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Abstract 
In this study, we develop a robust portfolio allocation model for a bank in an 
incomplete market with inflation (a non-tradeable stochastic factor). The op-
timality criterion of the investments is established on a functional via a modi-
fied version of the monotone mean-variance preferences. An increase in an-
ticipated inflation will increase the interest rate, while reducing the expected 
net stream of dollar receipts in the loan portfolio. Eventually whilst existing 
loans mature and are re-negotiated (at the higher interest rate), the interest 
rate is earned by the bank on existing loans are locked up. Under such explicit 
risk aggregation paradigm, we formulate this problem as a stochastic differen-
tial game (SDG) and apply the Hamilton-Jacobi-Bellman-Isaacs (HJBI)-equation 
to derive the optimal investment strategy. We discuss the dynamics of myopic 
optimal portfolio and the intertemporal hedging demand portfolio of the op-
timal portfolio holdings. We describe the dynamics of the total capital ratio 
under Basel III regulations. Finally, we show that our solution coincides with 
the solution to classical Markowitz optimization problem with risk aversion 
coefficient depends on stochastic factor. Our results confirm that the banker’s 
optimal holdings and the trade-off between holding a myopically optimal 
portfolio and intertemporal hedging demand are determined by the deriva-
tives of marginal utility with respect to the state variable. 
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1. Introduction 

The banking sector has been subject to constant changes in the economic envi-
ronment over the past two decades. The Basel Committee on Banking Supervi-
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sion lays down regulations and supervises the behavior of the banking industry, 
by imposing minimal capital requirements and other measures. One of the defi-
ciencies of the 1988 Basel Accord (Basel I) was its failure to distinguish between 
levels of credit risk in assets in general [1] [2]. According to Ferguson [3] this 
further increased the divergence between economic and regulatory capital re-
quirements, making the capital adequacy ratio less reliable as a measure of the 
financial health of banking institutions. Theoretical evidence of the 1988 Accord 
suggested that the revised Basel Accord may influence the structure of a bank’s 
balance sheet. Berger and Udell [4] examined the relationship between commer-
cial loans and the risk-based capital requirements that operate as a regulatory 
tax. Jones [5] proposes regulatory capital arbitrage as an incentive to adjust 
on-and-off-balance sheet activities to the 1988 capital requirement. Since then 
numerous researchers [6] [7] [8] [9] [10] have carried out empirical studies in 
order to point out that the risk-based capital requirements caused a reduction in 
bank lending under Basel I. Studies by [9] [11] [12] [13] have examined the 
capital constraints on banks and response to the revised capital requirements. 
For a more comprehensive overview on Basel I and Basel II, we refer the reader 
to [14]-[22].  

Basel II Capital Accord of June 2004 lays down regulations through more 
risk-sensitive minimum capital requirements. Basel III was agreed upon in 
2010-11, and was scheduled to be introduced from 2013-2015. However, the date 
of implementation has been revised further to 31 March 2019. The third instal-
ment of the Basel Accords was developed in response to the deficiencies in fi-
nancial regulation revealed in the financial crisis of 2007-08. Basel III is intended 
to strengthen bank capital requirements by increasing bank liquidity and de-
creasing bank leverage. Unlike Basel I and Basel II, which focuses primarily on 
the level of bank loss reserves that banks are required to hold, Basel III focuses 
primarily on the risk of a run on the bank, requiring differing levels of reserves 
for different forms of bank deposits and other borrowings. Therefore, Basel III 
does not, for the most part, supersede the guidelines of Basel I and Basel II; 
rather it reinforces the intentions of the accord, see [23]. This provides incen-
tives for greater awareness of differences in risk through more risk-sensitive 
minimum capital requirements based on numerical formulae. The Capital Ade-
quacy Ratio (CAR) is a measure of the amount of a bank’s capital relative to the 
amount of its credit exposures, see [16] [24] [25]. Therefore, maintaining mini-
mum CAR is to guarantee that banks are prepared to absorb a reasonable level of 
loss before becoming insolvent and will help to promote the stability and effec-
tiveness of the banking system.  

On the other hand, the nominal interest rates quoted in financial markets are 
formed in the processes of contracting between borrowers and lenders and an 
increase in anticipated inflation raises the nominal interest rate. This increases 
the number of dollars that creditors or debtors who are transacting in nominal 
financial instruments except to receive or pay when a loan matures. If these ex-
pectations are realized, all nominal values will be higher at maturity. A banker’s 
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nominal assets and liabilities typically mature at different dates. At any given 
moment, the maturity dates of a bank’s asset generally extend beyond those of its 
liabilities. In other words, interest rate change affects the payments stream obli-
gated by the banker’s liabilities before it affects the bank’s receipt stream. Con-
sequently, an increase in interest rate reduces the expected net stream of dollar 
receipts as the banker’s creditors, renegotiate for a higher interest rate, while the 
interest rate earned by the bank on its existing loans eventually mature and are 
renegotiated at the higher interest rate, the interest rate earned by the bank on its 
existing loans is locked up. Of course, the loans eventually mature and are rene-
gotiated at the higher nominal rate, but the banker’s capital is reduced nonethe-
less. Banker’s optimal asset portfolio decision requires that the expected returns 
from the two portfolios are equalized in equilibrium. Therefore, in the presence 
of anticipated inflation the interest rate at which banks lend to firms decreases 
the banks’ net worth and show that a deterioration in banks’ net worth or a 
strengthening of capital requirements may increase the interest rate at which 
banks lend to firms and hence dampen lending and output. As a result, the sup-
ply of capital to goods producing firms will fall, reducing output. As output de-
clines, aggregate demand weakens and inflation declines. The initial effect, 
originating from the change in the maximum loss, brings about second-round 
effects on the macro-economy through endogenous developments in the banks’ 
net worth. When the initial effect leads to a decline in the banks’ net worth, it 
also dampens output and inflation through changes in the risk taking capacity 
originating from insufficiency. Hence, bank’s capital has a direct effect on the 
upper bound on bank assets under Basel III capital requirement and thereby 
bank’s lending ability. Importantly, there are two conditions required for the 
bank capital channel to operate. First, banks should have no excess capital that 
can be used to buffer against shocks that deplete bank capital. Secondly, the 
capital market is imperfect in that it is costly for a bank to raise capital 

Literature regarding quadratic optimization dates back to Markowitz in the 
1950’s. In his mean-variance analysis the theory of combining risky assets to 
minimize the variance of return (i.e., risk) at any desired mean return is exam-
ined. The locus of optimal mean-variance combinations is called the efficient 
frontier, on which all rational investors desire to be positioned. Since then there 
has been continued interest to incorporate specific features to the Markowitz 
[26] model, such as the monotone characteristics. Maccheroni et al. [27] ad-
dressed this issue and formulated a new class of monotone preferences that co-
incide with mean-variance preferences on their domain of monotonicity, but 
differ where mean-variance preferences fail to be monotone. Moreover, they 
showed the functional associated with this new class of preferences details the 
monotone mean-variance preferences and its advantage over mean-variance 
preferences Maccheroni et al. [27]. In a dynamic optimization setting a modifi-
cation of Maccheroni type objective function has been analyzed by [18] 
[28]-[33]. The problem of maximizing Maccheroni’s 2009 functional is a 
max-min problem that naturally forms a stochastic differential game (SDG). In 
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the literature there are two main approaches in determining the solution to such 
games either via the maximum principle or Backward Stochastic Differential 
Equations (BSDEs). The BSDE approach is based on the dynamic principle and 
Hamilton-Jacobi-Bellman equations (Hamilton-Jacobi-Bellman-Isaccs (HJBI) 
for differential games). In this study we use HJBI equation for the game and 
simplify to a linear form by applying some transformations. As a by-product we 
obtain a formula for the optimal strategy.  

The novelty, of this study is the development of a robust portfolio alloca-
tion/management model for a bank with respect to inflation (non-tradable sto-
chastic state variable) and provisional capital process that maximizes perform-
ance criterion of a modified version of the monotone mean-variance functional. 
Assuming that the banker can invest in treasuries, a stock index and a loan 
portfolio, we formulate the portfolio optimization problem as a SDG and it is 
solved via the HJBI equation to derive the optimal investment strategy. Optimal-
ity criterion is constructed via a functional by modifying the monotone 
mean-variance performance. We discuss the banker’s portfolio compositional 
decision based on the expected returns from the two portfolio holdings subject 
to the equalization in equilibrium. We examine the dynamics of myopic optimal 
portfolio and the intertemporal hedging demand portfolio of the optimal portfo-
lio holdings. We then derive the Basel III CAR. Compliance of minimum CAR is 
modeled under the assumption retained earnings, loan-loss reserves, the market 
and shareholder-bank owner relationship. In this study, Basel III CAR given by 

,
rw

CQ
a

=  

where C represents the total capital and rwa  the total risk-weighted assets 
(TRWAs) of the bank, respectively.   

Recalling Maccheroni et al. [27], we have (optimal asset portfolio decision re-
quires that the expected returns from the two assets are equalized in equilib-
rium)  

( )1inf , 0,
2

Q

Q
X X Q PC θ

θ∈

 → + >  



             (1) 

where θ , is a risk aversion coefficient, ( )C Q P , called a penalty function,   
is a class of all probability measures, P is a given probability measure and  

( )
2d 1, if ,

d

, otherwise,

P Q Q P
Q PC P

    −   =     

+∞


            (2) 

where ( )C Q P  is known as the Gini concentration index. Due to technical dif-
ficulties, of Equation (1), we consider the set   to be all absolutely continuous 
probability measures which have square intagrable Radon-Nikodym derivative of 
the form Equation (15). This modification of monotone mean-variance function is 
still monotone and the performance criterion of convex risk measure ( )XΛ , is 
defined as:  
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( ) 1 dsup , 0,
2 d

Q

Q

QX X
P

θ
∈

 Λ = − − >  



            (3) 

satisfying the following three axioms: 
1) Convexity: If ( )0,1α ∈ , then ( )( ) ( ) ( ) ( )1 1X Y X Yα α α αΛ + − ≤ Λ + − Λ , 
2) Monotonicity: if X Y≤ , then ( ) ( )Y XΛ ≤ Λ , 
3) Translation invariance: β ∈ , then ( ) ( )X XΛ + ϒ = Λ − ϒ .  
Hence, the problem of maximizing Equation (1) becomes a max-min problem 

and naturally forms a stochastic differential game for optimization problem.  
This article makes the following contributions to the literature: 
1) Introducing banker’s provision capital risk process as a controllable diffu-

sion process, we extend [31] analysis into robust portfolio allocation/manage- 
ment framework with inflation. This allows the banker to deal with the issue of 
bank capital adequacy and risk management in an incomplete market within a 
stochastic dynamic setting. This empowers the banker to regulate his/her provi-
sion capital risk process by controlling the amount of wealth invested in the loan 
portfolio as well as the amount of wealth invested in the stock index. A nega-
tive/or positive correlation between the provision capital process and the capital 
loss/or gains from the loan portfolio is captured via 2ρ̂ . A negative/or positive 
correlation will capture the influence of provision capital risk process on the fi-
nancial market holdings via 1ρ̂ . Consequently, we can show how a nega-
tive/positive correlation of 1ρ̂ , and 2ρ̂  affect the banker’s myopic demand 
and intertemporal hedging demands on optimal polices.  

2) We argue that the relevance of inflation risk stems not only from banker’s 
concerns with real return volatility, or interest lost but also from the fact that in-
flation is a proxy for the variation of the investment opportunity set.  

3) We formulate this problem as a stochastic differential game and use HJBI 
equation to derive optimal investment strategy.  

4) Optimality criterion of the optimal investment is based on a functional as a 
modification of a monotone mean-variance preference.  

5) We provide a verification theorem and describe the dynamics of the total 
capital ratio under Basel III regulations 

6) We show that our solution coincides with the solution to classical Markowitz 
problem where the risk aversion coefficient is dependent on stochastic factor.  

7) Our results confirm that the presence of inflation risk alters the banker’s 
optimal holdings and the trade-off between the myopically demand optimal 
portfolio and intertemporal hedging demand portfolio is determined by the de-
rivatives of marginal utility with respect to the state variable. 

The remainder of this paper is organized as follows: Section 2 and Section 3 
contains the description of the investment opportunities, market setting and 
model set up and in Section 4 we formulate the bank’s investment problem sub-
ject to banker’s provision process as a Maccheroni type SDG between the banker 
and the market. We then derive the HJBI equation, formulate the verification 
theorem and transform our equation to linear form. This is followed by a com-
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parative analysis and discussion of the useful properties of this solution. In Sec-
tion 5 we derive an explicit Indigo Partial Differential Equation (IPDE) for the 
dynamics of the Basel III CAR by dividing the total bank capital and TRWAs 
under provision capital process paradigm. In Section 6 we compare the result 
with solution to classical mean-variance optimization problem. Section 7 con-
cludes the paper.   

2. Formulation of the Banking Model 

We consider a financial market which is continuously open over the fixed time 
interval [ ]0,T . We work within a filtered probability space ( ), , PΩ   with 

( )( )0 t T
t

≤ ≤
=  , where P is the reference probability measure and Ω  denotes 

the information structure. The mathematical model for a continuous-time mar-
ket allows at least two types of financial assets (treasuries, and a stock index 
fund) to be bought and sold without incurring any transaction costs or restric-
tion on short sales. Issuing of loans is considered to be a third investment op-
portunity for the bank. We assume that the expected rate of inflation is not ob-
servable, but must be inferred from observation of the price level itself and this 
inflationary risk in the market is captured by an external stochastic factor 

( )( )0
:

t T
O O t

≤ ≤
= , with ( )O s o= . To capture the operation and management 

strategies of banks, we need to consider the balance sheet, which records the 
bank’s assets (uses of funds) and bank’s liabilities (source of funds). The items 
on the balance sheet behave in an unpredictable manner, due to the uncertain 
behavior of the activities related to the evolution of treasuries, loan demand, 
risky and riskless investments, deposits, loan repayments, borrowing and eligible 
capital. As in [24], we define the balance sheet of a commercial bank at time t as 

( ) ( ) ( ) ( ) ( ) ( ) ,M t S t L t D t B t C t+ + = + +             (4) 

where, , , , ,M S L D B  and C are the treasuries, securities, loans, deposits, bor-
rowing and bank capital, respectively. Each of these variables will be regarded as 
a function of + +Ω× →  . 

2.1. Treasures, Securities and Loans 

A bank reserve is the currency deposit that is not lent out to the bank’s clients. A 
small fraction of the total deposits is held internally by the bank in cash vaults or 
deposited with the central bank. Minimum reserve requirements are established 
by central banks in order to ensure that the financial institutions will be able to 
provide clients with cash upon request. Bank reserves are typically held by fi-
nancial institutions to avoid bank runs and have sufficient cash on hand, should 
an unexpected and large withdrawal request come up. Bank reserves are divided 
into required reserves and excess reserves. Because of the banking industry’s 
importance to the economy, national authorities regulate banks by obligating 
them to hold a certain amount of required reserves with central banks. Excess 
reserves represent any vault cash that banks hold that is in excess of the required 
reserves amount. Banks typically have low incentive to maintain excess reserves 
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because cash earns the rate of return of zero and can lose value over time due to 
inflation. Thus, under normal circumstances, banks minimize their excess re-
serves and lend out money to clients rather than holding cash in their vaults. 
Bank reserves decrease during periods of economic expansion and increase dur-
ing recessions.  

These funds are not used to lend to customers or to meet day-to-day currency 
withdrawals. Treasury securities and bonds are issued by the national treasury as 
a means of borrowing money to meet government expenditures that have not 
been covered by tax revenues. Marketable securities are stocks and bonds that 
can be swiftly converted into cash, hence are highly liquid assets. We suppose 
that a commercial bank raises funds to invest in a risky asset, in this case a loan. 
The interest rate on the loan is denoted by ( )r t . 

2.2. Total Bank Capital 

Banks can raise their capital by selling new equity, retaining earnings, issuing 
debt or building up loan reserves. By nature, the dynamics of bank capital is 
stochastic due to uncertainty related to debt and shareholder contributions. 
However, in theory the bank can decide on the rate at which debt and equity is 
raised. According to Basel III, the bank capital can be portioned into so-called 
Tier 1 and Tier 2 capital, i.e., ( ) ( ) ( )1 2T TC t C t C t= + .  

Tier 1 capital is the book value of its stocks, ( )E t  plus retained earnings 
( )rE t . Tier 2 capital (collectively known as supplementary capital) is the sum of 

subordinate debt, ( )DS t  and ( )LR t  loan-loss reserves. As a result, we have 

( ) ( ) ( ) ,r rC t E t E t= +                     (5) 

and 

( ) ( ) ( )2 .T D LC t S t R t= +                    (6) 

Therefore, the total bank capital can be expressed as  

( ) ( ) ( ) ( ) ( ).r D LC t E t E t S t R t= + + +              (7) 

The market value of subordinate debt at time t may be given by  

( ) ( ) ( )
0

0 exp d
t

D DS t S r u u
 

=  
 
∫ . 

2.3. Dynamics of Total Capital 

We assume that the bank holds capital in 1n +  categories, n of which are re-
ferred to as bank equity. Then the return on the ith bank equity is defined as 

( ) ( ) ( ) ( )
1 1

ˆd d , 1,2, , ,
n n

i i i j j ij j
j j

de t e t r t t W t i nσ η σ
= =

  
= + + =  

   
∑ ∑     (8) 

The co-variance matrix and the market price of risk are given by ( ) , 1

n
ij i j

σ
=

Ψ =  
and ( )1

T, , nη η η=  , respectively and are assumed to be constants. T , is the 
transpose of a vector or matrix. At time t we assume that the bank capital is being 
converted into loan and marketable securities at the rate of ( ) ( )dX t X t tρ ρ=  
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for a constant ρ . Here, ( )X t  represents the total asset portfolio of the bank.  
Greenbaum & Thakor [34] argues that excessive high capital requirements 

may result in banks taking on more risk and may lead to a bank acquiring higher 
levels of equity on order to become compliant. The upshot of such practices in-
cludes reduced liquidity and erosion of discipline in the bank’s operation while 
defeating the purpose of the regulatory requirements. Therefore, capital re-
quirement should be pitched at an appropriate level and banks should operate as 
near as possible to the minimum required level of capital. Therefore, it is essen-
tial to properly monitor and project the dynamics of the CAR. For this reason, in 
Section 6, we describe the dynamics of Basel III CAR as a SDE. Due to the 
non-dynamic character of retained earnings and loan-loss reserves, these aspects 
are not considered to be active constituents of bank capital. This implies 

( ) ( )d d 0,r LE t R t t= = ∀ . Hence the C-dynamics may be expressed as:  

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )
1 1

T T

d
d 1 d

ˆd d d ,

n n
i D

i i
i ii D

de t S t
C t C t w w t C t X t t

e t S t

C t r t w t t w t W t X t t

ρ

η ρ

= =

 = + − − 
 

 = + Ψ + Ψ − 

∑ ∑
    (9) 

where ( )Tw t  are the proportions invested in securities. The diffusion term 
( ) ( )T ˆdw t W tΨ  in (9) establishes a correlation between bank capital and total 

risk-weighted assets.  

3. Financial Market Setting 
3.1. Treasures  

The first of three assets, we consider treasury ( )M t  which evolves according to 

( ) ( ) ( ) ( )d d , 0 1,M t M t r t t M= =                  (10) 

where ( )r t  is the instantaneous nominal interest rate at time t and is t - 
measurable. Assume that ( )M t  is a well-defined process. 

3.2. Stock Index Fund 

The evolution of the price process of the stock index fund ( )( )0
:

t T
S S t

≤ ≤
=  is 

governed by the SDE: 

( ) ( ) ( ) ( )( )( ) ( )( ) ( ) ( )1 1d d d ) , 0 0,SS t S t r t O t t O t W t S sξ σ = + + = >   (11) 

where ( )( ) 0S O tξ > , is the risk premia of the stock index, ( )( )1 0O tσ > , is 
positive volatility parameters that are continuous functions and assumed to sat-
isfy all the required regularity conditions, in order to guarantee that the unique 
strong solution to Equation (11) exists. The unit market price of risk for the 
stock index is ( )( )1 0O tλ >  and the risk premium of the stock index fund is

( )( ) ( )( ) ( )( )1 1:S O t O t O tξ σ λ= . 

3.3. Loans 

Any loan is essentially an interest rate contingent claim and by Itô’s lemma the 
dynamics of the loan price are assumed to follow according to the SDE  
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( ) ( ) ( ) ( )( )( ) ( )( ) ( )2d d d .L LL L r O tt t O Wt t t tξ σ = + +         (12) 

( )( ) 0L O tξ >  is the risk premia per loan in the loan portfolio, ( )( ) 0L O tσ > , 
is the volatility parameter that are continuous functions and assumed to satisfy 
all the required regularity conditions, in order to guarantee that the unique 
strong solution to Equation (12) exists. We assume that the bank grants loans at 
a nominal interest rate or loan rate as a sum of instantaneous nominal interest 
rates, the market price of risk and the default risk premium. Here,  

( )( ) ( )( ) ( )( )2L LO t O t O tξ λ σ ε= + , is the unit market price of risk for a loan. 
As in [35], the default risk premium ε , is the credit spread charged by the bank 
and it is the function of the probability of default (PD), and the loss given default 
of the loan, (LGD) (Spread = PD LGD× ). Main liabilities for the bank come 
from approving loans. Total outstanding number of loans at time t is denoted by 
( )L t . Then the revenue from writing loan policies over the time period 

( ), dt t t+  is given by ( )( ) ( )2 dL O t w t tξ . We also assume that bank can sell 
their loan portfolios to other banks.   

3.4. Inflation in the Economy 

We define the dynamics of the rate of inflation is given via the following SDE 

( ) ( )( ) ( )( ) ( ) ( ) ( )( ) ( )1 1 2 2 3 3d d d d , 0 ,O t a O t t b O t W t W t W t O oρ ρ ρ= + + + =  (13) 

where the coefficients ,a b  are continuous functions and satisfy all the required 
regularity conditions, in order to guarantee that the unique strong solution to 
Equation (13). ( ) [ ]1 2 3, , 1,1ρ ρ ρ ∈ −  are the correlation coefficients and 1 2,W W  
and 3W  are three independent standard Brownian motion which are orthogo-
nal to each other.  

3.5. Bank’s Provision Capital Process 

The nominal interest rates quoted in financial markets are formed in the proc-
esses of contracting between borrows and lenders and an increase in anticipated 
inflation raises the nominal interest rate. This increases the number of dollars 
that creditors or debtors who are transacting in nominal financial instruments 
except to receive or pay when loan mature. If these expectations are realized, all 
nominal values will be higher at maturity. A banker’s nominal assets and liabili-
ties typically mature at different dates. At any given moment, the maturity dates 
of a bank’s asset generally extend beyond those of its liabilities. In other words, 
interest rate change affects the payments stream obligated by the banker’s liabili-
ties before it affects the bank’s receipt stream. Consequently, an increase in in-
terest rate reduces the expected net stream of dollar receipts as the banker’s 
creditors, renegotiate for a higher interest rate, while the interest rate earned by 
the bank on its existing loans eventually mature and are renegotiated at the 
higher interest rate, while the interest rate earned by the bank on its existing 
loans is locked up. Of course, the loans eventually mature and are renegotiated 
at the higher nominal rate, but the banker’s capital is reduced nonetheless. We 
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also argue that the relevance of inflation risk stem not only from banker’s con-
cerns with real return volatility but also from the fact that inflation is a proxy for 
the variation of the investment opportunity set. We define the bank’s provision 
capital risk process as  

( ) ( )d d d ,t t W tπ υ β= +                      (14) 

where υ  and β  are two positive constants. ( )W t  is another standard 
Brownian motion defined on the given filtered probability space and a nega-
tive/or positive correlation will capture the influence of provision capital risk 
process of the loan portfolio on the financial markets via 1ρ̂ . A negative/or 
positive correlation between the provision capital process and the capital loss/or 
gains from the loan portfolio via 2ρ̂ . Inflationary risk in the economy is cap-
tured via 3ρ̂ . We suppose that under P, there is a 4-dimensional Brownian mo-
tion such that the correlation coefficients are 1 2 3ˆ ˆ ˆ, ,ρ ρ ρ  and 4ρ̂  respectively, 
with respect to W . Then ( )W t  can be written as  

( ) ( ) ( ) ( ) ( )1 1 2 2 3 3 4 4ˆ ˆ ˆ ˆW t W t W t W t W tρ ρ ρ ρ= + + +  

where ( )4W t  is another standard Brownian motion orthogonal to  
( ) ( ) ( )1 2 3, ,W t W t W t , we define ( )2 2 2

4 1 2 3ˆ ˆ ˆ ˆ1ρ ρ ρ ρ= − + +  and  
( ) [ ]1 2 3 4ˆ ˆ ˆ ˆ, , , 1,1ρ ρ ρ ρ ∈ − . 

We assume that the probability measure is not precisely known and the 
banker knows only a class of possible measures. To construct banker’s objective 
function, following [29], we consider the class of ( )1 2 3 4: , , ,η η η η η= ∈ . as 

( ) ( ) ( ) ( )(

( ) ( ) ( ) ( ))

1 1 2 2

3 3 4

1

4

: ~ d d

d d ,
T

Q t W t t WdQP
dP

t

t W t t W t

η η

η η


= = +



+ + 



∫ 
         (15) 

where ( )t⋅  denotes the Doleans-Dade exponential and   denotes the set of 
all progressively measurable processes ( )1 2 3 4: , , ,η η η η η=  such that  

2
d
d
QE
P

η 
< +∞ 

 
 and d 1

d
QE
P

η 
= 

 
. Qη  denotes the measure determined by  

η ∈ . This implies that we have an additional family of stochastic processes 
( )( ), 0Y t t Tη ≤ ≤ , are given by the SDE 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 2 2 3 3

4 4

d d d d

d , .

Y t t Y t W t t Y t W t t Y t W t

t Y t W t Y s y

η η η η

η η

η η η

η

= + +

+ =
 (16) 

Moreover, note that ( ) d
d
QY T y
P

η
η = . 

At time t, the banker chooses ( )1w t  amount to be invested in the risky stock 
index fund and ( )2w t  amount of outstanding loans included in the loan port-
folio. Then the trading strategy is a pair of stochastic processes  
( ) ( ) ( )( )1 2: ,t w t w tκ = . Corresponding to a strategy ( )tκ  the dynamics of the 

bank’s portfolio under inflational risk control strategy can be written in an ex-
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plicit manner subject to an initial wealth x as 
( ) ( )

( ) ( )( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )
( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

,

1 2 1 2 2

,
1 2 2

1 1 1 2 2 2

d

d d d
1 d

d

d d d ,

x

x
S L

L

X t

M t S t L t
w t w t w t w t w t t

M t S t L t

r t X t O t w t O t w t w t t

O t w t W t O t w t W t w t W t

κ

κ

π

ξ ξ υ

σ σ β

= − − + + −

 = + + − 
+ + − 

 (17) 

where ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ),S S L LO t O t r t O t O t r tξ µ ξ µ= − = − . ( )( )S O tµ  
and ( )( )L O tµ  are the appreciation rates for the stock index and for a loan, re-
spectively. We rewrite Equation (17) as: 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )
( )( ) ( ) ( )( ) ( )

( ) ( )( )( ) ( )
( ) ( ) ( ) ( )

( )

, ,
1 2 2

1 1 1 2 1

2 2 2

2 3 3 2 4 4

d d

ˆ d

ˆ d

ˆ ˆd d

0 .

x x
S L

L

X t r t X t O t w t O t w t w t t

O t w t w t W t

w t O t W t

w t W t w t W t

X x

κ κ ξ ξ υ

σ βρ

σ βρ

βρ βρ

 = + + − 

+ −

+ −

− −

=

 (18) 

Definition 1. The control strategy ( ) ( )( )1 2,w s w sκ = ; t s T≤ ≤  in the time 
interval [ ],t T , is admissible if it satisfies the following assumptions: 

1) 1 2,w w  are progressively measurable;  
2) There exists an unique solution to Equation (14) and  

( )1 2,
, sup w w

x t s
t s T

E Xη

≤ ≤

  < +∞  
 for all η ∈ , where Eη  denotes the expectation 

with respect to measure Qη . 

4. Banker’s Asset Optimization Strategy 

Shareholders of a bank expect a decent return on their capital investment. In 
order to maximize shareholder wealth, the bank management must strategically 
allocate the shareholder’s wealth in investment strategies while minimizing the 
risks. (Shareholders will describe the uncertainty of an investment’s success or 
failure as risk, and the bank management must monitor this risk because it af-
fects the bank’s cost of capital, market value and ultimately shareholder wealth). 
Consequently, changes in the bank’s asset value are reflected in changes in the 
shareholder’s equity. The value of the bank portfolio depends on the credit qual-
ity of borrowers (creditors) that the bank has lent money to conclude that the 
uncertainty in borrowers’ future credit quality leads to uncertainty in the bank’s 
future portfolio value. In order to formulate the banker’s optimization problem 
as a Maccheroni type, we define the banker’s objective as 

( ) ( ) ( ) ( ) ( ),
, , ,, , , : x y tJ x y o t E X T Y Tκ η κη η
δ
 = − −  . Then the banker’s aim is to 

( ) ( ),min sup , , , ,J x y o tκ η

η∈
                  (19) 

over a class of admissible strategies t . 
Using [36] stochastic differential game we model problem (19) as a zero-sum 
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stochastic differential game. We claim the measure Qη  is controlled by the 
market (player 1) and the portfolio κ  is controlled by the banker (player 2). 
Under this setting we are looking for a saddle point ( ){ }1 2, , tw w η∗ ∗ ∗ ∈ ×   
and the value function ( ), , ,V x y o t  such that 

( )( ) ( ) ( )( ) ( ) ( )( ) ( )1 2 1 2 1 2, , , , , ,
, , , , , , , , ,

w w w w w w
J x y o t J x y o t J x y o t

η η η∗ ∗ ∗ ∗ ∗ ∗

≤ ≤  

and ( ) ( )( ) ( )1 2, ,
, , , , , ,

w w
V x y o t J x y o t

η∗ ∗ ∗

= . 

4.1. HJBI Equation and the Verification Theorem 

To establish a link between HJBI-equation and a saddle point to our problem in 
this subsection, we recall Equations (18), (16) & (13) and setting ( ) 1t =  for 
all t. i.e. 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )
( )( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( )( ) ( ) ( ) ( )( )

1 2,
1 2 2

1 1 1 2 2

2

1
1 2 2

3 3 4 4

1 1 2 2 3 3

d d

d d

d ,

d d d

d d ,

d d d d .

w w
S L

L

X t O t w t O t w t w t t

O t w t W t O t w t W t

w t W t

Y t t Y t W t t Y t W t

t Y t W t t Y t W t

O t a O t t b O t W t W t W t

η η η

η η

ξ ξ υ

σ σ

β

η η

η η

ρ ρ ρ

  = + − 
 + +

 −


= +


+ +
 = + + +



   (20) 

After applying the Girsanov transformation, we define the Qη  dynamics of 
the system (20) as: 

( ) ( ) ( ) ( )( ) ( ) ( )( )( ) ( ) ( )( )(
( )) ( ) ( ) ( )( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )(
( )) ( ) ( ) ( )( )( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( )

1 2

1

,
1 2 1 1

1 2 1 2 2 2

2 3 3 2 4 4 1 1

1 2 1 2 2 2

2 3 3 2 4 4

2 2 2 2
1 2 3 4 1

2

d

ˆ ˆ

ˆ ˆ d

ˆ ˆd d

ˆ ˆd d ,

d d d

d

w w
S L

L

L

X t w t O t w t O t w t O t

w t t w t O t t

w t t w t t t w t O t

w t W t w t O t W t

w t W t w t W t

Y t t t t t Y t t t Y t W t

t Y t

η η η
η

η

ξ ξ υ σ

βρ η σ βρ η

βρ η βρ η σ

βρ σ βρ

βρ βρ

η η η η η

η

= + − +

− + −

− − +

− + −

− −

= + + + +

+ ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( )

( )( ) ( ) ( ) ( )( )

2 3 43 4

1 1 2 2 3 3

1 1 2 2 3 3

d d ,

d d

d d ,

W t t Y t W t t Y t W t

O t a O t b O t t b O t t b O t t t

b O t W t W t W t

η η
η η ηη η

ρη ρ η ρ η

ρ ρ ρ















+ +


= + + +


+ + +


 

(21) 

where ( ) ( ) ( ) ( )( )1 2 3 4
, , ,W t W t W t W tη η η η  are Qη -Brownian motion defined as: 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1

2

3

4

1 1

2 2

3 3

4 4

d d d ,

d d d ,

d d d ,

d d d .

W t W t t t

W t W t t t

W t W t t t

W t W t t t

η

η

η

η

η

η

η

η

= −


= −


= −
 = −

                 (22) 

Let ( ),κ η  be the differential operator given by 
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( )

( )( ) ( )( )( ) ( ){
( )( ) ( )}

( ) ( ) ( )(

( ) ( ) ) ( ) ( )(

( , )

2 2 2 1

1 1 1 2 1 2 3 3 4 4

2 2 2 2
1 2 3 4 1 1

2 2
2 2 3 3 1 1 1 1 1 2

, , ,

ˆ:

ˆ ˆ ˆ

1 ˆ2
2

L L S

V x y o t
V w o o w o
t

Vw o w w
x

Vy a o b o
y

Vb o b o o w o w w
o

κ η

ξ υ σ βρ η ξ

σ βρ η βρ η βρ η

η η η η ρη

ρ η ρ η σ βρ σ

∂
= + − + − +
∂

∂
+ − − +

∂
∂

+ + + + + +
∂
∂

+ + + −
∂



 

( )( ) )
( ) ( )

( )( ) ( )( )(

2
22 2 2 2 2 2 2 2 2 2

1 2 2 2 2 3 2 4 2

2 2
2 2 2 2 2 2
1 2 3 4 2 2

1 1 1 2 1 2 2 2

ˆ ˆ ˆ ˆ

1 1
2 2

ˆ ˆ

L

L

Vw w o w w
x

V Vy b o
y o

w o w w o

β ρ σ βρ β ρ β ρ

η η η η

σ βρ η σ βρ η

∂
+ + − +

∂
∂ ∂

+ + + + +
∂ ∂

+ − + −

 

) ( )( ) ( )(

( )( ) ( ) ( ) )

( ) ( ) ( )( )

2

2 3 3 2 4 4 1 1 1 2 1

2

2 2 2 2 3 3

2

1 1 2 2 3 3

ˆ ˆ ˆ

ˆ ˆ

.

L

Vw w y w o w b o
x y

Vw o b o w b o
x o

Vb o b o b o y
y o

βρ η βρ η σ βρ ρ

σ βρ ρ βρ ρ

η ρ η ρ η ρ

∂
− − + −

∂ ∂

∂
+ − −

∂ ∂
∂

+ + +
∂ ∂

 

We now formulate a Verification Theorem. The proof of this theorem is simi-
lar to the proof of theorems from [18] [31] [32] [37]. For the completeness of 
this analysis we briefly state the theorem. 

Theorem 1. (Verification Theorem). Suppose there exists a function  
( ) [ )( ) ( ) [ ]( )2,2,2,1 0, 0, 0, 0,V T T∈ × +∞ × × ∩ × +∞ × ×      and a Markov 

control ( ) ( )( ), , , , , , , tx y o t x y o tκ η∗ ∗ ∈ ×  , such that   

( ) ( )
( ) ( )

( ) ( ) ( )
( )

, , , ,

, , , ,

, , , , , , ,

, , , 0,

, , , 0,

, , , 0,

, , ,

x y o t

x y o t

x y o t x y o t

V x y o t

V x y o t

V x y o t

V x y o T x y

κ η

κ η

κ η

∗

∗

∗ ∗

 ≤

 ≥

 =


= − −






                (23) 

For all ( ) ( ) [ )4 2, , , , , 0, 0,x y o t Tη κ∈ ∈ ∈ × +∞ × ×    , and 

( ) ( ) ( )( ), , , sup , , ,x y o t
t s T

E V X s Y s O s sη κ

≤ ≤

  < +∞  
            (24) 

For all ( ) [ ) [ ] ( )1 2, , , 0, 0, , , ,tx y o t T w wκ η∈ × +∞ × × = ∈ ∈    . Then  

( ) ( ) ( ), ,, , , , , , , , ,J x y o t V x y o t J x y o tκ η κ η∗ ∗
≤ ≤            (25) 

For all ( )1 2, ,tw wκ η= ∈ ∈  , and ( ) ( ),, , , , , ,V x y o t J x y o tκ η∗ ∗
= . 

Proof. Fix ( ) ( ) [ ), , , 0, 0,x y o t T∈ × +∞ × ×  , choose any η ∈  and con-
sider the system of Equation (21) with ( ) ( ) ( ) ( )( ), , ,t X t Y t O t tκ κ∗ ∗= . If we 
apply the Itô formula to Equation (21) and the value function V, we obtain  
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( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )

, , ,

,
, , ,

, , ,

, , ,

, , , , , , d

d ,

n n n

n

n

x y o t nT T T T T T

T T s s
x y o t t

T T
x y o t t

E V X Y O T T

V x y o t E V X s Y s O s s s

E B s W s

ε ε ε

ε

ε

η κ η ε
ε ε ε

ε κ ηη κ η

εη ε η

ε
∗

∗ ∗

∧ − ∧ − ∧ −

∧ −

∧ −

 ∧ −  
 = +   

 +   

∫

∫

  

where ( ), 1, 2,nT nε =   is a localizing sequence of stopping times such that, 

( ) ( ) ( ), , , d 0.nT T
x y o t tE B s W s

ε εη ε η∧ − ∫ =  
=  

Using ( ) ( ), , , , , , , 0x y o t V x y o tκ η∗

≤ , yields  

( ) ( ) ( ) ( )( ) ( ), , , , , , , , , .
n n n

x y o t nT T T T T T
E V X Y O T T V x y o tε ε ε
η κ η ε

ε ε ε
ε

∗

∧ − ∧ − ∧ −
 ∧ − ≥  

 

Since Equation (25) holds, applying the dominated convergence theorem and 
letting n → +∞ , and using ( ), , ,V x y o T x y= − − , we obtain  

( ) ( ), , , , , , ,J x y o t V x y o tκ η∗ ≥ . Replacing η  byη∗  and using 
( ) ( ) ( ), , , , , , , , , , 0x y o t x y o t V x y o tκ η∗ ∗

= , we obtain ( ) ( ), , , , , , ,J x y o t V x y o tκ η∗ ∗
= . Next 

choose any tκ ∈  and apply the Itô formula to the system of equations (21) 
with ( ) ( ) ( ) ( )( ), , ,t X t Y t O t tη η∗ ∗= . Repeating the method presented above 
and using ( ) ( ), , , , , , , 0x y o t V x y o tκ η∗ ≥ , we obtain ( ) ( ), , , , , , ,J x y o t V x y o tκ η∗ ≤ .  

Remark 1. The conditions given in Equation (25) will hold if the upper and 
the lower HJBI equations are satisfied such that   

( ) ( ) ( ) ( )

( )
2 24 4

, ,min max , , , max min , , , 0,

, , , .

V x y o t V x y o t

V x y o T x y

κ η κ η

κ κη η∈ ∈∈ ∈
= =

= − −
  

 
 

4.2. Solution to the Stochastic Differential Equation 

To find the saddle point we first use the upper HJBI equation  

( ) ( )
2 4

,min max , , , 0,V x y o tκ η

κ η∈ ∈
=

 

                  (26) 

Consequently, we obtain  

( ) ( )

( )( ) ( )( )( ){
( ) ( )( ) ( )

( ) ( ) ( )( )(

2 4

2

2 2 2 3 3 4 1 1

2 2 2 2
1 1 1 1 2 3 4

2
1 1 2 2 3 3 1 1 1 2

1
2

ˆ ˆ ˆ ˆmin max

1 ˆ
2

t o oo

L L

S x y

o

V a o V b o V

w o o

w o o V yV

b o V w t w

κ η
ξ υ σ βρ η βρ η βρ βρη

ξ σ η η η η η

ρη ρ η ρ η σ βρ

∈ ∈

+ +

+ − + − − − −

+ + + + + +

+ + + + −

   

( )( ) ) ( )
( )( ) ( )( )( )

( ) ( )( ) ( )( )( )
( ) ( ) }

22 2 2 2 2 2 2 2 2 2 2 2
2 2 2 3 2 4 1 2 3 4

1 1 1 2 1 2 2 2 2 3 3 2 4 4

1 1 1 2 1 2 2 2 2 3 3

1 1 2 2 3 3

1ˆ ˆ ˆ
2

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

0.

L xx yy

L xy

L xo

yo

w o w w V y V

w o w w o w w yV

b o w o w w o w V

b o yV

σ βρ β ρ β ρ η η η η

σ βρ η σ βρ η βρ η βρ η

σ βρ ρ σ βρ ρ βρ ρ

η ρ η ρ η ρ

+ − + + + + + +

+ − + − − −

+ − + − −

+ + + =
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We expect ( ), , ,V x y o t  to be of the form 

( ) ( ) ( ), , , , , where , 1.V x y o t x G o t y G o T= − + = −  

Then we obtain 

( ) ( ) ( )( )({
( ) ) ( )( )

( ) ( ) }

2 4

2
2

2

2 2 1 1 3 3 4 4 1 1 1

1 1 2 2 3 3

1 min max
2

ˆ ˆ ˆ ˆ( ) ( )

2 0.

t o oo L

L S

o

yG a o yG b o yG w o

o w o o

b o yG

κ η
ξ υ

σ βρ η βρη βρ η βρ η ξ σ η

ρη ρ η ρ η

∈ ∈
+ + + − −

+ − − − − − + 
+ +




+ =

 

    (27) 

The maximum for Equation (27) over ( )1 2 3 4, , ,η η η η  is attained at  

( )1 2 3 4, , ,η η η η∗ ∗ ∗ ∗ : 

( ) ( )
( ) ( ) ( ) ( )

( )

( )
( )( )

( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

( ) ( )

1 1
1 1 2 1 2 1

2
2 2 2 2

3
3 2 2 3

4
4 2 2

,ˆ
, ,

2 , 2 , ,

ˆ ,
,

2 , ,

,ˆ
,

2 , ,

ˆ
.

2 ,

o

L o

o

o G o t
w w w w b o

yG o t yG o t G o t

o G o t
w w b o

yG o t G o t

G o t
w w b o

yG o t G o t

w w
yG o t

σ βρ
η ρ

σ βρ
η ρ

βρ
η ρ

βρ
η

∗

∗

∗

∗

= − −

−
= −

= − −

= −

 

For ( )1 2 3 4, , ,η η η η∗ ∗ ∗ ∗ , we obtain 

( ) ( ) [{ ( )( )(
( )( ) ( ) ( ) ( )

( )) ( ) ( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )( )
( ) ( ) ( ) ( )( ) }

2 4

2
2

2 2 2 1 1 1 2 3 3 2

4 4 2 1 1 1 1 2

2 2 2 2

1 1 2 2 2 3 2 4 2

1 1 1 2 2 2 2 3 3 2

1 min max
2

ˆ ˆ ˆ,

ˆ ,

,

2 , 0.

t o oo L

L

S

o

yG a o yG b o yG w o

o w w w w

w w o o w w

w w w w w yG

b o w w w w yG

κ η
ξ υ

σ βρ η βρη βρ η

βρ η ξ σ η

η η η η

ρη ρ η ρ η

∈ ∈

∗ ∗∗

∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

+ + + − −

+ − − −

+ − + 

+ + + +

+ + + =

 

      (28) 

Then the minimum over ( )1 2: ,w wκ =  is attained at 

( ) ( )
( )

( )
( )

( )
( ) ( )

1 1
1 22

1 11

, ˆ
2 , 2 ,

,
S oo b o G o t

w yG o t w
o G o t oo

ξ ρ βρ
σ σσ

∗ ∗ 
= − − + 

 
 

( ) ( )
( )( ) ( )

( ) ( ) ( )( ) ( )
( )( ) ( )

( )
( )

( )
( )( ) ( )

2 2 2 2 2 2
2 1 3 4

1 1 2 2 3 3
2 2 2 2 2

2 1 3 4

1 1
12 2 2 2 2

2 1 3 4

2 ,
ˆ ˆ ˆ ˆ

ˆ ˆ ˆ2 ,
,ˆ ˆ ˆ ˆ

ˆ
.

ˆ ˆ ˆ ˆ

L

L

L o

L

L

o
w yG o t

o

b o b o o b o G o t
G o to

o
w

o

ξ υ

σ βρ β ρ ρ ρ

β ρ ρ ρ σ βρ β ρ ρ

σ βρ β ρ ρ ρ

βρ σ

σ βρ β ρ ρ ρ
∗

 −= −
 − + + +

 − − +  +
 − + + +   

+
− + + +



 

By simplifying the above two equations, we obtain 
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( ) ( )
( )

( )( )
( )

( )( )
( )

( )
( )

10
1 2

1 21 2

1 1 1 0

1 2

ˆ
2 ,

ˆ 2 ,
,

,

LS

o

oo
w yG o t

oo

b o G o t
o G o t

βρ ξ υξ
σσ

βρ ρ
σ

∗
 −Π

= − +
ΠΠ
Π − Π

+ 
Π 

            (29) 

( ) ( ) ( )
( )
( ) ( )

( )

1
2

2 1 2

2 2
1 2 1 1 1 1 0

0 2

ˆ
2 ,

ˆ ˆ2 ,
,

,

L S

o

o o
w yG o t

o

b o G o t
G o t

ξ υ βρ ξ
σ

β ρ β ρ ρ

∗  −
= − + Π Π

 Π Π + Π − Π
+   Π Π   

       (30) 

where 

( ) ( )2 2 2 2 2
0 2 1 3 4ˆ ˆ ˆ ˆ( )L oσ βρ β ρ ρ ρΠ = − + + + , 

( ) ( )2 2 2 2
2 2 3 4ˆ ˆ ˆ( )L oσ βρ β ρ ρΠ = − + +  

and  

( ) ( ) ( )( ) ( )1 1 1 2 2 3 3ˆ ˆ ˆ2 .Lb o b o o b oβ ρ ρ ρ σ βρ β ρ ρΠ = − − +  

Furthermore  

( ) ( )
( )

( ) ( ) ( )
( )

1 1 1 0 1 0 2
1 1 2

1 0 2

ˆ ,
, ,

,
S ob oo G o t

w w
o G o t

βρ ρξ
η

σ
∗∗ ∗    Π Π −Π − Π Π

= − −     Π Π  
 (31) 

( ) ( )( ) ( )
( )

( )( ) ( )( )

( )( ) ( )( ) ( ) ( )
( )

1 2 2
2 2

1 2 2

2 1 1 1 2 2

2

ˆ ˆ ˆ

ˆ ˆ2 ,
,

,

L S L L

L o

o o o o
w

o

o b o b o G o t
G o t

βρ σ βρ ξ σ βρ ξ υ
η

σ

σ βρ β ρ ρ ρ

∗ ∗
   − − −

= − −      Π Π   
 − Π − + Π

−   Π 

 (32) 

( ) ( )
( )

( )( )

( ) ( ) ( )
( )

2
31 3

3 2
1 2 2

2
3 1 1 1 3 3 2

2

ˆˆ ˆ

ˆ ˆ ˆ2 ,
,

,

LS

o

oo
w

o

b o G o t
G o t

βρ ξ υβ ρ ρ ξ
η

σ

βρ β ρ ρ ρ ρ

∗ ∗
 − 

= +      Π Π   
 Π − + Π
 +
 Π 

     (33) 

( ) ( )
( )

( )( )

( ) ( )
( )

2
41 4

4 2
1 2 2

2
4 1 1 1 3

2

ˆˆ ˆ

ˆ ˆ ˆ2 ,
.

,

LS

o

oo
w

o

b o G o t
G o t

βρ ξ υβ ρ ρ ξ
η

σ

βρ β ρ ρ ρ

∗ ∗
 − 

= +      Π Π   
 Π −

+   Π 

       (34) 

Then the saddle point candidate for the game  

( ) ( ) ( ) ( )( )1 2 1 1 2 2 2 3 2 4, , , , , ,w w w w w wη η η η∗ ∗ ∗ ∗ ∗ ∗ , is governed by Equations (29), (30), 
(31), (32), (33) and (34). By substituting Equations (29) and (30) into Equation 
(28) and dividing by y, we obtain the final equation of the form  

( ) ( )( ) ( ) ( ) ( )
2

2
1 2 3

1 0,
2

o
t o oo

GG a o d o G b o G d o d o G
G

+ − + − + =       (35) 

and we define ( )
( )

( )( )
1 2

1 2

, LS oo
o

ξ υξ
λ λ

σ
−

= =
Π

. 
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( )
( ) ( ) ( )

( ) ( ) ( )

3 2 4 4 2
1 3 1 1 1 3 1 1 3 4

1 1 1 12 2 2
2 2 2

4 2 2
1 1 4 0

1 1 1 1 12
22

3 2 5 3 2
1 4 1 1 4 1 1 2

1 1 22
0 2 00 2

2 2 2 2 4 2 2
1 1 4 1 1 4 1

2 2
0 0 0 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ
2 8 4

ˆ ˆ
4 4 2

ˆ ˆ ˆ ˆ
2 2 2

ˆ ˆ ˆ ˆ
2 2 2

b o b o
d o

b o
b o b o

β ρ ρ β ρ ρ ρ β ρ ρ ρ ρ
λ λ λ

β ρ ρ ρ
ρ λ λ ρ λ

β ρ ρ β ρ ρ
λ λ λ

β ρ β ρ β ρ ρ
λ λ

Π
= + +

Π Π Π

Π
− + +

ΠΠ

Π Π Π Π
− − +

Π Π ΠΠ Π

Π Π Π
+ − −

Π Π Π Π

( ) ( )

2

3 2
1 1 4

1 1 2 2
2

ˆ ˆ
ˆ4 4 .

b o
b o

λ

β ρ ρ ρ
β ρ ρ λ λ− +

Π

  (36) 

( ) ( ) ( ) ( )

( ) ( )( )

( ) ( )

( )( ) ( )( ) ( )( )

( )

22 2 2
1 1 1 0 1 1 1 1 0

2 2 2
0 20 2

3 2 2 2 2 21
1 1 3 1 2 3

2

222
1 1 32 2 2 21 1

3 42
2 22

2
2 1 1 1 1 1 1

2 2

2
1 11 1

1
2 2

ˆ ˆ
4

ˆ ˆ4 3

ˆ ˆ2
ˆ ˆ 2

ˆ ˆ ˆ2 2

ˆˆ
2 2 4

L

b o
d o

b o b o

b o

o b o b o

b o

β ρ β ρ ρ

β ρ ρ ρ ρ ρ ρ

β ρ ρ ρ
β ρ β ρ

σ βρ β ρ ρ β ρ ρ

β ρ ρβ ρ

Π Π −Π Π Π −Π
= −

Π ΠΠ Π

Π
− + − −

Π

 Π Π
+ + +   Π ΠΠ  

− Π − Π −
+ Π Π

Π
− Π +−

Π Π




 

( ) ( )( ) ( )

( )

( ) ( ) ( )

( ) ( ) ( ) ( )( )

( )

2
2 2 1 11 1

1
0 2 2

3 2 2 2 2
1 1 3 4 1 3 1 1 1

12
0 2 22

3 3 2 2
1 1 1 1 32 1

1
2 2 2

2
1 1 1

1 1 1 0
2 2

3
1

ˆ ˆ2ˆ
2

ˆ ˆ ˆ ˆ ˆ
4 2

ˆ ˆ ˆ
ˆ2 4

ˆ
ˆ2 2 2

ˆ
4

Lb o o b o

b o

b o b o
b o

b o b o
b o b o

b o

ρ σ βρ β ρ ρβ ρ

β ρ ρ ρ ρ β ρ β ρ

β ρ ρ β ρ ρ ρ
βρ β

β ρ ρ ρ
βρ ρ

β ρ

−  Π
− Π + − Π Π Π 

Π Π Π
− − Π +Π Π ΠΠ 

  Π
− − + Π Π Π


− − + Π − ΠΠ Π

+ ( )
2 2

1 3 4 1 1
1 1

2 0 0

ˆ ˆ ˆ1 ˆ2 b o
ρ ρ ρ β ρ β ρ ρ

Π  
+ − Π Π Π 

 

( )

( )

( ) ( ) ( )

( ) ( )

3 2
2 1 1 31
3 1 1

0 2

2 2 2 2
1 14 1 1 1 1

2 2 2 0 2

3 3
1 1 0 12 2 2 21 1

1 1 12
2 20 2

2 21 1
1 1 1 1 1 0

0 0 2

ˆ ˆ2ˆ ˆ2

ˆˆ ˆ
2 2

ˆˆ ˆ2 2 2

ˆ ˆ ˆ2 2 .

b o

b o

b o
b o

b o b o

β ρ ρ ρβρ βρ ρ

β ρ ρβ ρ β ρ

ρβ ρβ ρ β ρ ρ

β ρ ρ β ρ βρ ρ

 Π
+ − − Π Π 

 Π Π Π
− − + Π Π Π Π Π 

Π Π −Π  Π
+ − + Π ΠΠ Π 

 Π Π
− + − Π Π Π Π 

     (37) 
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( )
( )( ) ( )

( )
( )( )( )

( )( )

22 22 22 2
1 31 22 1

3 1 2 2
2 2 2

22
21 4 2 2 2

2 2 2 42
2

2 3 2 3 2
2 1 1 3 1 4

1 2 1
2 2 2

ˆ ˆˆ ˆˆ
1 2

ˆ ˆ
ˆ ˆ2

ˆ ˆ ˆ ˆ ˆ
ˆ4 2 2 2 .

L

L

L

o
d o

o

o

β ρ ρβ ρ σ βρβ ρ
λ

β ρ ρ
λ σ βρ β ρ

σ βρ βρ β ρ ρ β ρ ρ
λ λ βρ

 −= + − − Π Π Π



− + Π − − −Π 


 −
 + − − −
 Π Π Π
 

 (38) 

Lemma 1. If the value function V exists and is a solution to Equation (28), 
then it is also the solution to lower the Hamilton-Jacobi-Bellman-Isaacs (HJBI) 
equation ( ) ( )

24

,max min , , , 0V x y o tκ η

κη ∈∈
=



 . 
Proof. We know that ( ) ( ) ( ) ( )

2 24 4

, ,max min , , , min max , , ,V x y o t V x y o tκ η κ η

κ κη η∈ ∈∈ ∈
≤

  

  , 

due to the fact that ( ) ( )
24

,max min , , , 0V x y o tκ η

κη ∈∈
≤



 . In addition we have 

( ) ( ) ( ) ( )
2 24

, , 4max min , , , min , , , , .V x y o t V x y o tκ η κ η

κ κη
η

∈ ∈∈
≥ ∀ ∈

 

   

Using Equations (35), (36), (37) and (38) we can verify that 
( ) ( )

2

,min , , , 0V x y o tκ η

κ∈
=



 . This implies that ( ) ( )
24

,max min , , , 0V x y o tκ η

κη ∈∈
≥



 . 

Lemma 2. Suppose that initial conditions 0 0 0 0, , ,x y o t , are fixed and G is a so-
lution to Equation (35) and ( ) ( ) ( ) ( )( )1 2 1 1 2 2 2 3 2 4, , , , , , tw w w w w wη η η η∗ ∗ ∗ ∗ ∗ ∗ ∈ ×   
is given by Equations (29), (30), (31), (32), (33) and (34). Then  

( ) ( )( ) ( ) ( ) ( )0 0 0 02 , 2 , , 0 ,Y t G O t t X t x y G o t t t Tη κ∗ ∗
= − + ∀ ∈ =   . 

Proof. It is sufficient to prove that ( ) ( ) ( )( )( )d d 2 ,X t Y t G O t tκ η∗ ∗
= . Due to 

the saddle point conditions the system of equation given by Equation (20), can 
be written as: 

( ) ( )

( ) ( )( ) ( )( ) ( )
( )

( ) ( )
( )

( ) ( )( ) ( )( ) ( )
( )

2
1 1 1 00 1

1 1 2 1
2 2

2 2
1 2 1 1 1 1 02

2 2 2
0

2 2
1 1 1 00 1

1
2 2 2

2
1 2

1

d

ˆ 2 ,
ˆ2 , 2

,

ˆ ˆ2 ,
d

,

ˆ 2 ,ˆ
2 ,

,

ˆ
ˆ

o

o

o

X t

b o G o t
Y t G O t t

G o t

b o G o t
t

G o t

b o G o t
Y t G O t t

G o t

κ

η

η

βρ ρλ
βρ λ λ λ

β ρ β ρ ρ
λ λ

βρ ρβ ρ
λ

β ρ
βρ

∗

∗

∗  Π − ΠΠ
= − + +

Π Π

 Π Π + Π − Π
+Π   Π   

 Π − Π Π
− + 

Π Π Π 

Π Π

−

+
−

( ) ( )
( ) ( )

( ) ( )( ) ( )( ) ( )( )

2
1 1 1 1 0

1
0 2

1 2
2 2 1

2

ˆ2 ,
d

,

ˆ ˆ
ˆ2 ,

o

L
L

b o G o t
W t

G o t

o
Y t G O t t oη

β ρ ρ

βρ σ βρ
σ βρ λ λ

 Π − Π
  Π Π   

 −
− − +

Π
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( )( ) ( ) ( )
( ) ( )

( ) ( )( )

( ) ( )
( ) ( )

( ) ( )( )

2 2
1 2 1 1 1 1 0

2 2
0 2

2
1 3

3 2 1
2

2 2
1 2 1 1 1 1 0

3
0 2

2
1 4

4 2 1
2

2
1 2

4

3

ˆ ˆ2 ,
ˆ d

,

ˆ ˆ
ˆ2 ,

ˆ ˆ2 ,
ˆ d

,

ˆ ˆ
ˆ2 ,

ˆ

o
L

o

b o G o t
o W t

G o t

Y t G O t t

b o G o t
W t

G o t

Y t G O t t

η

η

β ρ β ρ ρ
σ βρ

β ρ ρ
βρ λ λ

β ρ β ρ ρ
βρ

β ρ ρ
βρ λ λ

β
βρ

∗

∗

 Π Π + Π − Π
−   Π Π   


+ + Π

 Π Π + Π − Π
+   Π Π   


+ + Π

Π Π +
+

+

( ) ( )
( ) ( )

2
1 1 1 1 0

4
0 2

ˆ ˆ2 ,
d ,

,
ob o G o t

W t
G o t

ρ β ρ ρ  Π − Π
  Π Π   

 (39) 

and 

( ) ( ) ( )
( ) ( )

( )( ) ( )( )

( )( ) ( )( ) ( ) ( )
( ) ( )

1 1 1 0 1 0 2
1 1

0 2

1 2
1 2 2

2

2 1 1 1 2 2
2

2

d

ˆ ,
d

,

ˆ ˆ
ˆ

ˆ ˆ2 ,
d

,

o

L
L

L o

Y

b o G o t
Y Y W t

G o t

o
Y o Y

o b o b o G o t
Y W t

G o t

η

η η

η η

η

βρ ρ
λ

βρ σ βρ
λ σ βρ λ

σ βρ β ρ ρ ρ

∗

∗ ∗

∗

∗

∗

  Π Π −Π − Π Π
= − +  Π Π   

 −
− + −  Π 

 − Π − + Π
+   Π   

 

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

2
1 3

1 3 2
2

2
3 1 1 1 3 3 2

3
2

2
1 4

1 4 2
2

2
4 1 1 1 3

4
2

ˆ ˆ ˆ

ˆ ˆ ˆ2 ,
d

,

ˆ ˆ ˆ

ˆ ˆ ˆ2 ,
d .

,

o

o

Y Y

b o G o t
Y W t

G o t

Y Y

b o G o t
Y W t

G o t

η η

η

η η

η

β ρ ρ λ βρ λ

βρ β ρ ρ ρ ρ

β ρ ρ λ βρ λ

βρ β ρ ρ ρ

∗

∗

∗

∗

∗
+ + Π

 Π − + Π
 +

 Π   


+ + Π
 Π −

+   Π   



     (40) 

Using Equation (35) we can verify that 

( )( )
( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( ) ( ) ( ) ( )( )

1 2 3

0 1 1 2 2 3 3 4 4

d ,

, , , d

ˆ ˆ ˆ ˆ, d d ,

G O t t

d O t t d O t t d O t t t

G O t t b O t W t W t W t W tρ ρ ρ ρ

 = + − 
+ + + +

  (41) 

where ( )( ) ( )( )1 2, , ,d O t t d O t t  and ( )( )3 ,d o t t  are defined above Equations 
(36), (37) and (38). We obtain the right hand side of Equation (40), due to the 
fact that 

( )( )( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( )

d 2 , 2 , d 2 d ,

2d d , .

Y G O t t G O t t Y t Y t G O t t

Y t G O t t

η η η

η

∗ ∗ ∗

∗

= +

+
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4.3. Economic Analysis 

In this subsection, we analyze the impact of 1ρ̂  and 2ρ̂  on the optimal poli-
cies. For fixed initial conditions ( )0 0 0 0, , ,x y o t  under Lemma 2 ensures that  

( ) ( )( ) ( )
( )

( )( )
( )

( )( )
( )

( )
( )

10
1 2

1 21 2

1 1 1 0

1 2

ˆ
2 ,

ˆ 2 ,
,

,

LS

o

oo
w Y t G O t t

oo

b o G o t
o G o t

η βρ ξ υξ
σσ

βρ ρ
σ

∗∗
 −Π

= − +
ΠΠ

Π − Π
+ 

Π 

 

( ) ( )( ) ( ) ( )
( )

( ) ( )
( )

1
2

2 1 2

2 2
1 2 1 1 1 1 0

0 2

ˆ
2 ,

ˆ ˆ2 ,
.

,

L S

o

o o
w Y t G O t t

o

b o G o t
G o t

η ξ υ βρ ξ
σ

β ρ β ρ ρ

∗∗  −
= − + Π Π

 Π Π + Π − Π
+   Π Π   

 

Hence we can use 

( ) ( ) ( ) ( )

( )( )
( )

( )
( ) ( )

0 1 1 2
0 0 0 0

1 2 1

myopicdemand

1 1 1 0 1 1
0 0 0 2

1 2 2

myopicdemandintertemporalhedgingdemand

2
1 2

ˆˆ 2 ,

ˆ 2 , ˆ
2 ,

,
o

X t x y G o t
o o

b o G o t
y G o t

o G o t

κ λ βρ λκ
σ σ

βρ ρ βρ λλ
σ

β

∗∗

 
  Π = − − + +
 Π
 

 
 Π − Π
+ + +

Π Π 
 

Π Π +
+







( ) ( )
( )

2
1 1 1 1 0

0 2

intertemporalhedgingdemand

ˆ ˆ2 ,
.

,
ob o G o t

G o t
ρ β ρ ρ


 Π − Π    Π Π   
 



 

1) Each optimal portfolio weight is a sum of two terms, the first being the 
myopically optimal portfolio. It is a sum of a two factors and depends on the ra-
tio of the first to second moments of excess returns and the impacts of 1ˆ ,ρ β , 

0Π  and 2Π . It corresponds to the instantaneous mean-variance portfolio in 
which the investment opportunity set remain constant through time. The my-
opic portfolio is always positive for a nonzero market price of risk. (Myopic 
mean variance demand does not include intertemporal hedging component). 
This myopic term is well-known from Merton’s problem and can be reproduced 
in our general setup of stochastic coefficients [38]. 

2) The second term, intertemporal hedging portfolio is the portfolio with the 
maximal absolute correlation with the state variable (inflation). It represents the 
difference between the solution under stochastic coefficients and the myopic so-
lution and the additional investment is caused by the presence of the stochastic 
factor (inflation). It does not have a constant sign. The excess risky demand van-
ishes in the uncorrelated case 1 1 2 3 3ˆ ˆ 0ρ ρ ρ ρ ρ= = = = = and when the volatility 
of the inflation process is zero. For 1w∗  it is a sum of two factors whilst for 2w∗   
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it is a sum of three factors and ( )
( )

,
,

oG o t
G o t

 measures the importance of the state  

variable is to the banker. The myopic part, these portfolios are weighted by the 
inverse of the banker’s risk aversion. Hence, the optimization of our modified 
version of monotone mean-variance preferences is consistent with classical 
mean-variance optimization subject to a suitably chosen risk aversion parameter 
γ , (which depend on 0o ). When the risk aversion ( )0 1oγ > , we have a posi-
tive intertemporal hedging demand for risky assets and it exhibits a hump-shaped  

function of risk tolerance 
( )0

1
oγ

. This is due to the fact that investors with unit  

risk aversion have no intertemporal hedging demand. It is important to note that 
both the myopic and hedging demands are scaled equally by risk aversion and 
that the trade-off between holding a myopically optimal portfolio and intertem-
poral hedging is determined by the derivatives of marginal utility with respect to 
the state variables. Intertemporal hedging portfolio strategy may hedge or 
speculate on expected return or mean-aversion risk by choosing to hold long or 
short position of the risky assets. 

3) 1ˆ 0ρ > , examines the impact of banker’s provision capital risk process on 
the optimal stock index return holding portfolio 1w∗ . Since the myopic portfolio  

demand for risky assets are always a linear function of risk tolerance 
( )0

1
oγ

.  

When 1ˆ 0ρ >  and ( ) ( )( )0 1 1 1 2 2 1 1 1 0ˆ ˆ 2o b oλ σ βρ λ βρ ρΠ + Π > Π − Π , the in-
tertemporal hedging demand on the optimal stock index fund is smaller than the 
myopic portfolio. Intuitively, the banker takes long positions if  

( )( )
( )

1 1 1 0

1 2

ˆ 2
0

b o
o

βρ ρ
σ

Π − Π
<

Π
, or short positions if 

( )( )
( )

1 1 1 0

1 2

ˆ 2
0

b o
o

βρ ρ
σ

Π − Π
>

Π
 in  

each of the perfectly correlated portfolios to hedge against undesirable innova-
tions of the market state variable in the intertemporal hedging demand portfolio.  

4) On the other hand if 1ˆ 0ρ < , implies a negative impact on optimal stock 
index return holding portfolio 1w∗  due to banker’s provision capital risk proc-
ess. If 1ˆ 0ρ <  and ( ) ( )( )1

2
0 2 2 1 1 1 2 1 1 1 0ˆ 2ˆ ˆb oλ βρ λ β ρρ β ρΠ Π + > Π Π + Π − Π  the 

intertemporal hedging demand on the optimal stock index fund is smaller than 
the myopic portfolio. Intuitively the banker takes long positions if  

( )( )2
1 2 1 1 11 0ˆ2ˆ 0b oβ β ρ ρρΠ Π + Π − Π <  or short positions  

( )( )2
1 2 1 1 11 0ˆ2ˆ 0b oβ β ρ ρρΠ Π + Π − Π >  in each of the perfectly correlated port-

folios to hedge against undesirable innovations of the market state variable in 
the intertemporal hedging demand portfolio.  

5) To examine the impact of 1ˆ 0ρ > , on optimal loan return portfolio 2w∗ , we 

set 1ˆ 0ρ >  and ( )2 2
1 2 1 1 1 1 01 1

2
2 0 2

ˆ ˆ2ˆ b oρβ β ρ ρβρ λλ
Π Π + Π − Π

+ >
Π Π Π

. Then the in-

tertemporal hedging demand of the optimal loan portfolio is smaller than the 
myopic portfolio. Intuitively, the banker takes long positions if  

( )2 2
1 2 1 1 1 1 0

0 2

ˆ ˆ2
0

b oβ β ρρ ρΠ Π + Π − Π
<

Π Π
, or short positions if  
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( )2 2
1 2 1 1 1 1 0

0 2

ˆ ˆ2
0

b oβ β ρρ ρΠ Π + Π − Π
>

Π Π
, in each of the perfectly correlated port-

folios to hedge against undesirable innovations of the market state variable in 
the intertemporal hedging demand portfolio.  

6) If 1ˆ 0ρ < , and ( )2 2
1 2 1 1 1 1 01 1

2
2 0 2

ˆ ˆ2ˆ b oρβ β ρ ρβρ λλ
Π Π + Π − Π

+ >
Π Π Π

, the in-

tertemporal hedging demand on the optimal loan portfolio is smaller than the 
myopic portfolio. Intuitively, the banker takes short positions if  

( )2 2
1 2 1 1 1 1 0

0 2

ˆ ˆ2
0

b oβ β ρρ ρΠ Π + Π − Π
>

Π Π
 or long position  

( )2 2
1 2 1 1 1 1 0

0 2

ˆ ˆ2
0

b oβ β ρρ ρΠ Π + Π − Π
<

Π Π
 in each of the perfectly correlated port-

folios to hedge against undesirable innovations of the market state variable in 
the intertemporal hedging demand portfolio.  

7) If 2ˆ 0ρ > , will also affect the magnitudes of optimal portfolios via 0 1,Π Π  
and 2Π . If 2ˆ 0ρ >  and ( )( )0 1 1 2 2 1 1 1 0ˆ ˆ 2 b oλ βρ λ βρ ρΠ + Π > Π − Π , then the in-
tertemporal hedging demand on the optimal stock index fund, 1w∗  is smaller 
than the myopic portfolio. Intuitively, the banker takes long positions if  

( )( )
( )

1 1 1 0

1 2

ˆ 2
0

b o
o

βρ ρ
σ

Π − Π
<

Π
, or short positions if 

( )( )
( )

1 1 1 0

1 2

ˆ 2
0

b o
o

βρ ρ
σ

Π − Π
>

Π
, in  

each of the perfectly correlated portfolios to hedge against undesirable innova-
tions of the market state variable in the intertemporal hedging demand portfolio. 

8) If 2ˆ 0ρ <  and ( ) ( )( )2 2
0 2 2 1 1 1 2 1 1 1 1 0ˆ ˆ ˆ2 b oλ βρ λ β ρ β ρ ρΠ Π + > Π Π + Π − Π  

the intertemporal hedging demand for the optimal stock index fund 1w∗  is 
smaller than the myopic portfolio. Intuitively, the banker takes long positions if 

( )( )2 2
1 2 1 1 1 1 0ˆ ˆ2 0b oβ ρ β ρ ρΠ Π + Π − Π < , or short positions  

( )( )2 2
1 2 1 1 1 1 0ˆ ˆ2 0b oβ ρ β ρ ρΠ Π + Π − Π > , in each of the perfectly correlated port-

folios to hedge against undesirable innovations in the market state variable in 
the intertemporal hedging demand portfolio.  

9) If 2ˆ 0ρ >  and ( )2 2
1 2 1 1 1 1 01 1

2
2 0 2

ˆ ˆ2ˆ b oρβ β ρ ρβρ λλ
Π Π + Π − Π

+ >
Π Π Π

, the in-

tertemporal hedging demand on the optimal loan portfolio 2w∗  is smaller than 
the myopic portfolio. Intuitively, the banker takes long positions if 

( )2 2
1 2 1 1 1 1 0

0 2

ˆ ˆ2
0

b oβ β ρρ ρΠ Π + Π − Π
<

Π Π
, or short positions if  

( )2 2
1 2 1 1 1 1 0

0 2

ˆ ˆ2
0

b oβ β ρρ ρΠ Π + Π − Π
>

Π Π
 in each of the perfectly correlated port-

folios to hedge against undesirable innovations of the market state variable in 
the intertemporal hedging demand portfolio.  

10) If 2ˆ 0ρ <  and ( )2 2
1 2 1 1 1 1 01 1

2
2 0 2

ˆ ˆ2ˆ b oρβ β ρ ρβρ λλ
Π Π + Π − Π

+ >
Π Π Π

, the in-

tertemporal hedging demand of the optimal loan portfolio is smaller than the 
myopic portfolio. Intuitively, the banker takes short positions  
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( )2 2
1 2 1 1 1 1 0

0 2

ˆ ˆ2
0

b oβ β ρρ ρΠ Π + Π − Π
>

Π Π
, or long positions if  

( )2 2
1 2 1 1 1 1 0

0 2

ˆ ˆ2
0

b oβ β ρρ ρΠ Π + Π − Π
<

Π Π
, in each of the perfectly correlated port-

folios to hedge against undesirable innovations of the market state variables in 
the intertemporal hedging demand portfolio.  

Note:  
1ˆ 0ρ >  implies 0 20, 0Π > Π >  and 1 0Π > , iff  

( ) ( ) ( )( )( ) ( )1 1 2 2 3 3ˆ ˆ ˆ2 Lb o b o o b oβ ρ ρ ρ σ βρ β ρ ρ− − < . 

1ˆ 0ρ <  implies 0 20, 0Π > Π >  and 1 0Π >  iff 

( ) ( ) ( )( )( ) ( )1 1 2 2 3 3ˆ ˆ ˆ2 Lb o b o o b oβ ρ ρ ρ σ βρ β ρ ρ− − < . 

2ˆ 0ρ >  implies 0 20, 0Π > Π >  and 1 0Π > , iff ( )( )2ˆ 0L oσ βρ− < . 

2ˆ 0ρ <  implies 0 20, 0Π > Π >  and 1 0Π > .  

4.4. Smooth Solution to the Resulting Equation 

In order to obtain a smooth solution to Equation (35) we follow [39] and obtain 
the following results subject to the boundary condition ( ), 1G o T = − . 

Case 1: 
( )2

2 2
b o

d ≠ . Define ( ) ( ), ,G o t F o tα= − , where ( ), 1F z T = , to ob-

tain 

( ) ( )( ) ( )

( ) ( ) ( ) ( )

2
1

2
2

2 3

1
2

1 11 0.
2

t o oo

o

F a o d o F b o F

Fb o d o d o F
F

α α
α

+ − +

 + − − + =  

 

This implies that ( )
( ) ( )

2

2
22

b o
b o d o

α
 

=   − 
 and we obtain  

( ) ( )( ) ( ) ( ) ( )
( ) ( )

2
22

1 32

21 0.
2t o oo

b o d o
F a o d o F b o F d o F

b o
 −

+ − + + =  
 

 (42) 

Case I1: 
( )2

2 2
b o

d = . Define ( ) ( ),, F o tG o t e= , where ( ), 0F z T = , to obtain  

( ) ( )( ) ( ) ( )2
1 3

1 0.
2t o ooF a o d o F b o F d o F+ − + + =         (43) 

Remark 2. If 2 2
1

2
1, , ,i ii ia b b λ λ

= =
⋅∑ ∑  are Lipschitz continuous, 1

2
ii λ

=∑  are 
continuous and bounded by 20 bε< < , then there exists unique smooth solu-
tions for 1F  and 2F  to Equations (42) and (43) respectively via Theorem 1 of 
[40]. 1F  and 2F  satisfy the Feynman-Kac representations such that  

( ) ( ) ( )
( ) ( )( )

( ) ( )( )

2
2

1 , 32

2 , 3

2
, exp d ,

, d ,

T

t

T

o

o t t

t
b o d o

F o t d O s s
b o

F o t d O s s

   − =          
 =   

∫

∫
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where ( ) ( )( ) ( )( ) ( )( ) ( )1d d dO s a O s d O s s b O s W s = − + 
     and ( )O t o= . 

Since, 1
2

ii λ
=∑  are bounded functions it implies that 1F  and 2F  are bounded 

and G is bounded away from zero for any ( ) [ ]1 2 3, , 1,1ρ ρ ρ ∈ − . 

Lemma 3. Suppose 
2 2

2

1 1
, , ,i i

i i
a b b λ λ

= =

⋅∑ ∑  are Lipschitz continuous, 1
2

ii λ
=∑   

are continuous and bounded as 20 bε< <  and F is a bounded solution to 
Equation (42) or Equation (43). Then the first order o-derivative of F is 
bounded. 

Proof. To obtain a bound for oF , it is sufficient to estimate the Lipschitz con-
stant. First of all, noting that ( ) ( ]1 2, ,o o a∈ −∞ , there exists 0aL >  such that

1 2o o
ae oe L o− ≤ − . 

Secondly, the solution to Equations (42) and (43) and the fact that 2
1λ  and 2

2λ  
are Lipschitz continuous and bounded, we obtain the existence of 0L > , such that  

( ) ( ) ( ) ( )

( ) ( )

, , , , d

sup , , ,

T
s st

s s
t s T

F o t F o t L F o t F o t s

LT F o t F o t
≤ ≤

 − ≤ −  
 ≤ −  

∫  

 




 

where from notation convenience, we write ( )( ),sf tF o  instead of ( ),o t sf F . 
Then via (Theorem 1.3.16 of Pham [41], there exists 0TC > , such that  

( ) ( )sup , ,s s T
t s T

F o t F t o oo C
≤ ≤

 − ≤  
−  , which completes the proof in the first  

case. Similar estimate can be deriving for the solution for Equation (43). 
Theorem 2. Suppose 2 2

1
2

1, , ,i ii ia b b λ λ
= =

⋅∑ ∑ , are Lipschitz continuous, 

1
2

ii λ
=∑  are continuous and bounded, 20 b< < . Then there exists a saddle 

point ( ) ( ), , , , , , , tx y o t x y o tκ η∗ ∗ ∈ ×  , for problem (19) such that  

( ) ( )
( )

( )
( )

( )( )
( )

( )
( )

1 1 1 00 1 1 2
1

1 2 1 1 2

ˆ 2ˆ ,
2 , ,

0 ,
ob oo o G o t

w yG o t
o o G o t

βρ ρλ βρ λ
σ σ σ

∗
 Π − ΠΠ

= − + + 
Π Π  

 

( ) ( ) ( )

( ) ( )
( )

1 1
2 2

2
2 2

1 2 1 1 1 1 0

0 2

ˆ
2 ,

ˆ ˆ2 ,
,

,
o

o
w yG o t o

b o G o t
G o t

βρ λ
λ

β ρ β ρ ρ

∗ 
= − + Π

 Π Π + Π − Π
+   Π Π   

 

( ) ( ) ( ) ( ) ( ) ( )
( )

1 1 1 0 1 0 2
1 1 2

1 0 2

ˆ ,1, ,
,

o
S

b o G o t
w w o

o G o t
βρ ρ

η ξ
σ

∗ ∗ ∗    Π Π −Π − Π Π
= − −     Π Π  

 

( ) ( )( ) ( )
( )

( )( ) ( )( )

( )( ) ( )( ) ( ) ( )
( )

1 2 2
2 2

1 2 2

2 1 1 1 2 2

2

ˆ ˆ ˆ

ˆ ˆ2 ,
,

,

L S L L

L o

o o o o
w

o

o b o b o G o t
G o t

βρ σ βρ ξ σ βρ ξ υ
η

σ

σ βρ β ρ ρ ρ

∗ ∗
   − − −

= − −      Π Π   
 − Π − + Π

−  Π 

 

( ) ( )
( )

( )( )

( )( ) ( )
( )

2
31 3

3 2
1 2 2

2
3 1 1 1 3 3 2

2

ˆˆ ˆ

ˆ ˆ ˆ2 ,
,

,

LS

o

oo
w

o

b o G o t
G o t

βρ ξ υβ ρ ρ ξ
η

σ

βρ β ρ ρ ρ ρ

∗ ∗
 − 

= +      Π Π   
 Π − + Π
 +
 Π 

 

 

DOI: 10.4236/tel.2018.815207 3384 Theoretical Economics Letters  
 

https://doi.org/10.4236/tel.2018.815207


R. S. Perera 
 

( )
( )

( )( )

( ) ( )
( )

2
41 4

4
1 2 2

2
4 1 1 1 3

2

ˆˆ ˆ

ˆ ˆ ˆ2 ,
.

,

LS

o

oo
o

b o G o t
G o t

βρ ξ υβ ρ ρ ξ
η

σ

βρ β ρ ρ ρ

∗
 − 

= +      Π Π   
 Π −

+   Π 

 

where G is a unique bounded solution to  

( ) ( )( ) ( ) ( ) ( )
2

2
1 2 3

1 0,
2

o
t o oo

GG a o d o G b o G d o d o G
G

+ − + − + =      (44) 

with terminal condition ( )0, 1G T = . 
Proof. Since there exists a unique bounded solution to Equation (44), via 

Lemma 3 the derivative 0G  is bounded. If we set ( ) ( ), , , : ,V x y o t x G o t y= − + , 
then it is sufficient to prove that the Markov saddle point  

( ) ( ), , , , , , , tx y o t x y o tκ η∗ ∗ ∈ ×  , and condition Equation (25) holds. Hence 
G is bounded and Yη∗  is a solution to the stochastic linear equation with 
bounded coefficient and it will imply that  

( )( ) ( ), , , sup ,x y o t
t s T

G O s s Y sη η∗

≤ ≤

  < +∞  
 , for all η ∈ . To prove  

( )sup
t s T

X sκ∗

≤ ≤

  < +∞  
, we consider the fixed initial conditions ( )0 0 0 0, , ,x y o t , 

and define the strategy κ∗  

( ) ( ) ( )
( )

( )
( )

( )( )
( )

( )
( ) ( ) ( ) ( )

( ) ( )
( )

0 1 1 2
0 0 0 0

1 2 1

1 1 1 0 1 1
0 0 0 2

1 2 2

2 2
1 2 1 1 1 1 0

0 2

ˆ
ˆ 2 ,

0

ˆ 2 ˆ,
2 ,

,

ˆ ˆ2 ,
.

,

o

o

o o
X t x y G o t

o

b o G o t o
y G o t o

o G o t

b o G o t
G o t

κ λ βρ λ
κ

σ σ

βρ ρ βρ λ
λ

σ

β ρ β ρ ρ

∗∗
  Π

= − − + +  Π
Π − Π 

+ + + Π Π 
 Π Π + Π − Π
+    Π Π    

 (45) 

Now let us define: 

( ) ( )
( )

( )
( )

( )( )
( )

( )
( )

1 1 1 00 1 1 2
1

1 2 1 1 2

ˆ 2ˆ ,
, : ,

0 ,
ob oo o G o t

o t
o o G o t

βρ ρλ βρ λ
ϕ

σ σ σ

 Π − ΠΠ
= − + + 

Π Π  
 

( ) ( ) ( )

( ) ( )
( )

1 1
2 2

2

2 2
1 2 1 1 1 1 0

0 2

ˆ
,

ˆ ˆ2 ,
.

,
o

o
o t o

b o G o t
G o t

βρ λ
ϕ λ

β ρ β ρ ρ


= − + Π

 Π Π + Π − Π
+   Π Π   

 

Furthermore, ( ) ( )1 1 1 2, ,S Lϕ ξ ϕ σ ϕ ξ υ⋅ ⋅ ⋅ −  and 2 Lϕ σ⋅  are bounded func-
tions due to the fact that 2 2

1 1
2,i ii iλ λ

= =∑ ∑ , are bounded. Therefore the process 
( ) ( ) ( )0 0 0 0: 2 ,K t X t x y G o tκ∗= − +  is a unique solution to the following equa-

tion  

( )
( )

( )( ) ( )( )
( )( ) ( ) ( )( )

( )( ) ( )( ) ( )
( )( ) ( )( ) ( )

1 1 1 1

2 2 2

, , dd
d .

, , d
S

L L

O t t t O t t O t W tK t
t

K t O t t t t O t t O t W t

ϕ ξ ϕ σ

ϕ ξ υ ϕ σ

   
   = +
   −   
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This is a linear stochastic equation with bounded coefficients and satisfy 

( )
0 0 0 0, , , supx y o t

t s T
X sη κ∗

≤ ≤

  < +∞  
 , for all η ∈ . This confirms admissibility of 

( )1 2,w wκ∗ ∗ ∗= . 

5. Basel III CAR 

First step is to obtain the dynamics of the TRWAs with respect to the total asset 
portfolio of the bank.  

Remark 3. Bank’s Tier 1 and Tier 2 must be at least 8% of the total 
risk-weighted assets (TRWA’s) and asset performance is a key albeit lagging in-
dicator. The TRWA’s are calculated in accordance with advanced internal 
measurement approach (AIRB) for the majority of group’s credit risk exposures. 
Hence we describes the dynamics of TRWA’s under risk regulation at time t, 

( )rwa t  can be described by the stochastic differential equation  

( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( )

0 1 2 1 2 2

2 1

d d d
1 d

d
,

rw

rw

a t M t L t
w w w t w t t

a t M t L t

S t
w t

S t

δ δ π

δ

 
= − − + −  

 

+

 

where 0 0δ = . 1δ  and 2δ  is estimated via AIRB and will lie between  

1 20 , 1δ δ< <  or this analysis purely as an example by setting 1 0.35δ = , 

2 0.45δ =  and simplifying, we obtain 
( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 1

1 1 1 2 2 2

d
0.35 0.45 d

0.45 d 0.35 d 0.35 d .

rw
L S

rw

L

a t
w t r t o w t r t o t

a t

w t o W t w t o W t w t W t

ξ υ ξ

σ σ β

 = + − + + 

+ + − 

 (46) 

Proposition 1. (Explicit Indigo Partial Differential Equation for the Basel III 
CAR)  

Suppose that the dynamics of total bank capital ( )C t  and total risk-weighted 
assets ( )rwa t  are described by Equation (18) and Equation (46), respectively. 
Then the dynamics of the Basel III capital adequacy ratio ( )tχ  of a bank satis-
fies the following SDE. 

( )
( ) [ ] ( ) ( ) ( )

( ) ( )

1 2 3 1 1 2 2 3 3

4 4 5

d
d d d d

ˆd d ,

t
t W t W t W t

t

W t W t

χ
ϕ ϕ ϕ β β β

χ

β β

= − − − + +

+ − 

  

     (47) 

where 
( ) ( ) ( )1 2 2, ,r t w t X tϕ ϕ η ϕ ρ= + Ψ =  

  

( ) ( ) ( )( ) ( ) ( ) ( )( ){
( ) ( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( )

( ) ( ) ( )( )
( ) ( ) ( ) ( ) }

3 2 1

2 22 2 2 2 2
1 1 2 1

1 2 1 1
2 2

2 2
2 22 2 2 2 2 2

2 3 2 4

0.35 0.45

ˆ0.45 0.35

ˆ2 0.45 0.35
ˆ0.35

ˆ ˆ0.35 0.35

L S

L

w t r t o w t r t o

w t o w t

w t w t o

w t o

w t w t

ϕ ξ υ ξ

σ β ρ

βσ ρ

σ βρ

β ρ β ρ

 = + − + + 
− +

− 
+ −

+ +
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( ) ( ) ( ) ( ) ( ) ( )1 1 1 2 1 2 2 2 2ˆ ˆ0.45 0.35 , 0.35 0.35 ,Lw t o w t w t o w tβ σ βρ β σ βρ= − = −  

( ) ( ) ( )3 4 2 3 4 2 4 5ˆ ˆ0.35 , 0.35 , .w t w t w tβ β βρ β βρ β= − = − = Ψ  

Proof. In this proof we derive Equation (47) using the general ItÓ’s formula. 
Let ( )( ) ( ) 1

rw rwf a t a −= . 

( )( ) ( ) ( )( ) ( )( )( )

( )
( )

( )
( ) ( ) ( ) ( ) ( )( ){

( ) ( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )(

2
2

2

2

22 3

1 1 1 1

2 2 2 1 1 2 2

1d d d d
2

dd 10d 0.35

0.45 d 0.45 d

ˆ ˆ0.35 d 0.35 d d

rw
rw rw rw rw

rw rw

rwrw
L

rwrw rw

S

L

f a tf t
f a t t a f a t a

t a a

a ta t
t w t r t o

a ta t a t
w t r t o t w t o W t

w t o W t w t W t W t

ξ υ

ξ σ

σ β ρ ρ

∂∂ ∂
= + +

∂ ∂ ∂

   = − + − + −

+ + +
+ − +

 

( ) ( ))} ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( )
( ) ( )

2 2 2
3 3 4 4 1 1

2 2 2 2
2 1 1 2 1 1

2 22 2 2 2
2 2 2 3

2 2 2 2
2 4

1ˆ ˆd d 0.45

ˆ ˆ0.35 2 0.45 0.35
ˆ ˆ0.35 0.35

ˆ0.35 d .

rw

L

W t W t w t o
a t

w t w t w t o

w t o w t

w t t

ρ ρ σ

β ρ σ βρ

σ βρ β ρ

β ρ

+ + + 

+ −

+ − +

+ 

    (48) 

Through algebraic manipulation and re-arranging the drift, diffusion and 
jump part of ( )( )d rwf a t . We obtain: 

( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ){
( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )

2 1

2 22 2 2 2 2
1 1 2 1

22 2
1 2 1 1 2 2

1d 0.35 0.45 ( )

ˆ0.45 0.35

ˆ ˆ2 0.45 0.35 0.35

rw L S
rw

L

f a t w t r t o w t r t o
a t

w t o w t

w t w t o w t o

ξ υ ξ

σ β ρ

σ βρ σ βρ

 = − + − + + 

− +

− + −

 

( ) ( ) ( ) ( ) }
( ) ( ) ( ) ( )( ) ( ){

( ) ( )( ( ) ) ( )
( ) ( ) ( ) ( )}

2 22 2 2 2 2 2
2 3 2 4

1 1 2 1 1

2 2 2 2

2 3 3 2 4

ˆ ˆ0.35 0.35 d

1 ˆ0.45 0.35 d

ˆ0.35 0.35 d

ˆ ˆ0.35 d 0.35 d .

rw

L

w t w t t

w t o w t W t
a t

w t o w t W t

w t W t w t W t

β ρ β ρ

σ βρ

σ βρ

βρ βρ

+ + 

− −

+ −

− −

         49) 

Then the CAR is expressed as ( ) ( )
( ) ( ) ( )( )rw

rw

C t
t C t f a t

a t
χ = = . To find an 

expression for ( ) ( )( ) ( )( )d d rwY t f a t C t= , we apply ItÓ’s product rule to 

( )tχ . As a result, we have 

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )
( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ){

( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )

2 1

2 22 2 2 2 2
1 1 2 1

22 2
1 2 1 21 2

d d d d ,

ˆd d d

0.35 0.45

ˆ0.45 0.35

ˆ ˆ2 0.45 0.35 0.35

rw rw rw

rw

L S
rw

L

t f a t C t C t f a t f a C t

f a t C t r t w t t w t W t X t t

C t
w t r t o w t r t o

a t

w t o w t

w t w t o w t o

χ

ϑ ρ

ξ υ ξ

σ β ρ

σ βρ σ βρ

 = − + − +  
 = − + Ψ + Ψ − 

 − + − + + −

− +
− − −
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( ) ( ) ( ) ( ) }
( )
( ) ( ) ( ) ( )( ) ( ){

( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )}

2 22 2 2 2 2 2
2 2 4

1 1 2 1 1

2 2 2 2

3

2 3 3 2 4 4

ˆ ˆ0.35 0.35 d

ˆ0.45 0.35 d

ˆ0.35 0.35 d
ˆ ˆ0.35 d 0.35 d .

rw

L

w t w t t

C t
w t o w t W t

a t
w t o w t W t

w t W t w t W t

β ρ β ρ

σ βρ

σ βρ
βρ βρ

+ − 

− −

+ −
− −

         (50) 

Grouping the drift and diffusion rems of ( )d tχ  results in 

( )
( ) [ ] ( ) ( ) ( )

( ) ( )

1 2 3 1 1 2 2 3 3

4 4 5

d
d d d d

ˆd d ,

t
t W t W t W t

t
W t W t

χ
ϕ ϕ ϕ β β β

χ
β β

= − − − + +

+ − 

  

 

where we have introduced and defined 1 2 3 1 2 3 4, , , , , ,ϕ ϕ ϕ β β β β    and 5β  in the 
formulation of this proposition. 

6. Relation to Mean-Variance Optimization 

Since the motivation of our objective function comes from mean-variation optimi-
zation literature, we compare our results with such mean-variance optimization. In 
order to consider the mean-variance problem we consider the following functional  

( ) ( ) ( )2
, ,0 , ,0, , 0 : , 0,x o x ox o X T X Tκ κ κγ γ

∗
= − >   

where γ  is the bank’s risk aversion coefficient and  
( ) ( ) ( )

22
, ,0 , ,0 , ,0:x o x o x oX T X T X Tκ κ κ = −    . The aim of the banker is to maxi-

mize ( ), , 0x oκ∗  with respect to ( )1 2 0,w wκ = ∈ . Following [32], we define  
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where ( ){ }, ,0: ,t t x o X T A Aκκ= ∈ = ∈

  . Hence we have replaced the un-
constrained mean-variance optimization problem with a constrained maximiza-
tion of quadratic objective and using Lagrange method we obtain the minimiza-
tion functional as:  
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       (51) 

to determine the solution ( )lκ∗  over a class of admissible controls t
  and we  

find l∗  such that ( ) ( ), ,0
l

x o X T A
κ∗ ∗

= . Applying Theorem 4.1 of [21] we have  

the optimal strategy for functional Equation (51) as: 
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where H satisfies 
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together with the terminal condition ( ), 1H o T = . Noting that 
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= − , is a 
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where ( ), 1G o T = . In addition, we have 
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   (52) 

confirming that the quadratic optimization is consistent with monotone optimi-
zation with suitable A and l.  

In order to identify l∗ , we recall ( ) ( ), ,0
l

x o X T A
κ∗ ∗

= , and define  
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Since ( ) ( )1 1 1 2, ,S Lϕ ξ ϕ σ ϕ ξ υ⋅ ⋅ ⋅ −  and 2 Lϕ σ⋅ , are bounded functions and 
( )P t  is a solution to the stochastic linear equation with bounded coefficients, 

we obtain  
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This implies that ( ) ( )( ) ( )P t x A l R t∗= − +  where ( )R t  is given by 

( ) ( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )}

2 2
1 1 10

2 2
2 2

1 1 1 2 20 0

1: exp , , d
2

1, , d
2

, d , d .

t
S

L L

t t
L

R t O s s O s O s s O s s

O s s O s s O s s O s s

O s s O s W s O s s O s W s

ϕ ξ ϕ σ

ϕ ξ υ ϕ σ

ϕ σ ϕ σ

= −


+ − −

+ +

∫

∫ ∫

 

Using Equation (52) we have ( ) ( ) ( ) ( ) ( )( )1
l
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This implies that  
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Finally, we note that  
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and the maximum over A is attained as   
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. Substituting it into Equation (53) and 

Equation (54) we obtain 
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Consideration Equation (52) we conclude that the banker’s mean-variance 
optimal strategy is given by  

( ) ( )
( )

( )
( )

( )
( )

( )( )
( )

( )
( )

( )
( ) ( ) ( )

( ) ( )
( )

0

0

0

0

,0 0 1 1 2
0 2

1 2 1,0

1 1 1 0

1 2

,0 1 1
22

2,0

2 2
1 2 1 1 1 1 0

0 2

1 ˆ1, ,
2

ˆ 2 ,
,

1 ˆ1
2

ˆ ˆ2 ,
,

o

o

o

o

o

o

R T o o
x o t x x

o oR T

b o G o t
o G o t

R T o
o

R T

b o G o t
G o t

λ βρ λ
κ

γ σ σ

βρ ρ
σ

βρ λ
λ

γ

β ρ β ρ ρ

∗
  −  Π

= − − − +    Π  
Π − Π

+ Π 
 − 

− +   Π 

 Π Π + Π − Π
+    Π Π  







.




 

The dynamics of the banker’s monotone optimal strategy is given as:  
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Hence, we quantify the banker’s risk-aversion factor as  
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7. Conclusions 

In this study we examined continuous time optimization incorporating inflation, 
assuming that the preference criterion is based on a modification of a monotone 
mean-variance functional introduced by Maccheroni et al. [27]. There are two 
risky assets available to invest, and the compositional changes in bankers’ asset 
portfolio allocation between stock index fund and the loan portfolio is due to the 
influence of the state variable (inflation). We demonstrate that in the presence of 
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anticipated inflation, the banker’s capital in Tier I and Tier II can be reduced 
and radically alters the banker’s optimal holdings between the myopically opti-
mal portfolio and intertemporal hedging portfolio. Specifically, it is assumed 
that banks allocate their assets such that they are able to repay all of their debts 
even when the maximum loss on both types of assets materializes. Our model 
suggests that, changes in inflation will contribute towards the deterioration in 
banks’ balance sheets, a slowdown in lending or investment strategies. As these 
changes affect the tightness of the Tier I and Tier II capital holdings due to Basel 
II CAR requirements, if banks asset allocation tilts toward stock index fund 
holdings due to a re-balancing of banks asset allocation, the supply of capital via 
loans to goods producers’ decline. As a result, output decreases and deflation 
emerges. Our results confirm that the presence of inflation risk radically alters 
the banker’s optimal holdings and the trade-off between holding a myopically 
optimal portfolio and intertemporal hedging demand is determined by the de-
rivatives of marginal utility with respect to the state variable. 

In addition, the model helps to capture the extent of deterring Tier I and Tier 
II bank’s adequate capital in the presence of aggregate risk and will help to set up 
a risk management strategy via diversifying its investment portfolio. On the 
other hand, the bank may choose to use financial instruments to mitigate these 
aggregated risks. 

Future research could apply the maximum principle and backward Stochastic 
Differential Equations (BSDE) method over our method (dynamic programing 
principle and Hamilton-Jacobi-Bellman equations). Similarly, one could apply 
HJBI dynamic programming principle by capturing the banker’s provision capi-
tal risk process via a jump-diffusion process, as oppose to the diffusion process 
applied in the study. However, in doing one may not able to obtain a closed- 
form solution.  

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Basel Committee on Banking Supervision (2004) International Convergence of 

Capital Measurement and Capital Standards: A Revised Framework. Bank for In-
ternational Settlements, Basel. http://www.bis.org/publ/bcbs107.pdf  

[2] Basel Committee on Banking Supervision (2011) Basel III: A Global Regulatory 
Framework for More Resilient Banks and Banking Systems—Revised Version June 
2011. Bank for International Settlements. http://bis.org/publ/bcbs189.htm   

[3] Ferguson, R. (2003) Remarks at the Risk Management Association’s Conference on 
Capital Management, Washington, DC, April 9.  

[4] Berger, A.N. and Udell, G.F. (1994) Did Risk-Based Capital Allocate Bank Credit 
and Cause a Credit Crunch in the United States? Journal of Money, Credit and 
Banking, 26, 585-628. https://doi.org/10.2307/2077994 

[5] Jones, D. (2000) Emerging Problems with the Basel Capital Accord: Regulatory 
 

DOI: 10.4236/tel.2018.815207 3391 Theoretical Economics Letters 
 

https://doi.org/10.4236/tel.2018.815207
http://www.bis.org/publ/bcbs107.pdf
http://bis.org/publ/bcbs189.htm
https://doi.org/10.2307/2077994


R. S. Perera 
 

Capital Arbitrage and Related Issues. Journal of Banking and Finance, 24, 35-58.  
https://doi.org/10.1016/S0378-4266(99)00052-7 

[6] Brinkmann, E.J. and Horvitz, P. (1995) Risk-Based Capital Standards and the Credit 
Crunch. Journal of Money, Credit and Banking, 27, 848-863.  
https://doi.org/10.2307/2077755 

[7] Furfine, C. (2001) Bank Portfolio Allocation: The Impact of Capital Requirements, 
Regulatory Monitoring, and Economic Conditions. Journal of Financial Services 
Research, 20, 33-56. 

[8] Hall, B. (1993) How Has the Basel Accord Affected Bank Portfolios? Journal of 
Japanese and International Economics, 7, 408-440.  
https://doi.org/10.1006/jjie.1993.1024 

[9] Haubrich, J.G. and Wachtel, P. (1993) Capital Requirements and Shifts in Commer-
cial Bank Portfolios. Economic Review of Federal Research Bank of Cleveland, 3, 
2-15. 

[10] Thakor, A.V. (1996) Capital Requirement Monetary Policy and Aggregated Bank 
Lending. Journal of Finance, 51, 279-324.  
https://doi.org/10.1111/j.1540-6261.1996.tb05210.x 

[11] Jacques, K.T. and Nigro, P. (1997) Risk-Based Capital, Portfolio Risk, and Bank 
Capital: A Simultaneous Equations Approach. Journal of Economics and Business, 
49, 533-547. https://doi.org/10.1016/S0148-6195(97)00038-6 

[12] Jacques, K.T. (2008) Capital Shocks, Bank Asset Allocation, and the Revised Basel 
Accord. Review of Financial Economics, 17, 79-91.  
https://doi.org/10.1016/j.rfe.2007.03.003 

[13] Keeton, W.R. (1994) Causes of the Recent Increase in Bank Security Holdings. 
Economic Review, 78, 45-57. 

[14] Borio, C., Furfine, C. and Lowe, P. (2001) Procyclicality of the Financial System and 
Financial Stability: Issues and Policy Options. Bank for International Settlements 
Conference Marrying the Macro-and-Micro Prudential Dimensions of Financial 
Stability, 1-57.  

[15] Deelstra, G., Grasselli, M. and Koehl, P.F. (2000) Optimal Investment Strategies in a 
CIR Framework. Journal of Applied Probability, 37, 1-12.  
https://doi.org/10.1239/jap/1014843074 

[16] Fouche, C.H., Mukuddem-Petersen, J. and Petersen, M.A. (2005) Continuous-Time 
Stochastic Modelling of Capital Adequacy Ratios for Banks. Applied Stochastic 
Models in Business and Industry, 22, 41-71. 

[17] Lowe, P. (2002) Credit Risk Measurement and Procyclicality. Bank for International 
Settlements Working Paper, No. 116, 1-174. 

[18] Mataramvura, S. and Øksendal, B. (2008) Risk Minimizing Portfolios and HJBI Eq-
uations for Stochastic Differential Games. Stochastic, 80, 317-337.  
https://doi.org/10.1080/17442500701655408 

[19] Witbooi, P.J., Van Schalkwyk, G.J. and Muller, G.E. (2011) An Optimal Investment 
Strategy in Bank Management. Mathematical Methods in Applied Science, 34, 
1606-1617. https://doi.org/10.1002/mma.1467 

[20] Perera, R.S. (2015) Dynamics Asset Allocation for a Bank under CRRA and HARA 
Framework. International Journal of Financial Engineering, 2, Article ID: 1550031. 

[21] Perera, R.S. (2017) An Optimal Investment and Risk Control Policy for a Bank Un-
der Exponential Utility. Stochastic Models, 33, 343-375.  
https://doi.org/10.1080/15326349.2017.1300775 

 

DOI: 10.4236/tel.2018.815207 3392 Theoretical Economics Letters  
 

https://doi.org/10.4236/tel.2018.815207
https://doi.org/10.1016/S0378-4266(99)00052-7
https://doi.org/10.2307/2077755
https://doi.org/10.1006/jjie.1993.1024
https://doi.org/10.1111/j.1540-6261.1996.tb05210.x
https://doi.org/10.1016/S0148-6195(97)00038-6
https://doi.org/10.1016/j.rfe.2007.03.003
https://doi.org/10.1239/jap/1014843074
https://doi.org/10.1080/17442500701655408
https://doi.org/10.1002/mma.1467
https://doi.org/10.1080/15326349.2017.1300775


R. S. Perera 
 

[22] Perera, R.S. and Sato, K. (2018) Optimal Asset Allocation for a Bank under Risk 
Control. International Journal of Financial Engineering, 5, Article ID: 1850022.  

[23] Monroe, M.F. (2010) Basel III Redefines Capital, American Bankers Association. 
ABA Banking Journal, 102, 33-35. 

[24] Mukuuddem-Petersen, J. and Petersen, M.A. (2008) Optimizing Asset and Capital 
Adequacy Management in Banking. Journal of Optimization and Theory Applica-
tions, 137, 205-230. https://doi.org/10.1007/s10957-007-9322-x 

[25] Von Thadden, E.L. (2004) Bank Capital Adequacy Regulation under the New Basel 
Accord. Journal of Financial Intermediation, 13, 90-95.  
https://doi.org/10.1016/j.jfi.2003.04.002 

[26] Markowitz, H. (1952) Portfolio Selection. Journal of Finance, 7, 77-91. 

[27] Maccheroni, F., Marinacci, M., Rustichini, A. and Taboga, M. (2009) Portfolio Se-
lection with Monotone Mean-Variance Preferences. Mathematical Finance, 19, 
487-521. https://doi.org/10.1111/j.1467-9965.2009.00376.x 

[28] Bordigoni, G., Matoussi, A. and Schweizer, M. (2007) A Stochastic Control Ap-
proach to a Robust Utility Maximization Problem. Stochastic Analysis and Applica-
tion, The Abel Symposium, Springer, Berlin, 125-151. 

[29] Hernández, D. and Schied, A. (2007) A Control Approach to Robust Utility Max-
imization with Logarithmic Utility and Time-Consistent Penalties. Stochastic 
Process and Applications, 117, 980-1000. https://doi.org/10.1016/j.spa.2006.11.005 

[30] Øksendal, B. and Sulem, A. (2014) Forward-Backward Stochastic Differential 
Games and Stochastic Control under Model Uncertainty. Journal of Optimization 
and Theory Applications, 161, 22-55. https://doi.org/10.1007/s10957-012-0166-7 

[31] Trybula, J. and Dawisza, D. (2012) Continuous Time Portfolio Choice under Mo-
notone Preferences with Quadratic Penalty-Stochastic Factor Case.  
http://arxiv.org/pdf/1403.3212.pdf 

[32] Zawiza, D. (2012) Target Achieving Portfolio under Model Specification: Quadratic 
Optimization Framework. Applicationes Mathematicae, 39, 425-443.  
https://doi.org/10.4064/am39-4-3 

[33] Zariphopoulou, T. (2001) A Solution Approach to Valuation with Unhegeable 
Risks. Finance and Stochastic, 5, 61-82. https://doi.org/10.1007/PL00000040 

[34] Greenbaum, S.I. and Thakor, A.V. (2010) Contemporary Financial Intermediation. 
2nd Edition, Advanced Finance Series, Academic Press, New York. 

[35] Merton, R.C. (1974) On the Pricing of Corporate Debt: The Risk Structure of Inter-
est Rates. Journal of Finance, 29, 449-470. 

[36] Fleming, W. and Soner, H.M. (2006) Controlled Markov Processes and Viscosity 
Solutions. 2nd Edition, Springer, New York.  

[37] Zawiza, D. (2010) Robust Portfolio Selection under Exponential Preferences. Ap-
plicationes Mathematicae, 37, 215-230. https://doi.org/10.4064/am37-2-6 

[38] Korn, R. and Korn, E. (2001) Option Pricing and Portfolio Optimization. Graduate 
Studies in Mathematics, Vol. 31. 

[39] Zhou, X.Y. and Li, D. (2000) Continuous Time Mean-Variance Portfolio Selection: 
A Stochastic LQ Framework. Journal of Applied Mathematics and Optimization, 
42, 19-33. 

[40] Heath, D. and Schweizer, M. (2000) Martingale versus PDEs in Finance: An Equi-
valence Result with Examples. Journal of Applied Probability, 37, 947-957.  
https://doi.org/10.1239/jap/1014843075 

 

DOI: 10.4236/tel.2018.815207 3393 Theoretical Economics Letters 
 

https://doi.org/10.4236/tel.2018.815207
https://doi.org/10.1007/s10957-007-9322-x
https://doi.org/10.1016/j.jfi.2003.04.002
https://doi.org/10.1111/j.1467-9965.2009.00376.x
https://doi.org/10.1016/j.spa.2006.11.005
https://doi.org/10.1007/s10957-012-0166-7
http://arxiv.org/pdf/1403.3212.pdf
https://doi.org/10.4064/am39-4-3
https://doi.org/10.1007/PL00000040
https://doi.org/10.4064/am37-2-6
https://doi.org/10.1239/jap/1014843075


R. S. Perera 
 

[41] Pham, H. (2009) Continuous-Time Stochastic Control and Optimization with Fi-
nancial Applications, Stochastic Modelling and Applied Probability. Sprin-
ger-Verlag, Berlin. https://doi.org/10.1007/978-3-540-89500-8 

 
 

 

DOI: 10.4236/tel.2018.815207 3394 Theoretical Economics Letters  
 

https://doi.org/10.4236/tel.2018.815207
https://doi.org/10.1007/978-3-540-89500-8

	Robust Portfolio Allocation for a Bank under Inflation
	Abstract
	Keywords
	1. Introduction
	2. Formulation of the Banking Model
	2.1. Treasures, Securities and Loans
	2.2. Total Bank Capital
	2.3. Dynamics of Total Capital

	3. Financial Market Setting
	3.1. Treasures 
	3.2. Stock Index Fund
	3.3. Loans
	3.4. Inflation in the Economy
	3.5. Bank’s Provision Capital Process

	4. Banker’s Asset Optimization Strategy
	4.1. HJBI Equation and the Verification Theorem
	4.2. Solution to the Stochastic Differential Equation
	4.3. Economic Analysis
	4.4. Smooth Solution to the Resulting Equation

	5. Basel III CAR
	6. Relation to Mean-Variance Optimization
	7. Conclusions
	Conflicts of Interest
	References

