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Abstract 
Accumulating evidences have suggested that Treg have an active role in the 
regulation of immunity to infection. Treg suppress not only autoimmune re-
sponses but also other immune responses for instance, during acute infec-
tions, against commensal microbes in inflammatory diseases or during 
chronic illness. Treg have been shown to limit exacerbated inflammation to 
avoid collateral tissue damage. Treg are also suggested to provide early pro-
tective responses in some viral infections as the permitting timely entry of ef-
fector cells in infected tissue. Furthermore, Treg have been shown to contrib-
ute to form memory pool after resolution of infection. In this review, we sur-
vey and analysis our current knowledge and relative dynamics of Treg in a 
wide range of infection settings and elaborate the examples in which these 
cells are of critical importance in conferring tolerance, suppressing patho-
genesis, inducing protection and optimizing immunity to eliminate infection. 
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1. Introduction 

Treg are developmentally and functionally different from conventional T cells. 
Treg are initially characterized as expressing a CD4+ CD25high phenotype [1] [2]. 
However, as CD25 is expressed on other activated T cells and there are some 
Treg in the peripheral tissues which do not express CD25 limiting the use of this 
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marker for Treg [3] [4] [5] [6]. To date, the most specific marker identified for 
the classification of Treg is expression of the transcription factor recognized as 
forkhead box P3 (Foxp3) [7], which has been exhibited to be expressed specifi-
cally in CD4+ T cells. In mice, neither activated CD4+ T cells nor differentiated 
Th1/Th2 cells express Foxp3 [8] [9]. Treg constitute 5% to 10% of CD4+ T cells. 
In the steady state, they are generated in the thymus and can be induced from 
naïve CD4+ T cells in the periphery. Preliminary studies with Treg were based on 
their role in dominant tolerance and development of autoimmune disease. 
However, a handful of studies indicate that Treg play roles in the development of 
allergic diseases (reviewed in [10]), in the suppression of anti-tumour immunity 
[11], during pathogen infection (reviewed in [12]) and in controlling responses 
to commensal microbes in inflammatory diseases [13]. Treg are well known for 
their immunosuppressive role of varying immune cells including non-Treg 
CD4+ T cells [14], CD8+ T cells [15], dendritic cells (DC) [16], B cells [17], Th17 
cells [18], natural killer (NK) cells [19], macrophages [20] and mast cells [21] 
which are activated in response to pathogen.  

2. Infection 

A substantial body of evidence has demonstrated an increased recruitment of 
Treg following infection and accumulation at the sites of infection. For example, 
Treg have been found to expand in viral infections i.e., hepatitis C [22], friend 
retrovirus [23], Herpes Simplex Virus-1 [24], Lymphocytic Choriomeningitis 
Virus [25], in protozoal infections i.e., Plasmodium falciparum [26], Leishmania 
infantum [27], in fungal infection i.e. Paracoccidioides brasiliensis [28] and bac-
terial infection i.e., Mycobacterium tuberculosis [29] [30], Helicobacter pylori 
[31]. In this work, we have investigated the role that Treg have in order to iden-
tify various protective and pathological responses during different infection 
models. We have demonstrated that Treg do indeed play crucial roles in differ-
ent infection settings. 

2.1. Helicobacter pylori 

It has been reported that Treg suppression was associated with the inability of 
the host to clear Helicobacter pylori infection [32] [33] [34]. In H. pylori in-
fected mice, Treg accumulated at the site of infection early after bacterial inges-
tion. However, depletion of CD25+ Treg with PC-61 antibody resulted in severe 
gastritis with a sharp increase in cytokine expression and increased numbers of 
mucosal T cells, B cells, macrophages and increased titres of H pylori-specific 
IgG1 and IgG2 antibodies [32]. This increased gastric inflammatory response in 
CD25-depleted mice was associated with reduced bacterial loads signifying that 
during H. pylori infection, Treg down-modulated gastric immunopathology but 
at the cost of bacterial eradication. Similar to Rad et al., Lundgren et al. demon-
strated that the inability of the host to clear the H. pylori infection was a conse-
quence of pathogen-specific regulatory T cells that actively suppress T-cell re-
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sponses [33]. They showed that H. pylori-infected individuals have impaired 
memory CD4 T-cell responses that are linked to the presence of H. pylori-specific 
Treg that actively suppress the responses. On the contrary, Kaparakis and 
co-workers demonstrated that depletion of CD25+ Treg prior to and during in-
fection did not influence bacterial colonization or severity of gastritis in H. pylori 
infection [35]. Depletion of CD25+ Treg resulted increased Helicobacter-specific 
antibody levels and an altered isotype distribution. 

2.2. Herpes Simplex Virus 

Treg normalize disease intensity associated with virus induced inflammatory le-
sions. Suvas and co-workers [24] demonstrated that immunity to Herpes sim-
plex virus (HSV) was dependent upon a protective CD8+ T cell response. In this 
study, PC-61 mediated depletion of Treg generated an amplified CD8+ T cell re-
sponse resulting an efficient viral clearance [24]. In contrast, Lund et al. [36] re-
ported opposite effect on depletion of Treg. They found an exacerbated viral 
burden in mucosa and nervous system following depletion of Treg using 
Foxp3DTR mice. Also, Treg depletion profoundly reduced effector cell migration 
and secretion of inflammatory cytokines at the site of infection suggesting a 
protective role of Treg in herpes virus infection [36]. 

2.3. Mycobacterium tuberculosis 

Treg check efficient clearance of bacteria during Mycobacterium tuberculosis. 
Treg-depleted mice infected with M. tuberculosis showed a decreased bacterial 
burden in the lungs with an elevated pathogen-specific effector T cells [37]. 
Co-transfer of Treg with Th into RAG-1-deficient mice resulted in suppression 
of effector CD4+ T cells responsible for protection against M. tuberculosis [29]. 
In another study, Shafiani and co-workers [38] demonstrated that a small pro-
portion of M. tuberculosis specific Treg, were exclusively capable of suppressing 
protective immunity. Treg recognising M. tuberculosis delayed the priming of 
effector CD4+ and CD8+ T cells in the lung which prolonged the bacterial prolif-
eration and explained the augmented bacterial load found in these mice [38].  

2.4. Leishmania major 

Treg contribute to pathogen persistence and form a memory pool after resolu-
tion of the infection. The latency of Leishmania major in the skin was controlled 
by the prevalence of Treg [39]. During infection, Treg accumulated in the der-
mis and suppressed the ability of effector cells to clear parasite from the site of 
infection. Interestingly, this parasite persistence provided the host long-term 
protection from re-infection.  

2.5. West Nile Virus  

In West Nile virus infection, Treg maintained a resident memory pool of T cells 
[40]. During infection, Treg numbers increased in lymphoid organs and infected 
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tissues (CNS) and allowed memory formation through promoting antigen per-
sistence [40]. Using Foxp3DTR mice, they found that Treg-deficient mice had in-
creased numbers of short-lived CD8+ T cells, but the memory CD8+ T cell re-
sponse was impaired. This suggests that with prevention of pathogen clearance 
Treg maintain a pool of pathogen-specific memory cells which prevent subse-
quent rechallenge. 

2.6. Trichuris muris Infection  

The impact of Treg depletion is time and course of infection dependent. Sawant 
et al. explored the functional role of Treg following intestinal parasite Trichuris 
muris infection [41]. Early Treg depletion post-infection led to accelerated worm 
clearance accompanied with reduced Th1-mediated inflammation. This protec-
tive immunity was impaired and worm titre augmented when Treg were de-
pleted following establishment of infection.  

2.7. Salmonella typhimurium 

The role of Treg following Salmonella typhimurium infection was demonstrated 
in which Treg influenced the course of infection [42]. During S. typhimurium 
infection, depletion of Treg early after infection when the bacterial burden was 
gradually increasing, the suppressive potency of Treg was decreased which ac-
celerated bacterial eradication. However, depletion of Treg during later phase of 
infection, when the bacterial burden was slowly decreasing, there was no signifi-
cant changes in bacterial clearance [42]. Thus, Treg tune the balance between 
bacterial multiplication and clearance of pathogen during different phases of in-
fection. 

2.8. Retroviral Infection 

Treg mediated suppression of CD8 T cells is a significant factor in the consis-
tency of retroviral infections. Dietze and co-workers using DEREG mice showed 
that transient ablation of Treg following a chronic retroviral infection helps CD8 
T cells to recover antiviral potency [43]. Furthermore, transient Treg ablation 
had a long-lasting effect in diminishing chronic virus titre. During Friend virus, 
a retrovirus infection, depletion of Treg in DEREG mice resulted in a significant 
increase of FV-specific CD8 T-cell mediated responses [44] [45]. In addition, it 
significantly diminished FV loads in lymphatic organs however, no evidence of 
immunopathology to the host was found following depletion.  

2.9. Hepatitis C Virus  

Treg control the mutual host-pathogen interaction during hepatitis C virus in-
fection. Hepatitis C virus was capable of inducing Treg to exert their suppressive 
potency on effector T cells, and thereby promoted HCV persistence [46]. In 
support of this hypothesis, several groups found a significantly greater propor-
tion of Treg in chronically infected patients compared with spontaneously re-

https://doi.org/10.4236/ojmm.2018.84011


T. Rahman et al. 
 

 

DOI: 10.4236/ojmm.2018.84011 122 Open Journal of Medical Microbiology 
 

covered or normal controls [47] [48]. And the increase in Foxp3 was absolutely 
correlated with the extent of inflammation and the expression of apoptotic me-
diators [48]. Depletion of Treg increased HCV-specific CD4, CD8 cell and IFNγ 
activity [47]. However, despite Treg suppress effective immune response against 
HCV; they protected infected subjects from elevated tissue pathology as demon-
strated by lessened histological inflammatory activity in persistent HCV infec-
tion. Thus in cases of chronic infection, generation of Treg appear to be advan-
tageous to both the pathogen and the host by promoting persistence of infection 
and limiting immune-mediated pathology.  

In contrast to chronic infections, where excessive number of Tregs leads to 
pathogen persistence, Tregs in acute infections might aid in limiting immune 
mediated pathology without delaying viral clearance. For example, in mouse 
hepatitis virus induced acute encephalitis, Treg play a critical role as their deple-
tion resulted in lethal infection and increased mortality [49]. Also co-transfer of 
Tregs into infected mice increased survival from 0% to 50%.  

2.10. Respiratory Syncytial Virus  

There are other acute infection models where Treg have been exhibited to per-
form a crucial role in limiting immunopathology. For example, in acute pulmo-
nary virus infection by respiratory syncytial virus (RSV), Treg rapidly accumu-
lated in draining LNs and lungs [50] [51]. Fulton and co-workers [50] demon-
strated that in vivo depletion of Treg using anti-CD25 mAb before RSV infec-
tion resulted in delayed viral clearance along with an early interval in the enrol-
ment of antigen-specific CD8 T cells. Moreover, Treg depletion led to aggra-
vated disease intensity, including enhanced weight loss, airway restriction and 
morbidity. Lee et al. [51] also observed an augmented weight loss with delayed 
recovery following ablation of Treg. However, this was associated with increased 
levels of CD4 and CD8 T cells producing IFN-γ and TNF-α in the lung and the 
viral load was unchanged subsequent Treg depletion. Also, the inflammatory re-
actions were diminished when Treg numbers were boosted using IL-2 immune 
complexes [52]. Thus Treg function a pivotal role in regulating the immune re-
sponses to acute infection that is the key cause of disease pathology and in re-
solving inflammation resulting pathogen clearance.  

2.11. Leishmania panamensis 

There are some evidences of chronic infections in which Treg provide a protec-
tive role and help to resolve pathogen clearance. Upon infection with Leishma-
nia panamensis, Treg were presented with a dysregulated phenotype [53]. De-
pletion of Tregs using DEREG mice resulted in increased parasite load, enlarged 
lesions, and enhanced production of IL-17 and IFN-γ. Also, adoptive transfer of 
Tregs from naive mice halted disease progression, lowered parasite burden, and 
reduced cytokine production (IL-10, IL-13, IL-17 and IFN-γ). Thus, Treg-targeted 
immunotherapy can be used as a safe and potent component in therapeutic 
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strategies to treat chronic illness. 
We summarize below the data from some of the principal infection systems, 

with additional details listed in Table 1. 

2.12. Commensal Microbes 

There is handful of studies in which Treg cross-react with non-pathogenic 
commensal microbiota in the small and large intestine. Treg are found to sup-
press microbe-driven intestinal inflammation and Treg repertoire is influenced 
by the presence of particular commensals or bacterial compounds. For instance, 
colonization of germ-free mice with commensal microbe altered Schaedler flora 
(ASF) species resulting in activation and de novo generation of colonic Treg [54] 
[55]. In multiple murine studies, Tregs have been shown to be induced by com-
mensal microbes. For instance, butyrate, a by-product from commensal metabo-
lism, potentially induced conversion of T cells in to Treg in the intestine [13]  
 

Table 1. Treg mediated potential mechanisms in protection and immunopathology to mucosal infections. 

Microorganisms Effect of Treg on immunopathology or pathogen load Refs 

Helicobacter pylori 
Treg expand in mucosa, CD25 depletion reduces bacterial burden but generates pathology and  
inflammation. 
Treg depletion does not influence bacterial colonization or immunopathology 

[32] [33] 
 

[35] 

Herpes simplex virus 
Treg ablation generates CD8 T cell response with an efficient viral clearance. 
Treg depletion associates with exacerbated viral burden in mucosa and nervous system. 

[24] 
[36] 

Mycobacterium tuberculosis 

Treg depleted mice show decreased bacterial burden in the lungs with pathogen specific effector T cells. 
Co-transfer of Treg with Th into RAG-1-deficient mice results in suppression of effector CD4 T cells, 
responsible for protection 
Pathogen-specific Tregs activated 

[37] 
[29] 

 
[38] 

Leishmania major 
Treg accumulate in the dermis, suppress the ability of effector cells to clear parasite and provide 
long-term protection from re-infection. 

[39] 

West nile virus 
Treg expand in lymphoid organs and allow memory formation through promoting antigen  
persistence. Treg-deficient mice have impaired number of memory CD8 T cells 

[40] 

Trichuris muris 
Early Treg depletion accelerates worm clearance with reduced Th1 mediated inflammation. However, 
the worm titre is augmented when Treg are depleted following infection. 

[41] 

Salmonella typhimurium 
Depletion of Treg early after infection accelerates bacterial eradication. However, depletion during later 
phase is associated with no significant changes in bacterial clearance. 

[42] 

Retroviral infection 
Transient ablation of Treg following a chronic retroviral infection helps CD8 T cells to recover  
antiviral potency. 

[43] 

Friend virus 
Depletion of Treg results in a significant increase of FV-specific CD8 T-cell mediated responses which 
diminishes FV loads in lymphatic organs 

[44] [45] 

Hepatitis C virus 
Hepatitis C virus induces Treg to exert their suppressive potency on effector T cells and promotes HCV 
persistence 

[46] 

Respiratory syncytial virus 

Treg rapidly accumulates in draining LNs and lungs 
Depletion of Treg results delayed viral clearance, aggravated disease intensity, including enhanced weight 
loss, airway restriction and morbidity. 
Augmented weight loss with delayed recovery following ablation of Treg. 

[50] [51] 
[50] 

 
[51] 

Leishmania panamensis 
Depletion of Tregs results increased parasite load, enlarged lesions, and enhanced production of IL-17 
and IFN-γ. Adoptive transfer of Tregs halts disease progression, lowers parasite burden, and reduces 
cytokine production. 

[53] 
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[56], through butyrate-mediated histone H3 acetylation in the Foxp3 promoter 
[56]. Polysaccharide A (PSA) from B. fragilis potentially induced Treg and re-
solved experimental colitis [57]. The CNRZ327-component from Lactobacillus 
delbrueckii induced Treg in colonic tissue [58]. 

During early life, administration of Clostridium species, a gram positive bac-
teria,in conventional mice provided resistance to colitis and systemic antibody 
responses signifying a novel therapeutic approach to autoimmunity. Coloniza-
tion of mice with Clostridium species from clusters IV, XIVa, and XVIII isolated 
from human faeces stimulated Treg generation and also increased the produc-
tion of anti-inflammatory cytokine IL-10 [59] [60]. This Treg induction was me-
diated through TGFβ and it protected mice from DSS induced colitis in colon 
and retained intestinal homeostasis. Also the caecal extracts had high concentra-
tions of short chain fatty acid (SCFA) suggesting that production of SCFA by 
Clostridia is a contributing factor for the increase in the Treg numbers. Expres-
sion of GPR43, a SCFA receptor on colonic Treg has been suggested to promote 
Treg induction in response to orally administered SCFA [61]. GPR43 signaling 
has been demonstrated to confer protection in an experimental model of colitis 
induced on adoptive T-cell transfer into lymphopenic recipients [55]. 

Tissue inflammation and autoimmune proliferative response following deple-
tion of Treg were analogous in germ free and conventional mice [62]. However, 
in GF mice lacking in Treg, the inflammation was more intense and pancreatitis 
was strikingly elevated compared with Treg depleted conventional mice. This 
suggests the critical role of Treg in subduing reactivity to gut flora. Hence, mi-
crobiota colonization driven Treg response is a central process to induce and 
sustain host-intestinal and microbial mutualistic interaction and existence. 

2.13. Treg in Cancer 

Treg alter antigen-specific immunity and are believed to be responsible for di-
minished anticancer immune response. Morse and co-workers [63] investigated 
the immune responses in individuals with advanced cancer following ablation of 
Treg with CD25high targeting immunotoxin (denileukin diftitox). They found an 
elevated antigen specific T cell response of cancer vaccines after Treg depletion. 
However, from experiments with Feline immunodeficiency virus (FIV), it was 
difficult to predict whether Treg cells play a beneficial or a detrimental role dur-
ing FIV infection [64] [65]. Treg depletion following anti-feline CD25 mAb in 
FIV infected cats for 4 weeks did not exacerbate viral replication or FIV-specific 
immune responses or proinflammatory cytokine production. However, cats re-
ceiving CD25 were able to produce a robust humoral response to new mouse 
monoclonal antibody [64] [65]. Thus transient Treg depletion following chronic 
HIV-1 infection could offer an insight for therapeutic vaccination. 

3. Concluding Remarks 

Several studies of infection have indicated that, though the presence of Treg does 
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not participate in disease progression, depletion of Treg results in increased ef-
fector responses, supporting pathogen clearance and thus acting as suppressive 
cell. For example, in H. pylori infection, Treg ablation led to decreased bacterial 
burden, yet increased gastric inflammation [32]. In M. tuberculosis, Treg abla-
tion resulted decreased bacterial load in lung and elevated effector T cells [37]. 
In Salmonella enterica infection, Treg depletion boosted clearance and produced 
memory T cells [42]. In Strongyloides ratti infection, Treg depletion reduced 
worm burden [66] and in cerebral malaria, Treg depletion alleviated disease pa-
thology [67].  

However, not all studies have revealed that Treg function to control effector 
activation. Paradoxically, it has been shown that Treg provide protective re-
sponses in some pathogen infections permitting timely entry of effector cells in 
infected tissue. Although not much appreciated, some of the protective functions 
of Treg cells are characterized as their depletion resulted in more severe infec-
tion. For example, in Mouse Hepatitis Virus induced acute encephalitis, Treg 
depletion led to lethal infection and resulted increased mortality [49]. In Herpes 
Simplex Virus infection, Treg ablation resulted in loss of immunity through re-
duced effectors at site of infection [36]. In Respiratory Syncytial Virus infection, 
Treg ablation resulted augmented weight loss, delayed viral clearance, delayed 
recovery in the lung and delayed recruitment of CD8 cells [50] [51]. Augmented 
tissue damage in RSV infection was also demonstrated by another group [68] in 
which inflammatory reactions were diminished while numbers of Treg were en-
hanced with IL-2 immune complexes [52]. Treg-deficient mice developed lethal 
West Nile fever at a higher rate than controls [69]. In Theiler’s virus infection, 
depletion of Treg in resistant mouse strains made them more susceptible to CNS 
lesions [70]. Clostridium species, a gram + bacteria, mediates Treg induction 
through TGFβ and protects against DSS induced colitis [59]. 

Depletion or reduction of Treg thus augments effective immune responses 
against pathogenic microbes in most cases while their diminution sometimes 
reduces effector cell trafficking to the site of infection and might hamper the de-
velopment of robust secondary immune response following subsequent rechal-
lenge. Also, depletion of Treg in some acute infection models exacerbates disease 
pathology along with lack of trafficking of effector cells. Hence, Treg providing 
either suppressive or protective potency over the effector cells either controls or 
augments the extent of physiological immune response against pathogens and 
associated immunopathology. 
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ASF altered Schaedler flora; B. fragilis Bacteroides fragilis; CD Cluster of dif-
ferentiation; CNS Central Nervous system; DC Dendritic cells; DEREG Deple-
tion of Regulatory T cells; DSS Dextran sulfate sodium; FIV Feline immunode-
ficiency virus; Foxp3 Forkhead box P3 protein; Foxp3DTR Forkhead box P3 pro-
tein-Diphtheria toxin receptor; FV Friend virus; GF mice Germ-free mice; 
GPR43 G-Protein Coupled Receptor 43; HCV Hepatitis C virus; H. pylori 
Helicobacter pylori; HSV Herpes Simplex virus; IFN Interferons; IL inter-
leukins; LCMV Lymphocytic Choriomeningitis Virus; LN Lymph nodes; mAb 
monoclonal antibodies; Mt Mycobacterium tuberculosis; NK Natural killer cells; 
PSA Polysaccharide A; RAG-1 Recombination activating gene-1; RSV Respira-
tory Syncytial Virus; SCFA short chain fatty acid; TGFβ Transforming Growth 
Factor beta; Th T helper cells; TNF Tumour Necrosis factor; Treg CD4+Foxp3+ 
Regulatory T cell; HIV-1 The human immunodeficiency virus-1. 
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