locations [112]. Rubin [113] from his “cancer-cell” studies of 3T3 and 
10T1/2 cell lines, established from DNA-repair of starvation induced DNA- 
damage (AA deficiency, [44]), summarized his cancer-concept as: “Heritable, 
population-wide damage to cells as driving force of neoplastic transformation”, 
to which we add: initial DNA-damage-repair of cells in the primary chromo-
some damaged cell lesion with causation of 4n-skewed, amitotic, division-system 
to progeny cells with fitness-gained clonal expansions. The agreement with Ru-
bin, is in heritability of the 4n-skewed, amitotic, division-system (cycling in BE 
[81]) providing CIN and mutator mechanism for genetic/epigenetic variability 
in cancer evolution (in prep.) [19] [20] [21]. 

11. 4n-Skewed Cell Division Occur in Metaplasia-EMT/MET  
Cancer-Concepts 

Briefly, the consequences from the primitive, 4n-skewed cell division-system 
were: 1) fitness-gain of genome reduced diploid cells, 2) loss/change of cell po-
larity in progeny cells, 3) re-building of the cytoskeleton, 4) destruction of adhe-
sion protein E-cadherin-β-catenin complex, 5) cell-freedom from contact inhibi-
tion with gained mobility and proliferation, and 6) skewed/-perpendicular 
growth from these latter cells. Strangely, these 6 cellular occurrences appear to 
be similar to those claimed in tumorigenesis from embryological-like EMT/MET 
events [27] [66]. The goal in these ongoing, high-interest studies, centers on de-
finitions of genes controlling EMT/MET in embryology, being biomarkers for 
therapy in tumorigenesis [21] [81] [114] [115] [116] [116]. For example, the 
EMT was described as phases with “rapid changes in cellular phenotypes”, such 
as: “-epithelial cells down-modulate cell-cell adhesion structures, alter their po-
larity, reorganize their cytoskeleton, and become isolated, motile” [115]. Like-
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wise, “epithelial cells lose cell-cell junctions and baso-apical polarity”, and ac-
quire mobility [114]. These incredible, similar cellular happenings to the above 6 
events with claim of being from embryological EMT, are difficult to accept as 
fortuitous. And rightly so, because a more recent article described EMT as: “a 
multistage process including, transient polyploidization”, with note, “8C” cells 
(tetraploid 4n/8C cells), and the also claimed production of “small cells” [116]. 
The authors also mentioned down-regulation of CDH1, the E-cadherin gene 
with “EMT-linkage” to small cell-motility. These 4n, cellular occurrences to 
small cells, claimed to be from EMT, and the other, above descriptions, are 
clearly evidential materials for 4n/8C-skewed division system to genome re-
duced smaller-sized diploid cells. This evaluation, seriously questions the reality 
of embryo-logical metaplasia/EMT/MET in cancer evolution. 

12. 4n-Skewed System in Survival from Therapy  
Chemo-Agents 

Firstly, it should be recognized that cytotoxic agents can cause DNA-damage in 
cells [118]. Tumor initiating cells (TICs,), were questioned about ability to revert 
back to epithelial phenotype by MET, as a potential therapeutic event against 
metastasis [27]. A cytotoxic agent was used to stimulate transcription of the 
E-cadherin gene in the TIC cells, which activated PKA and loss of histone H3 ly-
sine-methylation (H3K9), giving rise to MET. However, the potential for DNA- 
damaging effect from the cytotoxin was not considered, and no methylation of 
H3K9, has been shown to produce tetraploid 4-chromatid, “butterfly” chromo-
somes [119]. If the TIC-experiment had been followed by high resolution mi-
croscopy, there would have been likely observation of 4n, diplochromosomal 
cells in agreement with “8C” “MET” occurrence [116]. These latter survival data 
from chemo-agent-induced DNA-damage-repair, throws light on other “repair 
and survive or die” occurrences to relapse cells [120] [121] [122]. In general, 
chemo-agents that break DNA have probability of inducing DNA-repair to 4n, dip-
lochromosomes the signature of 4n-skewed division-system. Today however, te-
traploidy is verified by “easy” cytometry, missing the realization of 4n-skewed 
system, dividing to chemo-resistant diploid cells. This very visible 4n-signature 
has been replication described from “substitute” nucleotide incorporations [56] 
[123] [124] [125], and illustrated in cancer occurrence [37] [126] [127] and, 
thoroughly discussed in cancer [128]. But, most importantly, a TIC-type expe-
riment can be used to test potential chemo-agents, weeding-out those that acti-
vate the 4n-skewed system, with pick of those, inducing apoptosis and/or necro-
sis. In cancer-therapy such a test-system would be invaluable, per-haps prevent-
ing origin of relapse cells (a reduction would also be significant). However, real-
ity has shown that to change anything that has reached publication-acceptance, 
this sanction of approval, is literally impossible to change, meaning a wanted 
substitution of endoreplicated 4n cells by 4n-skewed system in cancer evolution. 
A suggestion is to offer proof-findings for the 4n-skewed division-system by mi-
croscopy as a PHD program, by simple use of our AA, DNA-damage-repair 
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model. We guarantee from borrowed expression, “insights into origins and new 
directions for the treatment of cancer” [28]. 

13. Mutation Theory versus 4n-Skewed Cell Division in  
Cancer Evolution 

Having come to the realization that chasing after embryological biomarker for 
“one cell type changing into another”, is not a sound solution of the can-
cer-riddle (see above), the next question is MT-role (mutation theory) in this 
puzzle. No doubt, the ultimate basics for any cellular mechanism in tumorigene-
sis is mutational in nature. But to go from mutational data from cancer cells to 
determination of altered normal cell processes, is “putting the cart in front of the 
horse”, and is shown by two of the original sequencing scientist retired from 
“more of the same” [8] [32]. Up to 2009, there were defined about “100,000 so-
matic mutations from cancer genomes”, with predictions of: “Over the next few 
years several hundred million more will be revealed”, which in the cancer-puzzle: 
“will provide us with a fine-grained picture of the evolutionary processes ‘----’ 
providing insights into origins and new directions for the treatment of cancer” 
[28]. Now, almost a decade later, perhaps, a billion known mutations, but with 
sequencing still going-on seen in governmental support for genome constitu-
tional CAN-gene mutations [129] [130]. This incomprehensive pursuit has 
openly, been mentioned of being driven, sadly, by industrial and private greed 
(loss of ethics?) [24] [25]. 

The basics for this cancer-paradigm-loss [8], we see as an “over-focused” 
pursuit of CAN-gene mutation-identifications from cancers. Their all-importance 
is seen in the central situation they play in break-through immunotherapy 
treatments [24] [25], in which some 50 of them are being tested for antibody 
production, awaiting FDA, patient approval. This emphasis is also seen in the 
newly launched “Initiative”-program, identifying CAN-gene mutation as carri-
er-conditions from a million people for use in individual, cancer-risk calcula-
tions [129] [130]. The goal is development of therapy agents against their cancer 
activity. However, at this point a likely unwelcome truth is that we have forgot-
ten that the traits conferred upon the CAN-gene, mountain mutations, in can-
cers [10] [23], were ideas, pure suggestions of cancer-causation, select-ability 
and tumor-driver capacity (see above quotes). This “slip of the mind” is today 
quite apparent in titles of reports, referring to these assumed traits as real [108] 
[131]. But, perhaps worse is the mentioned, solo importance of these mutations 
in the very promising cure-type immunotherapies [24] [25] [132]. (We contend 
that these gene-mutations, most likely are consequences in the 4n-skewed, ami-
totic division system, in prep). Nevertheless, there should be awareness of that 
time-gone, changes suppositions into truisms, science not excluded, because our 
brains prefer positive assertiveness, and not wishy-washy uncertainties [75] 
[133]. This slip of the mind is a would-be serious problem in disease and thera-
py, and needs attention from counter measures. But remarkably, this mind-change 
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was noted in science by Virchow (1850th), which he called the dogma-state: first 
supposition, then assertion, and then the faith to fanatics. However, the original 
suggestions of CAN-gene contributions to cancer evolution are of course, still 
valid, as such, and we agree that these mutations are: “causally involved in the 
neoplastic process”. It is their route of origin, and their functions in tumorigene-
sis, which are the essential questions, now to be solved. Equally so, molecular 
scrutiny of the 4n-skewed, amitotic division to “measureable” fitness-gained 
cells, is a “must-do”. This, because of the herein presented evidences for 
chain-causative events for in vivo carcinoma occurrence from normal human 
cells [20] [21] [70] [71]. No doubt, there will be doors opened for resolutions to 
many issues in the cancer-riddle, not the least for more integrity in cure-type-results 
from the all-important immunotherapy approaches. 

14. Conclusion 

Previous publications and herein on special tetraploidy, self-inflicted nuclear 90˚ 
reorientation, were concluded to be significant in cells, gaining diploid, prolifer-
ative freedom from contact inhibition, which is a normal state in renewal tissues 
where cancer originate. High resolution microscopy with chromosome details 
demonstrated this extraordinaire, type of tetraploidy, giving rise in vitro/in vivo, 
to fitness gained diploid cells (hyperplasia) from note, originally normal human 
cells. The hyperplasia in vivo culminated in pathological dysplasia and the car-
cinoma phenotype, which is a first-time achieved “chain of events” from initia-
tion to full-blown cancer. The very first requirement in this chain, was DNA- 
DSBs in normal cells from which a type of repair-process, ongoing simultaneous 
with DNA-replication, led to MSP cycling to the peculiar, diplochromosomal te-
traploidy. These 4n cells were peculiar, because they divided by amitosis, in ab-
sence of a spindle apparatus, and segregated firstly, whole genomes (4n/8C > 
4n/4C/G1) followed by reductive fission-division to fitness-gained diploid cells. 
These details allowed an assessment of origin of the self-inflicted 90˚ turn, and 
its association to DNA-damage-repair, which could be traced to archaic unicel-
lular organism’s environmental stress-evolved propagative survival. This evolu-
tionary conserved 4n-mechanism in normal human cells, only need type-specific 
DNA-repair to be activated with expression of several skewed-division-conse- 
quences: 1) disrupted E-cadherin-β-catenin complex, 2) cytoskeleton new polar-
ity construction in progeny cells, 3) cell proliferative liberty from contact inhi-
bited tissues, 4) cell cycle time reduction of diploid cells, and 5) CIN and muta-
tor mechanisms from inheritance of the 4n-skewed system in progeny cells. It is 
time to acknowledge in cancer, DNA-DSB-repair, which through MSP triggers 
activation of human cell-conserved, primitive tetraploid reductive division-sys- 
tem. This unique 4n-system, embodies the ultimate secret of cancer: a self-in- 
flicted nuclear, perpendicular/90˚-orientation-change, relative to the cell polarity 
axis (cytoskeleton) before division to fitness-gained, progeny cells. Obviously, 
cell proliferation in this changed direction would for the whole population as a 
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unit be “skewed” in placement relative to surrounding tissue. This very occur-
rence from the 4n-system has been interpreted in cancers to derive from metap-
lasia/EMT/MET embryological developments with assumption of one cell type 
changing into another, but not yet with proven mechanism. The 4n-skewed di-
vision system in this regard, is trumping the EMT/MET embryological concepts 
in cancer evolution from the inborn capacity of 90˚ cell-division orientation- 
change with consequence of fitness-gained (hyperplasia) cells. Hence, the as-
sumption of embryological EMT/MET in cancer evolution is wrong. This was 
actually shown by 8C (4n) cells in a claimed MET event to “small cells” (4n, ge-
nome reduced diploid cells). Our goal of a chain-like causality of events for tu-
morigenic start from normal human cells has been fulfilled. The hope is that 
with one cancer clinic acknowledging DNA-damage-repair being cancer-linked 
that it will lead to “discovery” of the 4n-skewed division-system.  
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