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Abstract 

In this work, we developed a compartmental bio-mathematical model to 
study the effect of treatment in the control of malaria in a population with 
infected immigrants. In particular, the vector-host population model consists 
of eleven variables, for which graphical profiles were provided to depict their 
individual variations with time. This was possible with the help of MathCAD 
software which implements the Runge-Kutta numerical algorithm to solve 
numerically the eleven differential equations representing the vector-host 
malaria population model. We computed the basic reproduction ratio 0R  
following the next generation matrix. This procedure converts a system of 
ordinary differential equations of a model of infectious disease dynamics to 
an operator that translates from one generation of infectious individuals to 
the next. We obtained 0 0 0m hR R R= × , i.e., the square root of the product of 

the basic reproduction ratios for the mosquito and human populations re-
spectively. 0mR  explains the number of humans that one mosquito can in-
fect through contact during the life time it survives as infectious. 0hR  on the 
other hand describes the number of mosquitoes that are infected through 
contacts with the infectious human during infectious period. Sensitivity 
analysis was performed for the parameters of the model to help us know 
which parameters in particular have high impact on the disease transmission, 
in other words on the basic reproduction ratio 0R .  
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1. Introduction 

Malaria is a highly prevalent infectious disease especially in the tropical and sub-
tropical areas. Figure 1 below is a map obtained from WHO Malaria Report 
2010 [1], depicting the countries where malaria was endemic in 2009 (shaded re-
gion). 

In addition to being widespread, malaria is also a deadly disease. This is be-
cause statistics has shown that for Africa in particular, annually 145,000 million 
to 150,000 million infections are reported, among which, 800 to 850 cases result 
in deaths as shown in Table 1. Most of the deaths are either children under five 
or pregnant women. Typical symptoms of malaria infections start with head-
ache, followed by periodic bouts of fevers and chills, and sometimes even coma. 
The period of cyclical fevers lasts several days, during which time a high proba-
bility of dying has been observed for children, since their immune systems are 
weak. Such fever can also lead to abortions in pregnant women. 

1.1. Brief Analysis of Malaria Data 

It is interesting to do a quick statistical analysis of the data in Table 1, for the 
malaria cases in Africa as provided by WHO (Figure 2). We perform a nonli-
near regression analysis for both the reported cases (C) and deaths (D) against 
time (T). The result follows from SPSS. 
 

 
Figure 1. Malaria endemic countries 2009. 

 
Table 1. Estimates of malaria cases and deaths in Africa by WHO, 2000-2009. 

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 

Cases (×103) 173,000 178,000 181,000 185,000 187,000 188,000 187,000 186,000 181,000 176,000 

Deaths (×103) 900 893 885 880 870 853 832 802 756 709 
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Figure 2. Quadratic regression model for malaria cases 2000-2009. 
 
Model Summary and Parameter Estimates. Dependent Variable: C (Numbers of cases) 

Equation 
Model Summary Parameter Estimates 

R Square F df1 df2 Sig. Constant b1 b2 

Quadratic 0.981 180.044 2 7 0.000 165,283.333 7609.848 −647.727 

The independent variable is T. 

 
Observation: It is quite clear from the WHO data, for the number of malaria 

cases reported over the 10 year period that the incidence of malaria infection 
follows a parabolic curve, rising sharply initially, to reach a maximum and then 
declining sharply thereafter (Figure 3). The equation of the parabola is given by:  

2165283.3 7609.85 647.73C T T= + −  with goodness of fit 2 0.981R = . 

 
Model Summary and Parameter Estimates. Dependent Variable: D (Number of deaths) 

Equation 
Model Summary Parameter Estimates 

R Square F df1 df2 Sig. Constant b1 b2 

Quadratic 0.992 438.638 2 7 0.000 882.883 12.070 −2.890 

The independent variable is T. 

 
Observation: The number of malaria related deaths over the 10 year period as 

depicted in the above graph, follows a parabolic curve, rising from a high value 
initially, then reaching a maximum and then declining sharply thereafter. The 
equation of the parabola is given by: 

2882.883 12.07 2.89D T T= + −  with goodness of fit 2 0.992R = . 
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Figure 3. Quadratic regression model for deaths caused by malaria 2000-2009. 

1.2. Life Cycle of Malaria Parasites 

Malaria is a vector-borne disease [2]. Malaria parasites are transferred between 
humans through mosquitoes. The malaria parasite life cycle is divided into two 
parts, one is within host (human) body and the other is within vector (mosquito) 
body. 

Human infection starts from a blood meal of an infectious female mosquito. 
The parasites existing in the infectious mosquito’s saliva, called sporozoites at 
this stage, enter the bloodstream of the human through mosquito bites and mi-
grate to the liver. Within minutes after entering in the human body, sporozoites 
infect hepatocytes, and multiply asexually and asymptomatically in liver cells for 
a period of 5 - 30 days [3]. This period is called the exo-erythrocytic stage. At the 
end of this stage, thousands of merozoites (schizonts) emerge inside an infected 
liver cell. These merozoites rupture their host cells undetectably by wrapping 
themselves in the membrane of infected liver cells. Then, merozoites escape 
into the bloodstream and get ready to infect red blood cells. Once entering the 
bloodstream, free merozoites undergo the so-called erythrocytic stage, in which 
merozoites invade red blood cells to develop ring forms before experiencing 
asexual or sexual maturation. Within the red blood cells, a proportion of para-
sites keep multiplying asexually and periodically break out of infected old red 
blood cells to invade fresh red blood cells. Such amplification cycles may cause 
the symptom of waves of fever. The remaining parasites follow sexual matura-
tion and produce male (micro-) and female (macro-) gametocytes which may be 
taken up by bites of female mosquitoes. Finally, when it has developed into an 
infectious form, it spreads the disease to a new mosquito that bites the infectious 
human. 
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1.3. Malaria Control and Treatments 

According to the transmission procedure of malaria, there are three conditions 
for the prevalence of the disease:  

1) High density of Anopheles mosquitoes,  
2) High density of human population,  
3) Large rate of transmission of parasites between human beings and mosqui-

toes.  
Obviously, not too much can be done in respect to (2). So, (1) and (3) are na-

turally targeted. That is, either controlling the population of Anopheles female 
mosquitoes at a lower level, or avoiding biting by mosquitoes can reduce the 
chance of malaria becoming endemic. In the middle of the last century, people in 
Africa have already knew how to remove or poison the breeding grounds of 
mosquitoes or the aquatic habitats of the larva stages, such as by filling or ap-
plying oil to places with standing water, to control the population of mosquitoes 
[4]. Later, pesticide was widely employed to eliminate mosquitoes. On the other 
hand, mosquito nets, bedclothes and mosquito-repellent incense (indoor resi-
dual spraying) also help to keep mosquitoes far away from people and minimize 
the biting rate, greatly reducing the chance of infection and transmission of ma-
laria. There are some effective drugs for malaria patients currently. For example, 
Chloroquine, Quinuine, Primaquine and combinations of some other drugs like 
sulfadoxine and pyrimethamine (SP) are effective medicines for treating infec-
tions caused by the five major parasites. Although malaria is an entirely pre-
ventable or curable disease thanks to these effective medicines, there are still 
millions of people suffering from this disease, who are too poor to afford full 
treatments. Moreover, insufficient treatments due to poor economic conditions, 
may result in drug resistance and lead to emergence of new (drug resistant) 
strains of malaria parasites. For instance, the first case of resistance to Chloro-
quine was documented in 1957. Chloroquine, Quinine and Sulfadoxine-pyrime- 
thamine resistance cases have been reported in almost all disease endemic areas 
[5].  

1.4. Control of Mosquito-Borne Infections 

In order to control mosquito-borne infections one can adopt the following 
measures; 
 Reduce vector population: Make environment less mosquito-friendly by 

draining stagnant water. 
 Use insecticides; not without problems: for example some mosquitoes be-

come insecticide resistant. 
 Prevent mosquitoes biting people. Insecticide-laced bed nets, although this is 

ineffective against mosquitoes that mainly bite during the day (e.g. A. aegyp-
ti). 

 Vaccines and drug treatments. Not always available, there are problems with 
drugs and drug resistance. 
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1.5. The Ross-Macdonald Malaria Model 

The first and simplest model of malaria was developed by [6] Ross and later ex-
tended by Macdonald [7]. This so-called Ross-Macdonald model is the 
best-known and most widely used model. Despite its simple structure as shown 
below, it enables us to interpret and compare a broad range of epidemiological 
models. 

1.6. Remark 

In the Ross-Macdonald model of malaria transmission, the flow of human from 
a susceptible class to an infected class and through recovery from infection, the 
reverse is shown in the upper part of the Figure 4. The flow of mosquitoes from 
susceptible class to an infected class, and finally to an infectious class is shown 
further down. The human and mosquito population are linked through the 
transmission process. 

1.7. Statement of the Problem 

The development of the means intended to reduce the spread of malaria infec-
tions and eradication necessitates decisive measures to curb the malaria epidem-
ic. In particular, sustained minimization of the number of humans with inci-
dence of malaria as a result of adequate control, can be attained by developing a 
suitable mathematical model which can enable us to understand better the dy-
namics and control of the vector-host endemic. 

In developing the model, the human population is compartmentalized into 
seven classes including the susceptible, infected, exposed, treated, non-treated, 
recovered, and protected classes. For the mosquito population, we have four 
classes, namely; class of mosquito larva, susceptible mosquitoes, infected mos-
quitoes and exposed mosquitoes. We assume free interaction between the vector 
and host populations. The mathematical analysis of the compartmental models 
leads us to eleven coupled systems of nonlinear ordinary differential equations. 

2. Construction of the Compartmental Model 

In this section we develop a compartmental bio-mathematical model (Figure 5)  
 

 
Figure 4. The ross-macdonald malaria model. 
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Figure 5. Compartmental model for human-mosquito interaction. 
 
to study the effect of treatment in the control of malaria in a population with in-
fected immigrants. 

From the above compartmental model we obtain the following equations for 
the dynamics of the human-mosquito interaction. 

2.1. Human Population 

( ) 2 1
d 1
d

H H M H
H H H H H

H

S I Sq A R S S
t N

βα ρ α δ= − Λ + + − − −          (1) 

d
d

H H M H
H H H

H

E I S gE E
t N

β δ= − −                    (2) 

1 2
d
d

H
H H H H H H

I gE q k I k I I
t

δ= + Λ − − −                 (3) 

( )2
d

d
HN

H H H HN
I k I I

t
ω δ= − +                     (4) 

1
d
d

H
H H H H

T k I T T
t

γ δ= − −                      (5) 

( )d
d

H
H H H

R T R
t

γ µ ρ δ= − + +                    (6) 

1 2
d
d H H H
A S R A A
t

α µ α δ= + − −                   (7) 

2.2. Mosquitoe Population 
d
d

M
M M M M

L mL L
t

δ= Λ − −                     (8) 

d
d

M M H M
M M M

H

S I SmL S
t N

β δ= − −                   (9) 

d
d

M M H M
M M M

H

E I S E E
t N

β φ δ= − −                  (10) 

d
d

M
M M M

I E I
t

φ δ= −                       (11) 
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2.3. Remark 

The state variables and parameters are defined in Table 2 and Table 3 respec-
tively. 
 
Table 2. State variables of the basic malaria model. 

Symbol Description 

( )HS t  Susceptible human population at time t 

( )HE t  Exposed human population at time t 

( )HI t  Infected human population at time t 

( )HNI t  Non-treated infected human population at time t 

( )HT t  Treated human population at time t 

( )HR t  Recovered human population at time t 

( )A t  Protected human population at time t 

( )ML t  Population of mosquito larva at time t 

( )MS t  Population of susceptible mosquitoes at time t 

( )ME t  Population of exposed mosquitoes at time t 

( )MI t  Population of infected mosquitoes at time t 

HN
 

Total population size of humans 

MN  Total population size of mosquitoes 

 
Table 3. Parameters of the basic malaria model. 

Symbol Description 

HΛ  Birth and immigrant rate of humans 

MΛ  Birth rate of mosquitoes 

ρ  Rate of loss of immunity 

Hβ  Transmission rate of infection from infected mosquitoes to susceptible human 

2α  Loss of immunity of protected class 

q Fraction of infective immigrants 

1α  Progression rate of susceptible human to protected  class 

1k  Treatment rate of human from infected state to treated class 

2k
 

Transmission rate of human from infected state to infectious none treated class 

g Progression rate of human from exposed to infected compartments 

γ  Recovery rate of human from treated class 

Hδ  Natural death rate of human from exposed to infected 

µ  Progression rate of human from recovery class to protected class 

M Progression rate of mosquitoes from larva to susceptible 

Mβ  Transmission rate of infection from infected human to susceptible mosquitoes 

Mδ  
Natural death rate of mosquitoes 

φ
 

Progression rate of exposed mosquitoes to infected mosquitoes 

Hω  
Disease-induced death rate of  human 
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2.4. Invariant Region 

The total population sizes HN  and MN  can be determined by  

H H H H HN H HN S E I I T A R= + + + + + +  and M M M M MN L S E I= + + + . Thus 
d

d
H

H H H H HN
N N I

t
δ ω= Λ − −                  (12) 

Without loss of generality, we can write  

d d,    
d d

H M
H H H M M M

N NN N
t t

δ δ≤ Λ − ≤ Λ −            (13) 

2.5. Lemma 

The model system has solution which are contained in the feasible H MΩ = Ω ×Ω .  
Proof: let { } 11, , , , , , , , , ,H H H HN H H M M M MS E I I T A R L S E I +Ω = ∈�  be any solu-

tion of the system with non-negative initial conditions. From Equation (13) 
d

d
H

H H H
N N

t
δ≤ Λ −                    (14) 

Adopting Birhoff and Rotta [8] theorem on differential inequality, we have  

0 ,      e HtH
H H H H

H

N N C δδ
δ

−Λ
≤ ≤ Λ − ≥           (15) 

where C is a constant. 
Therefore, all feasible solutions of the human population only of the model 

system are in the region. 

( ) 7, , , , , , : H
H H H H HN H H H

H

S E I I T A R N
δ+

 Λ
Ω = ∈ ≤ 

 
�  

Similarly the feasible set for model of the mosquitoes population only are in 
the region 

( ) 4, , , : M
M M M M M M

M

L S E I N
δ+

 Λ
Ω = ∈ ≤ 

 
�  

Therefore the feasible set for the model system is given by  

( ) 11 *

*

, , , , , , , , , , : ,H
H H H HN H H M M M M H H

H

M
M M

M

S E I I T A R L S E I N N

N N

δ

δ

+

 Λ
Ω = ∈ ≤ =


Λ

≤ = 


�

 (16) 

2.6. Mathematical Analysis of the Model 

The nonlinear system (1)-(11) will be qualitatively analyzed so as to find the 
conditions for existence and stability of disease free equilibrium points. Analysis 
of the model allows us to determine the impact of treatment on the transmission 
of malaria infection in a population. Also on finding the reproductive number 

0R , one can determine if the disease become endemic in a population or not [9]. 
However, one can see that adding the human equation of the model, with the 
case that there is no disease -induced death. From Equation (13) 
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d
d

H
H H H

N N
t

δ= Λ − , hence ( ) H
H

H

N t
δ
Λ

→  as t →∞ . 

Thus H

Hδ
Λ  is the upper bound of ( )HN t  provided that ( )0 H

H
H

N
δ
Λ

≤ . Si-
milarly,  

( )d     
d

M M
M M M M

M

N N N t
t

δ
δ
Λ

= Λ − ⇒ →  as t →∞ . 

Thus M

Mδ
Λ  is the upper bound of ( )MN t  provided that ( )0 M

M
M

N
δ
Λ

≤ . 

Hence the invariant region is 

( ) 11 *

*

, , , , , , , , , , : ,H
H H H HN H H M M M M H H

H

M
M M

M

S E I I T A R L S E I N N

N N

δ

δ

+

 Λ
Ω = ∈ ≤ =


Λ

≤ = 


�

 

is positively invariant. Hence no solution path leaves through and boundary of 
Ω . Since path cannot leave Ω , solution remains non-negative for non negative 
initial conditions. This means that the solution exists for all positive time t. 
Therefore the model (1)-(11) is mathematically and epidemiological well-posed 
[10].  

For convenience and to simplify the analysis of our model, we rewrite the 
model system (1)-(11) in terms of the proportions of individual in each class. 
Let  

, , , , , ,

, , , , .

HNH H H H H
h h h h h hn

H H H H H H

M M M M
m m m m

H H H H H

IS E I T Rs e i t r i
N N N N N N

L S E IAz l s e i
N N N N N

= = = = = =

= = = = =
 

Let M

H

N
N

π =  be the female mosquito–human ratio, that is, the number of 

female mosquito per human host. The ratio M

H

N
N

π =  is constant because a  

mosquito takes a fixed number of blood meals per unit independent of the pop-
ulation density of the host [11]. Also let 

, , , , , , .H h M m H h H h M m M m H hβ β δ δ β β δ δ ω ωΛ = Λ Λ = Λ = = = = =  

The simplified model now becomes modified human and mosquito popula-
tion models. 

2.7. Modified Human Population 

( ) 2 1
d 1
d

h
h h h m h h h h

s q z r i s s s
t

α ρ β α δ= − Λ + + − − −         (17) 

d
d

h
h m h h h h

e i s ge e
t

β δ= − −                   (18) 

1 2
d
d

h
h h h h h h

i ge q k i k i i
t

δ= + Λ − − −               (19) 
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( )2
d
d

hn
h h h hn

i k i i
t

ω δ= − +                   (20) 

1
d
d

h
h h h h

t k i t t
t

γ δ= − −                     (21) 

( )d
d

h
h h h

r t r
t

γ µ ρ δ= − + +                  (22) 

1 2
d
d h h h
z s r z z
t

α µ α δ= + − −                  (23) 

2.8. Modified Mosquitoes Population 

d
d

m
m m m m

l ml l
t

δ= Λ − −                   (24) 

d
d

m
m m h m m m

s ml i s s
t

β δ= − −                  (25) 

d
d

m
m h m m m m

e i s e e
t

β φ δ= − −                  (26) 

d
d

m
m m m

i e i
t

φ δ= −                      (27) 

2.9. Positivity of Solutions 

It is necessary to prove that all solutions of system (17)-(27) with positive initial 
data will remain positive for all times 0t > . This will be established by the fol-
lowing theorem.  

2.10. Theorem 

Let the initial data be 

( ) ( ) ( ) ( ) ( ) ( ){
( ) ( ) ( ) ( ) ( ) }
0 0, 0 0, 0 0, 0 0, 0 0, 0 0,

0 0, 0 0, 0 0, 0 0, 0 0
h h hn h h

h m m m m

s i i t z r

e s l e i

≥ ≥ ≥ ≥ ≥ ≥

≥ ≥ ≥ ≥ ≥ ∈Ω
 

Then the solution set ( ) ( ), , , , , , , , , ,h h h hn h h m m m ms e i i t z r l s e i t  of the model sys-
tem (4) is positive for all 0t > . 

Proof: From first equation of (17) 

( ) ( )2 1 1
d 1
d

h
h h h m h h h h h m h h

s q z r i s s s i s
t

α ρ β α δ β α δ= − Λ + + − − − ≥ − + +  

( ) ( )1
1      d dh h m h
h

s i t
s

β α δ⇒ ≥ − + +∫ ∫  

 
( ) ( ) ( )1        0 e 0h m hi t

h hs t s β α δ− + +∴ ≥ ≥  

Following the above procedure, from equations (18)-(23), we obtain respec-
tively the positivity conditions;

  ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 2

2

0 e 0, 0 e 0,

0 e 0, 0 e 0,

0 e 0, 0 e 0.

h h

h h h

h h

g t k k t
h h h h

t t
hn hn h h

t t
h h

e t e i t i

i t i t t t

r t r z t z

δ δ

ω δ γ δ

µ ρ δ δ α

− + − + +

− + − +

− + + − +

≥ ≥ ≥ ≥

≥ ≥ ≥ ≥

≥ ≥ ≥ ≥
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Similarly for the modified mosquito population, equations (20)-(27) gives the 
positivity conditions; 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
0 e 0, 0 e 0,

0 e 0, 0 e 0.

m m h m

m m

m t i t
m m m m

t t
m m m m

l t l s t s

e t e i t i

δ β δ

φ δ δ

− + − +

− + −

≥ ≥ ≥ ≥

≥ ≥ ≥ ≥
 

2.11. Existence and Stability of Steady-State Solutions 

Let ( )0 0 0 0 0 0 0 0 0 0 0 0, , , , , , , , , ,h h h hn h h m m m mE s e i i t z r l s e i=  be the steady-state of the system 
(17)-(27) which can be calculated by setting the right hand side of the model 
(17)-(27) to zero, giving us the following; 

( ) 2 11 0 h h h m h h h hq z r i s s sα ρ β α δ− Λ + + − − − =           (28) 

0h m h h h hi s ge eβ δ− − =                     (29) 

1 2 0h h h h h hge q k i k i iδ+ Λ − − − =                  (30) 

 
( )2 0h h h hnk i iω δ− + =                      (31) 

1 0h h h hk i t tγ δ− − =                       (32) 

( ) 0h h ht rγ µ ρ δ− + + =                     (33) 

1 2 0h h hs r z zα µ α δ+ − − =                    (34) 

0m m m mml lδΛ − − =                      (35) 

0m m h m m mml i s sβ δ− − =                    (36) 

 0m h m m m mi s e eβ φ δ− − =                    (37) 

0m m me iφ δ− =                         (38) 

2.12. Disease-Free Equilibrium Point 

Disease-free equilibrium points (DFE) are steady-state solutions where there is 
no disease (malaria). The disease free equilibrium of the normalized model (17)- 
(27) is obtained by setting 

d d d d d d d d d dd 0
d d d d d d d d d d d

h h h hn h h m m m ms e i i t r l s e iz
t t t t t t t t t t t
= = = = = = = = = = =
�

 

At disease free equilibrium we have, 

 
( )

,    ,

0.

h m
h m

h m m

h h hn h h m m m

ms s
m

e i i t r l e i z q
δ δ δ
Λ Λ

= =
+

= = = = = = = = = =
 

Therefore the disease free equilibrium (DFE) denoted by 0E  of the system 
(28)-(38) is given by 

( )

( )

0 0 0 0 0 0 0 0 0 0 0 0, , , , , , , , , ,

, 0, 0,0,0,0,0,0, , 0,0

h h h hn h h m m m m

h m

h m m

E s e i i t z r l s e i

m
mδ δ δ

=

 Λ Λ
=   + 

 

that represents the state in which there is no infection in the society and is 
known as the disease-free equilibrium point (DFE). This implies that at the dis-
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ease-free equilibrium, the susceptible human population is equal to the total 
human population and the susceptible mosquito population is equal to the total 
mosquito population. 

2.13. Local Stability of DFE 

The disease free equilibrium of the model (17)-(27) was given by  

( )

( )

0 0 0 0 0 0 0 0 0 0 0 0, , , , , , , , , ,

, 0, 0,0,0,0,0,0, , 0,0

h h h hn h h m m m m

h m

h m m

E s e i i t z r l s e i

m
mδ δ δ

=

 Λ Λ
=   + 

 

2.14. Basic Reproduction Ratio 

R0 is often found through the study and computation of the eigenvalues of the 
Jacobian at the disease- or infectious-free equilibrium Diekmann [12] follow a 
different approach which is the next generation matrix method. This procedure 
converts a system of ordinary differential equations of a model of infectious dis-
ease dynamics to an operator (or matrix) that translate from one generation of 
infectious individuals to the next. The basic reproductive number is then defined 
as the spectral radius (dominant eigenvalue) of this operator. Van den Driessche 
and Watmough [9] describe such a method in detail for general deterministic 
compartmental models.  

The dynamics of the model is specified by the IVP; 

( ) ( )d ,  0
d

ni
i

x f x x
t += ∈�                   (39) 

We define 0Θ  as the set of all disease-free states as 

{ }0 : 0,1n
ix x i m+Θ = ∈ = ≤ ≤�                (40) 

Next we recast the IVP (4.39) in the form;  

( ) ( )d
d

i
i i

x F x V x
t
= −                    (41) 

where ( )iF x  is the rate of new infections entering compartment i, and  

( ) ( )i i iV V x V x− += −                    (42) 

where ( )iV x+  is the rate of transfer into compartment i by any other means, 
and ( )iV x−  is the rate of transfer out of compartment i. Given a disease-free 
equilibrium point DFEx  of (39), with DFEx  and ( )f x  satisfying certain im-
portant assumptions [12], then we define the square matrices F and V of dimen-
sion m m×  as follows; 

( ) ( ),   for 1 ,
DFE DFE

i i
ij ij

j jx x

F x V x
F V i j m

x x
∂ ∂

= = ≤ ≤
∂ ∂

      (43) 

It then follows that 1FV −  is the next generation matrix and the basic repro-
duction ratio 0R  is the spectral radius of 1FV − , 

( )1
0 R FVρ −⇒ =                        (44) 
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Rewriting the system (41) starting with the infected compartments for both 
populations; , , , , ,h h m m hn he i e i i t  and then followed by uninfected classes;  

, , , ,h h m ms z r l s  also from the two populations, gives; 

d
d

h
h m h h h h

e i s ge e
t

β δ= − −  

1 2
d
d

h
h h h h h h

i ge q k i k i i
t

δ= + Λ − − −  

d
d

m
m h m m m m

e i s e e
t

β φ δ= − −
 

d
d

m
m m m

i e i
t

φ δ= −
 

( )2
d
d

hn
h h h hn

i k i i
t

ω δ= − +
 

1
d
d

h
h h h h

t k i t t
t

γ δ= − −
 

( ) 2 1
d 1
d

h
h h h m h h h h

s q z r i s s s
t

α ρ β α δ= − Λ + + − − −
 

1 2
d
d h h h
z s r z z
t

α µ α δ= + − −
 

( )d
d

h
h h h

r t r
t

γ µ ρ δ= − + +
 

d
d

m
m m m m

l ml l
t

δ= Λ − −
 

d
d

m
m m h m m m

s ml i s s
t

β δ= − −
 

The method of next generation matrix has been used to show the rate of ap-
pearance of new infection in compartments; he  and me , from the system (12); 

( )
( )

( )

( )
( )

1 2

2

1

0

,
0
0
0

h hh m h

h h h h

m mm h m

m m m

h h h hn

h h h

g ei s
ge q k k i

ei s
F V

e i
k i i
k i t

δβ
δ

φ δβ
φ δ

ω δ
γ δ

 + 
   − − Λ + + +  
   +
 = = 

− +  
   − + +     − + +   

 

By linearization approach, the associated matrix at disease free equilibrium is 
obtained as 

 

( )

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

h h

h

m m

m m

m
F m

β
δ

β
δ δ

Λ 
 
 
 
 

Λ =  +
 
 
 
  
 
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( )

( ) ( ) ( ) ( )
1

1 2 1 2

0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

h h h h

h m m h m

m m m m

m m h h m m h

m g m
FV

m g k k m k k

β φ β
δ δ φ δ δ δ

β β
δ δ δ δ δ δ δ

−

Λ Λ 
 + 
 
 

Λ Λ =  + + + + + + +
 
 
 
 
 
   

( ) ( ) ( ) ( )0
1 2

       h h m m

h m m m m h h

m gR
m g k k

β φ β
δ δ φ δ δ δ δ δ
  Λ Λ

∴ =     + + + + +  
 

Here the term 
( )
h h

h m m

β φ
δ δ φ δ

Λ
+

 explains the number of humans that one mos-

quito infect through contact during the life time it survives as infectious. On the 

other hand 
( ) ( ) ( )1 2

m m

m m h h

m g
m g k k

β
δ δ δ δ

Λ
+ + + +

 describes the number of mos- 

quitoes that are infected through contacts with the infectious human during in-
fectious period. Hence  

0 0 0m hR R R= ×  

where 
( )0
h h

m
h m m

R β φ
δ δ φ δ

Λ
=

+
 and 

( ) ( ) ( )0
1 2

m m
h

m m h h

m gR
m g k k

β
δ δ δ δ

Λ
=

+ + + +
. 

3. Sensitivity Analysis of the Model Parameters 

In this section, we carry out the sensitivity analysis of the model parameter to 
help us know the parameters that have high impact on the disease transmission, 
which is on the reproduction ratio 0R .  

We used the normalized forward sensitivity index of a variable to parameter 
approach used in Okosun [13]. 

3.1. Sensitivity Analysis of R0  

We compute the sensitivity of 0R  to each of the parameters described in Table 
4. Using the formula  

m
n

m n
n m

γ ∂
= ×
∂

 

where n represents the variables of the model, and m the parameters.  

Sensitivity index of φ  given by 1
2 m

φ
φ δ
 

−  + 
 

 
Table 4. Sensitivity index of parameters. 

Parameter Hβ  1k  2k  g Hδ  M Mβ  Mδ  φ  

Sensitivity Index 0.5 –0.25 –0.156 –0.375 –0.719 0.125 0.5 –1.352 –0.272 
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Sensitivity index of g given by 1
2 h

g
g δ

 
−  +   

Sensitivity index of mδ  given by 1 2
2

m m

m mm
δ δ

φ δ δ
 
− − − + +   

Sensitivity index of hδ  given by 
1 2

1 1
2

h h

h hg k k
δ δ
δ δ

 
− − − + + +   

Sensitivity index of 1k  given by 1

1 2

1
2 h

k
k k δ

 
−  + +   

Sensitivity index of 2k  given by 2

1 2

1
2 h

k
k k δ

 
−  + +   

Sensitivity index of m given by 1 1
2 m

m
m δ

 
− +   

Sensitivity index of 1
2m m h hβ βΛ = = = Λ =   

Remark: Sensitivity indices of R0 evaluated at the baseline parameter values 
are given in the Table 5. 

From Table 5, the sensitivity index may be a complex expression, depending 
on different parameters of the system. But it can also be a constant value. Exam-
ple, the sensitivity index of Mβ , Hβ  = +0.5, means that increasing (or de-
creasing) Mβ , Hβ  by 10% increases (or decreases) R0 by 5%. 

3.2. Math Cad Simulation of the Model 

Parameter values: 

1 2

1 1 2

1

: 0.1,   : 0.5,   : 0.8,   : 0.6,   : 0.02,   : 0.5,   : 0.3,
: 0.9  : 0.8  : 0.5,   : 0.5,   : 0.7,   : 0.4,   : 100,

: 0.2,   : 0.3,   : 0.1,   : 0.4,   : 0.12

H H H

H H

M M M

q
g k k N

m

α α ρ β δ
ω γ µ

δ β φ

= Λ = = = = = =
= = = = = = =

Λ = = = = =

 

( )

( )

( )

( )

10 0
2 6 5 1 0 0

10 0
1 1 1

1 1 1 1 2 2 2 2

2 2 3

1 2 4 4

4 5

1 0 5 2 6 6

1 7 7

8 2
1 7 8

8 2
9 9

9 10

1

, :

H
H H

H

H
H

H

H H

H H

H

H

H

M M

M
M

H

M
M

H

M

Y Y
q Y Y Y Y

N

Y Y
g Y Y

N

g Y q k Y k Y Y
k Y Y
k Y Y Y

D t Y Y Y
Y Y Y Y

m Y Y
Y Y

m Y Y
N

Y Y
Y Y

N

Y Y

β
α ρ α δ

β
δ

δ

ω δ

γ δ

γ µ ρ δ

α µ α δ

δ

β
δ

β
φ δ

φ δ

 − Λ + + − − −



− −

+ Λ − − −

− +

− −

= − + +

+ − −

Λ − −

− −

− −

−







 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


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Vector of derivative values at any solution point (t, Y): 
Define additional arguments for the ODE solver: 

0 : 0t = : Initial value of independent variable 
1: 0t = : Initial value of independent variable 

[ ]T0 : 50 15 25 2 2 4 2 5 3 2 1Y = : Vector of initial function 
values 

3: 1 10num = × : Number of solution values on [t0, t1] 
( )1: Rkadapt 0, 0, 1, ,S Y t t num D= : Solution matrix 

Human (Table 6) 
0: 1t S= : Independent variable values 

1: 1HS S= : First solution function values 
2: 1HE S= : Second solution function values 

3: 1HI S= : Third solution function values 
4: 1HNI S= : Fourth solution function values 

5: 1HT S= : Fifth solution function values 
6: 1HR S= : Sixth solution function values 
7: 1HA S= : Seventh solution function values 

 
Table 5. Sensitivity indices of R0 evaluated at the baseline parameter values. 

Param HΛ  MΛ  ρ  
Hβ  2α  q 1α  1k  2k  g γ  

Hδ  µ  M Mβ  Mδ  φ  Hω  

Value 0.5 0.4 0.02 0.5 0.6 0.1 0.8 0.8 0.5 0.9 0.7 0.3 0.4 0.3 0.15 0.1 0,12 0.5 

 
Table 6. Solution matrix S1 for the system of ODEs 

 
0 1 2 3 4 5 6 7 

0 0 50 15 25 2 2 4 2 

1 0.01 49.469 14.824 24.737 2.108 2.178 3.99 2.394 

2 0.02 48.946 14.649 24.476 2.214 2.352 3.97 2.78 

3 0.03 48.431 14.477 24.218 2.317 2.523 3.96 3.159 

4 0.04 47.924 14.307 23.963 2.419 2.689 3.95 3.53 

5 0.05 47.425 14.138 23.71 2.518 2.852 3.94 3.894 

6 0.06 46.933 13.972 23.46 2.616 3.012 3.93 4.25 

7 0.07 46.449 13.808 23.212 2.711 3.167 3.93 4.6 

8 0.08 45.972 13.645 22.966 2.804 3.32 3.92 4.942 

9 0.09 45.503 13.485 22.723 2.896 3.469 3.92 5.278 

10 0.1 45.041 13,326 22.483 2.985 3.614 3.91 5.607 

11 0.11 44.585 13.17 22.245 3.073 3.756 3.91 5.929 

12 0.12 44.137 13.015 22.009 3.159 3.895 3.91 6.245 

13 0.13 43.695 12.862 21.776 3.242 4.03 3.91 6.554 

14 0.14 43.26 12.711 21.545 3.324 4.163 3.91 6.857 

15 0.15 42.832 12.561 21.316 3.405 4.292 3.91 … 
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Mosquitoes 
8: 1ML S= : Eighth solution function values 
9: 1MS S= : Ninth solution function values 
10: 1ME S= : Tenth solution function values 

11: 1MI S= : Eleventh solution function values 

3.3. Results and Discussion 

The susceptible human population HS  against time (Figure 6(a)), clearly 
shows a rapid exponential decline from the initial value to zero. Similarly, the 
variation of exposed human population HE  against time (Figure 6(b)) depicts 
an exponential decline from the initial value to zero. The variation of the in-
fected human population HI  against time (Figure 6(c)), also depicts an expo-
nential decline from the initial value to zero. The graphical profile of the varia-
tion of the non treated human population HNI  against time (Figure 6(d)), 
shows a sharp rise from the initial value to reach a maximum, and thereafter ex-
hibits an exponential decline to zero. The variation of treated human population 

HT  against time (Figure 6(e)), shows a sharp rise from the initial value to reach 
a maximum, and thereafter declines exponentially to zero. Similarly, the graphi-
cal profile of the variation of the removed human population HR  against time 
(Figure 6(f)), depicts a rise from the initial value to reach a maximum, and the-
reafter declines exponentially to zero. The graphical profile of the variation of 
the protected human population HA  against time (Figure 6(g)), shows a sharp 
rise from the initial value to reach a maximum, and thereafter declines exponen-
tially to a steady state. From the graphical profile of the variation of population 
of mosquito larva ML  against time (Figure 6(h)), we observe an exponential 
decline from the initial value to reach a steady state. The variation of the sus-
ceptible mosquito population MS  against time (Figure 6(i)), depicts a rise 
from the initial value to reach a maximum, and thereafter exhibits a sharp de-
cline. In the same manner, the variation of the exposed mosquito population 

ME  against time (Figure 6(j)), shows a decline from the initial value to reach a 
steady state. Finally, the variation of the infected mosquito population MI  
against time (Figure 6(k)), depicts a rise from the initial value to reach a maxi-
mum and then exhibits a decline.  

3.4. Conclusion 

Despite the availability of drugs, the malaria disease is still endemic in many 
parts of the world including developed countries. Elimination of malaria re-
quires maintaining the effective reproduction number R0 less than unity, as well 
as achieving low levels of susceptibility. In this research work, we developed a 
compartmental bio-mathematical model to study the effect of treatment in the 
control of malaria in a population with infected immigrants. We obtained the 
basic reproduction number, R0 and studied the stability of the disease-free equi-
librium of the model. Sensitivity analysis of R0 with respect to the model para-
meters was carried out on the compartmental vector-host malaria model with  
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(a)                                       (b) 

    
(c)                                       (d) 

    
(e)                                       (f) 

    
(g)                                       (h) 

    
(i)                                       (j) 

 
(k) 

Figure 6. (a) Population of susceptible humans against time; (b) Population of exposed 
humans against time; (c) Population of infected humans against time; (d) Population of 
non-treated infected human against time; (e) Population of treated humans against time; 
(f) Population of recovered humans against time; (g) Population of protected humans 
against time; (h) Population of mosquitoes larva against time; (i) Population of suscepti-
ble mosquitoes against time; (j) Population of exposed mosquitoes against time; (k) Pop-
ulation of infected mosquitoes against time. 
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eleven compartments. From the literature on modelling of vector-host malaria 
models, we discovered that many researchers failed to consider protective meas-
ures in their models, though some discussed it theoretically. Our major contri-
bution to the existing body of knowledge is incorporating the protective measure 
in our mathematical model. 
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