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Abstract

We present here a realization of Hurwitz algebra in terms of 2 x 2 vector ma-
trices which maintain the correspondence between the geometry of vector
spaces that is used in the classical physics and the algebraic foundation un-
derlying quantum theory. The multiplication rule we use is a modification of
the one originally introduced by M. Zorn. We demonstrate that our multipli-
cation is not intrinsically non-associative; the realization of the real and com-
plex numbers is commutative and associative, the real quaternions maintain
associativity and the real octonion matrices form an alternative algebra. Ex-
tension to the calculus of the matrices (with Hurwitz algebra valued matrix
elements) of the arbitrary dimensions is straightforward. We briefly discuss
applications of the obtained results to extensions of standard Hilbert space
formulation in quantum physics and to alternative wave mechanical formula-
tion of the classical field theory.
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1. Introduction

While the mathematical formalism of classical physics is based on use of real
vector spaces, quantum physics is typically formulated algebraically. Hence, a
structure that allows for a connection between both these descriptions is neces-
sary. Among the possible algebras relevant to this task, Hurwitz algebra plays a
special role. It contains one-, two-, four- and eight-dimensional quadratic nor-
mal division algebras that form the only possible numerical systems. With Hur-
witz algebra, we can generate the sequence of mathematical frameworks suitable
for the description of dispersion-free [1] classical field theories as well as quan-

tum field theories that obey Heisenberg dispersion relations that use Hilbert
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modules, which are functional analytical structures similar to the usual Hilbert
spaces.
2. Matrix Treatment for Hurwitz Algebras

Consider the subsequence of those structures with real scalar products, all of
whose dynamic variables are mutually commuting and whose states are real-,

complex-, quaternion- and octonion-valued [2]:
(f.8),=Tr(/.8) (1)

where, for example, for a quaternion-valued f and g (f,g) is quater-
nion-valued as well. The same structure may be alternatively generated by the

four-dimensional vectors:
(f.g)=Tr(f.g)-eTr{(f.8)e}-eTr{(f.8)e}-eTr{(f.8)e} ()
—e(f.g)e =Tr(f.g)-eTlr{(f.g)e | +eTr{(f.8)e | +eTr{(f.g)e} (3)
Tr(f.g)+eTr{(f.8)a}-eTr{(f.g)e | +eTr{(f.g)e) (4)
Tr(f.g)+eTr{(f.8)e | +e,Tr{(f.g)e,} —eTr{(f.g)e} (5)
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The sum of Equations (2), (3), (4) and (5) gives us:
(f?g)R ETr(fyg):%[(fyg)_el (f?g)el ) (f,g)ez G (f,g)%] (6)

or in matrix notation

(.0), =4[ F.-af.-e.fomef J#| & %

()
8¢
Similarly, the Hilbert module with a complex scalar product is generated by

the sum of Equation (2) and Equation (3):
(fsg)c ETr(fag)_elTr{(fag)el}:(f’g)_el (fag)el (8)

In matrix notation
1r= = g
(lP,CD)C :E[f:_e1f:|*|:gel:| )

The Hilbert module with complex scalar products and octonion-valued states
is generated in exactly the same manner. The usual Hilbert space obviously fits
that procedure. This provides evidence of the existence of a uniform matrix
treatment for all Hurwitz algebras.

First of all, let us consider 2 x 2 matrices. We have no difficulty in representing
reals, complex and real quaternions, but the underlying Cayley-Dickson proce-
dure prevents extending the 2 x 2 matrix to the 8-dimensional algebra of real
octonions. In addition, the matrix obtained via Cayley-Dickson realization of

real quaternions
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—i —ig. —
q:(q? g9, -ig, sz (10)
—I9,Tq, gy Tiq;
yields a physically erroneous mapping of space-time geometry
ct+z x-—i
(x,y,z,t):( ) yj (11)
x+iy ct—z

since it violates the assumed isotropy of the space continuum. We, therefore
modify the geometric vector matrix approach originally introduced by M. Zorn
[3] [4] as follows:

1) For real numbers

x, 0
X=x,= (12)
0 x,
2) For complex numbers
) . X, X X, Xxi
X=x+xi=x,+x=| _ =| (13)
X ox, xi x,

3) For quaternions

X, x.e,
3 ~ xo 56: 0 IZ:;‘ i
X=x0+2xiel.5x0+x:> - = (14)
= Xo
inei X,
i=1
4) For octonions
;
X, x.e;
7 . x() 5(7. 0 ; i
X=xy+) . xe=x,+¥=| =, (15)
= X,
i=1 0 zxiei X,
i=l1
and the multiplication rule is defined by
x, X y
Z:XOYE(B jo(yf yj
X X vy
S (16)
B XgVp +X- Y XY+ VX +Xxy
B XoV+ VX + XXy XgVy +X- Y
where
¢ e ==0,
i.y:_xiyi:y.)_é (17)

XXY=EuXY,6 =—YXX;

&; are structural constants in the corresponding multiplication table (see
Appendix). For quaternions this is usual a totally antisymmetric three-dimensional
tensor; in the case of octonions it may also be considered as a Levi-Civita tensor
in seven-dimensional space.

Explicitly, for quaternions we have

Xxy= (x2y3 _x3y2)e] +(x3y1 —x1y3)62 +(x1y2 _xzyl)es (18)
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and for octonions
XY= (00 —x0, ) e +(xy — 003 ) ey + (%, —x,0) ) e

+(x6y5 _xs)%)el +(x6y2 _x2y6)34 +(xzy5 —x5y2)67

+(x4y7 _x7J’4)el +(x7y2 —x2y7)65 +(x2y4 _x4y2)e6

+(x4J’6 _x6y4)ez +(x1Y4 —x4yl)e7 +(x1ye _x()yl)eS
(x5y7 _x7J’5)ez +(x5y1 _xlys)es +(x7y1 —xly7)e4
+(x6y7 X7V )e3 +(x7y3 — X3V, )e6 +(X3J/6 _x6J/3)e7 (19)

(

(X5, —x4y5)e3 +(x3YS —x5y3)e4 +(x4y3 —x3y4)65

+

Obviously,
Xx¥=0 and ¥-¥=-) x; (20)

An involution is defined by

fnes= (% )
X=x,-X=| _ (21)

-X X,

and this satisfies the standard requirement

X=X

(which follows immediately from (21)).

X0Y =Y0X (22)
Proof:
P X Vo +X- P =X, P — VX —XXY
Y07 = 0Yo 4 Jj ) oY — Vo * ,Vj (23)
XY T VX — XXy XY+ XY
_ -y x, —X
7OX = Yo yjo( 0 j
-y y -X X
0 N ) i o (24)
_ X Vo XY _xoy_yox_nyJ
—XgV =YX —XXy XoYp+X-Y

Now we are in the position to prove the following statement: The algebras de-
fined by Equations (12), (13), (14), (15), (16) and (17) are quadratic normal divi-

sion algebras.

Proof:
1) TF(X)EX—‘,-)?:ZXO (25)
_ 3 _% - 0
2) Det(X)=N(X)=xox=|" “lo[ T TF|[RTT¥ 0
I ox) =X x 0 Xl —X-X
Then

X -Tr(X)X+N(X)

X X X (26)
=[xf xjo(xf xj—Zxo[xf x]+(x§—f-?c)[:0
X X, X X, X X,

From the uniqueness of the Hurwitz algebras it follows that the realization

discussed above has the following properties:
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complex numbers
X0Y =Y0X (commutative)
X0(Y0Z)=(X0Y)0Z (associative) (27)
2) In four-dimensional algebra of real quaternions
X0(Y0Z)=(X0Y)0Z (associative) (28)
3) In eight-dimensional algebra of real octonions
X?0Y = X0(X0Y) (left alternative) (29)
(30)

X0Y? =(X0Y)0Y (right alternative)

Indeed, the validity the above statements may be demonstrated through direct
matrix calculations. However, as they are rather cumbersome, we will only pro-

vide the useful relations for it:
1) All Hurwitz algebras hold
X-y=y-x (31)
¥XP=—PxF (32)
X(yxZ)=Z-(¥xy)=y-(ZxX) (33)
2) For quaternions
¥x(yxz)=(%-y)z—(%-2)p (34)
Using relations (33) and (34) we have
Z)] 39)

(x()y)Oz—xO(yOz)
=[(¥x5)-2=(§x2)-% |+[(¥-7)Z = (F-2) X +(Fx F)xZ - Fx(Fx

=0
3) For octonions
Ix(¥xy)=—(%-y)¥+(¥-X)y (36)
Using (33) for the scalar component of the alternator we have
(¥x¥)-Z-(3xZ)-Xx=0 (37)
(38)

Therefore,
Tr[(x()y) <>zj| = Tr[x()(y()z)]

Thus, calculation of scalar products in the real Hilbert module with octo-

nion-valued states may be performed neglecting their non-associativity. Ob-
(39)

viously, we also have
Tr [(x()y)()z] = Tr[z()(x()y)]
We have obtained the properties of associativity and commutativity which are

both needed to formulate a dispersion-free field theory [2].
A detailed discussion of self-adjoint operators (dynamic variables) in those

frameworks will be presented in a separate publication.
Journal of Modern Physics
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Using (36) for the vector component of the alternator we have

(x-%)y—(x-p)X—%x(Xxy) (0)
=(¥-%)y— (%)% +(3-7)¥—(¥-%)5=0
or
x*0y =x0(x0p) (left alternative) (41)
Similarly,
(%:7)5 (9 7)X+(Fx)xy @
=(7:7)7 (5 ) ¥=(¥:3) 5+ (7-7)7=0
or
y0x* =(y0x)0x (right alternative) (43)
Then the flexibility and the Moufang identities follow
(x0p) 0x = x0(¥0x) (44)
(x0a0x) 0y = x0[ a0 (x0y) ] (45)
y0(x0atx) = [ (y0x)0a ] 0x (46)
(x09)0(a0x) = x0(¥0a) Ox (47)

Consider now matrices of arbitrary dimension with matrix elements belong-
ing to one of the Hurwitz algebras. Then the product matrix is defined by the

usual multiplication rule:

Zn le Z]n Xn X12 Xln Yn le In
R A
an Zn2 Znn an Xn2 Xnn Ynl YnZ Ynn
ZU,EZXI.,{Y,(].; Lj=12,,n (49)
k=1
where
0 5 " - 0 -
7 = Zy Z =Z(x3f x[k]o Vi Vi
[/ ZO — 0 - 0
i i) =\ X Xy Y Vi
0.0 , = = 0 0= = = (50)
_ c X Vig X Vi X Vig + VigXie + X X Vi
k=1 xi(;c)_}]g' +y1?,')—fik + Xy Xj’/,»j xi(;fyz +X; ')_}k,'

VvX,.Y,,Z, elementsof R, C, Hand O algebras.

Thus, the product matrix is defined as the usual sum of pairs of multipliers
and the product of each pair is defined by the vector multiplication introduced
above. The trace and determinant of the product matrix are always real and are

defined according to the usual rules. For example,
r(2)=22; (51)
i=1

Therefore, the result of the calculation is unambiguous.
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3. Conclusions

Having discussed the geometric extension of conventional matrix multiplication
which is uniformly valid for all quadratic normal division algebras, I would like,
in conclusion, to emphasize that the suggested matrix realization is of crucial
importance for quaternion and octonion extensions of standard functional anal-
ysis since the real as well as the complex Hilbert modules require the use of mul-
ticomponent states. The results obtained allow for the introduction and investi-
gation of the operators necessary for the description of the system dynamics as
well as for the observables (self-adjoint operators) [5] [6]. In addition, the transi-
tion from the vector matrix to the standard one may provide an alternative me-
chanism for spontaneous breakdown of internal symmetries as suggested by the
comparison of Equations (10) and (14). Historically, the multiplication opera-
tion over real numbers was first extended to physically relevant three-dimensional
space and only later to spaces of arbitrary dimensions and signatures [7]. The
invention of scalar matrix multiplication was an alternative to this generaliza-
tion. It seems reasonable to expect that the vector matrix multiplication sug-
gested here may be extended to additional types of algebras (Clifford, Lie, Jor-

dan, etc.), but that lies outside the scope of this investigation.
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Appendix

For readers who would like to verify the statements in this paper by direct calcu-

lation, I reproduce here the multiplication tables of Hurwitz algebra.

Table Al. Complex numbers.

eD el
€ €, €
el €I —80
Table A2. Quaternions
=) C € €
€ € € € €
e, e‘ —eﬂ 63 —ez
e, e, —e, -, e
e, e, e, —e -e,
Table A3. Octonions.
e, e e, e, e, e, e, e,
e, e, e e, e, e, e, e, e,
e e —e, e —e, e —e, e, —e,
e, e, —e, -e, e e, e —e, —e,
e, e, e, —e, -e, —e, e, e, —e,
A A - —€ € —€ -6 €, €
e e, e, —e, —e, e, -e, -e, e,
(A € - e, - —e, & - &
e, e e, e, e —e, e, —e, —e,
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