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Abstract 
 
Accurate model representatives of piezoelectric actuators (PEAs) are important for both understanding the 
dynamic behaviors of PEAs and control scheme development. However, among the existing models, the 
most widely used classical Preisach hysteresis model are incapable of representing the commonly-encoun- 
tered one-sided (non-negative voltage input range) hysteresis behaviors of PEAs. To solve this problem, a 
new rate-independent hysteresis model was developed for the one-sided hysteresis and then integrated with 
the models representative of creep and dynamics to form a single model for the PEAs. Experiments were 
carried out to validate the developed models. 
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1. Introduction 
 
Piezoelectric actuators (PEAs) have been widely used in 
micro-/nano-positioning systems due to their fine displace- 
ment resolution and large actuation force [1]. In such 
applications, accurate models of PEAs are usually requi- 
red for both understanding of their dynamic behaviors 
and controller design. A widely-used category of PEA mo- 
dels takes the form of a cascade of three sub-models, each 
of which representing the effect of hysteresis, creep, and 
vibration dynamics, respectively, e.g. [2]. While the mod- 
eling of the vibration dynamics and creep has been well 
addressed in the literature, there are still problems with the 
modeling of hysteresis. Most commercially available PEAs 
have a non-negative input voltage range and their corre- 
sponding hysteresis behaviors subject to such one-sided 
input range are referred to as one-sided hysteresis, as shown 
in Figure 1, which contains an initial ascending curve in 
addition to the hysteresis loops. It is observed in the au- 
thors’ earlier study [3] that the classical Preisach (CP) hys- 
teresis model [4] cannot represent such one-sided hys- 
teresis since it can not represent the initial ascending 
curve. This deficiency of the CP hysteresis model has 
been neglected in the literature, e.g. [5-8]. This problem 
of modeling the one-sided hysteresis was solved in [3] by 
developing a new rate-independent (RI) hysteresis model 
based on a novel hysteresis operator. 

On this basis, in this paper, this new RI hysteresis model  

 

Figure 1. One-sided hysteresis behavior measured from a 
PEA subjected to non-negative voltage input. 
 
is integrated with a vibration sub-model and a creep sub- 
model to form an integrated model for PEAs. The pa- 
rameter estimation scheme for such a model of PEAs is 
also developed. Experiments were conducted and the re- 
sults obtained were compared with simulation results to 
validate the model developed. 
 
2. Outline of the Rate-Independent (RI) 

Hysteresis Model 
 
The RI hysteresis model developed in [3] represents one- 
sided hysteresis behaviors as the combined effects of an 
infinite number of hysteresis operators, one of which is 
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shown in Figure 2. Compared to the Preisach hysteresis 
operator, the hysteresis operator in Figure 2 has one more 
lower saturation value to account for the initial ascending 
curve in one-sided hysteresis. The two switching values 
satisfy   . The hysteresis is then expressed mathe- 
matically as 

    
max min 0

, , d d
u u

f t u t
 

    
   

       (1) 

where  f t  is the hysteresis, i.e. the model output, 
 and minu  are the maximum and minimum input 
 in history, respectively [3]. 

maxu
 u t
The double integration suggests that the hysteresis 

model output is the combined effect of an infinite number 
of hysteresis operators with bounded values of   and  , 
which can be explained via the geometric interpretation 
shown in Figure 3. Each hysteresis operator  u t , , 


   

is assigned to a point  ,   on the α-β plane. All such 
 ,    points are in a region satisfying maxu   

T
  , 

min  which is referred to as the limiting triangle 0 . 
According to the values of 

0u 
  , ,u t  

S S
, 0  is divided 

into three regions denoted by 0 , 1 , and 2 , where 
T

S
0  , 1  , and 2  , respectively. The interface 

between  and the other two regions is a horizontal  0S
line characterized by    1 maxmax 0u t M M      



  
in which max  is the maximum local maximum. The in- 
terface between  and  is a staircase line with vertex  

M


1S 2S

coordinates , where ,i jm M 0,1, ,i m   and 1,2, ,j n  ,  
 

 

Figure 2. The novel hysteresis operator   , ,   u t [3]. 

 

 

Figure 3. Geometric interpretation of the RI hysteresis mo- 
del. 

jM and  are the historical local ma- xima and min- 
ima of 

im
 u t , respectively. The link in the 1 - 2  inter- 

face that attaches to the line 
S S

   is referred to as the - 
final link and it represents the influence of the changes in 
input  u t  to the shapes of , , and . This link  0S S1 2S

is horizontal and goes up at a speed of  u t  when  

  0u t  , and is vertical and goes left at a speed of  u t  
when   0u t 

0d

. Noting that  

  0S u t

d 0   , so Equation (1) can be reduced to 

     
1 2

1 2, d d , d d
S S

f t                (2) 

The motion of the final link will wipe out certain ver-  
texes and links, or  ,i jm M  pairs whenever   mu t m   
or   nu t M . A modified version of the wipe-out prop-
erty [4] of the CP hysteresis model governs such 
wipe-out processes. The modification is that in the RI 
hysteresis model, the first local minimum 0  and the 
maximum local maximum max  are never wiped out. 
Besides, the congruency property [4] of the CP hysteresis 
model still applies to the hysteresis loops but not to the 
initial ascending curve in the RI hysteresis model as the 
initial ascending curve is not part of any hysteresis loops. 

0m 
M

Equations (1) and (2) involve double integration which 
is difficult to implement in practice, so an alternative 
model expression without calculus is desirable and is 
given in [3]. The rationale behind this alternative model 
expression is that the 1  and 2  regions in Equation 
(2) can be treated as a result of the unification and sub-  

S S

traction of a series of triangular regions     1 1,i iS u t u t    

and     2 ,i iS u t u t  1 . Then the integration of  

  , ,u t   over each of such triangular regions can be 
pre-identified and used to calculate  f t  through a series 
of adding and subtracting operations. 

Specifically, each of such triangular regions represents 
the shape change in 1  or 2 as the input changes mo- 
notonically between two adjacent extrema 

S S
 iu t  and 

 1iu t   in the input history which are not wiped-out. The 
changes in the model output due to     1 1S u t  ,i it u  
and     2  are represented by the follow- 
ing two functions. 

1,iS u t u t i

      
    1 1

1 1 1
,

, ,
i i

i i
S u t u t

F u t u t d d    





     (3) 

      
    1 1

2 1 1
,

, ,
i i

i i
S u t u t

F u t u t d d    





     (4) 

Thus, the RI hysteresis model output can be expressed 
as a linear combination of     1 1,i iF u t u t   and  

    2 ,i iF u t u t 1 , as follows. Denoting two adjacent local  

minimum and local maximum by m and M, respectively, 

Copyright © 2011 SciRes.                                                                                 MME 



J. Y. PENG  ET  AL. 27

1

the following relationships related to Equations (3) and 
(4) are obtain by using the congruency property and the 
property of the initial ascending curve. 

   
 

 1

1 1

1 1
,

, ,

, d d M Mm
S M m

F M m F m M

f f    




    (5a) 

   
 2

2 2
,

2 2 2 2

, , d d

0

S M m

Mm M Mm Mm

F M m

f f f f

    




    





   (5b) 


 

2

2 ,  initial ascending curve not traversed 

0        initial ascending curve traversed 

F M m
 


,F m M

(5c) 

where j Mf  ( ) represents the part in 1,2j   f t  con- 
tributed by the jS  region at the moment when  u t  is 
initially increased form 0 to M; and j Mmf  ( 1,2fj  ) the 
part in  f t  contributed by the jS

M

 region at the mo- 
ment when  is subsequent decreased to m from M. 
Assume that the historical local minima and maxima of 

 that are not wiped out are  

mi

 u t

1m m
 u t

n 0 1n nm maxM0  
  0

0 0

 

m m

 

m M M

    dur- 
ing , and  

1 1 1 maxn n

u t
min   during 

. Then, if the input monotonically increases, i.e., 
, one has 
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0
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(6) 
and if the input monotonically decreases, i.e.,   0u t   
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    





 

(7) 
For the ease of parameter identification, define two 

new functions as 

  max 1 max ,0F M F M 

,



              (8) 

    1 2, ,G M m F M m F M m        (9) 

where  is the model output increment when 
 is increased from 0 to max  along the initial as- 

cending curve, and  is the model output dec- 
rement when  is subsequently decreased to m. The 

values of 

 maxF M

u t

 u t M
 ,G M m



 maxF M
M

 and  under different m, 
M, and max  are readily measurable from a hysterical 
plant, so suitable expressions of  and 

 ,G M m

F M



 max  ,G M m

0

km

 
can be found. This is to be described in Section 4. 

Finally, Substituting Equations (8) and (9) into Equa- 
tions (6) and (7) yields the alternative expression of the 
RI hysteresis model for practical uses. For   u t

  

 

1

1
1

, ,
n

k
k

n n

f t M

m






 maxF M

G M



 , ,

k kG M m

G u t m



 n

G    

   


(10) 

and for   0u t   

  

  

1

1
1

, ,
n

k
k

f t M

t






 max

,n

F M

G M u

 k kG M m  G km    




(11) 

 
3. A Model of Piezoelectric Actuators 
 
The model of PEA is developed by cascading a vibration 
sub-model and a creep sub-model to the above RI hys- 
teresis model, as shown in Figure 4.  u t  represents the 
voltage input, and  x t  represents the displacement of 
the PEA or the model output. 

The vibration sub-model is represented by means of a 
second order system under the assumption that the mass 
driven by the PEA is much larger than the mass of the 
PEA itself [9], i.e., 

  2
1 1n n   2 x t x t f t          (12) 

where   and n  are the damping ratio and the na- 
tural frequency, respectively; and  f t  is the hysteresis 
being represented by using the RI hysteresis model dis-
cussed in the previous section. Since the RI hysteresis 
 f t  does not introduce phase lag, the phase lag between 
 x t  and  u t  is resulted from the vibration sub-model 

(Given the fact that the magnitude of creep is very small, 
its phase lag can be neglected). Thus, the values of   
and n  can be estimated by fitting the frequency-phase 
response of Equation (12) to the measured frequency- 
phase response of a PEA. 

The parameter identification of the RI hysteresis model 
involves the identification of the functions  maxF M  
and  ,mG M . To do this, some input-output data or the 
values of  f t  corresponding to certain inputs  u t  
need to be found. However  f t  is difficult to measure 
in practice, so in this study such f (t) values is calculated 

 

 

Figure 4. Integrated model of a PEA. 
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from Equation (12) by using  1x t  and its derivatives 
when the PEA is subject to  u t . It should be noted that 
in this process, creep is again neglected due to its small 
magnitude and  x t  is taken as  1x t , which is meas- 
urable. The derivatives of  1x t  can be approximately 
found either by firstly passing through the measured 
 x t  through a low pass filter to suppress the noise and 

then differentiating the low pass filter output or by a state 
estimator such as an α-β-γ filter. Once such  u t  and f 
(t) data are obtained, a suitable expressions of  maxF M  
and  can then be found with their parameters 
estimated (to be discussed in Section 4). 

 ,G M m

The creep in Figure 4 is represented by means of a 
linear dynamic system model  taking  2G s  1x t


 as 

input and generating a creep displacement 2 x t .  2x t  
is then added to  1x t


 to obtain the total displacement 

output of the PEA, x t , as shown in Figure 5. The 
form and the parameters of  s2  can be determined by 
system identification methods. 

G

Eventually, with a voltage input , a displacement 
output 

 u t
 x t  in Figure 4 can be derived from Equations 

(10), (11), (12), and 

           
 

1 1 2 1

21

cG s X s X s X s X s X s

G s

    
 

 (13) 

where  1X s ,  2X s , and  X s  are the Laplace trans-  

forms of  1x t ,  2x t , and  x t  respectively. 
 
4. Experiments and Results 
 
4.1. Experiment Setup 
 
Experimental validations of the PEA model are carried 
out on a PEA (P-753, Physik Instrumente). The actuator 
can generate motion in a range of 15 μm with a resolu- 
tion of 0.5 nm. For displacement measurements, a built- 
in capacitive displacement sensor of the P-753 PEA with 
a resolution of 1nm was used. Both the actuator and the 
sensor are interfaced to a host computer via an I/O board 
(PCI-DAS1602/16, Measurement Computing Corporation) 
and controlled by SIMULINK programs. All measured 
displacements presented in this study were measured 
with a sampling interval of 0.05 ms. 
 
4.2. Vibration Sub-Model Parameter Estimation 
 
As mentioned in the previous section,   and n  in 
Equation (12) were estimated by fitting the phase fre- 
quency response of Equation (12) to the measured re- 
sponse of the PEA based on the method of least squares. 
The phase frequency response curve of the PEA displa- 
cements was measured by feeding sinusoidal voltages 

between 0 and 1000 Hz to the PEA and then calculating 
the phase differences between the input voltages and the 
measured output displacements. The fitted results are 
shown in Figure 6, from which   and n  were esti-
mated as 0.788 and 5352 rad/s, respectively. 
 
4.3. RI Hysteresis Sub-Model Parameter 

Estimation 
 
To identify  maxF M  and  ,G M  in Equations (8) 
and (9), the displacements of the PEA were measured 
under the voltage inputs determined by 

m

     2 2 sin 200 1.5pp ppu t V V t        (14) 

where pp  is the peak-to-peak magnitudes. Since the 
frequency of voltage input, i.e., 100 Hz, was high, creep 
was insignificant over a few periods of the waveforms 
and thus neglected. The minimum and maximum of the 
voltage applied to the PEA were set to 0 V and 70 V, 
respectively. 

V

pp  (or max ), M and m were then taken 
values from 0 V to 70 V with a step of 5 V, respectively 
and thus the series of 

V M

 u t  were determined. By apply- 
ing  u t  of different ppV or max to the PEA, the dis- 
placements of the actuator were measured. Each meas- 
ured displacement waveform was the 

M

 1x t
 

 in Equation 
(12) corresponding to a given . 1 u t x t  and  1x t

210
 

were estimated by an α-β-γ filter ( 8.7   , 
3 3.9 10  , 3102.4   ) from the measured  1x t . 

 1x t ,  1x t , and  1x t  were then substituted into Equa- 
tion (12) to calculate the “measured”  f t  correspond- 
ing to the given  u t . In the following, the values of 
 f t  and the corresponding  from the initial con- 

ditions of t
u t 

0 ,   0u t  , and  were exam- 
ined. Once 

 f t  0
 u t  was increased to reach a given max  

from  
M

 0 0u t   , the corresponding  f t


 value was 
found and taken as a value of . Similarly, once   maF M x

 

 

Figure 5. The creep sub-model, i.e., Gc(s) in Figure 4. 
 

 

Figure 6. Measured and estimated phase frequency responses. 
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the voltage was subsequently decreased from maxM M  
to a specific value of m, the  f t  value was found and 
taken again. This  f t

 ,m

 value was subtracted from the 
 value just measured and the result was taken 

as a value of  at this specific 
 maxF M 

G M ,M m  point. It  

was found that the measured points  M F M 



max max,  

resemble a smooth curve, and the measured points  
 , , ,M m G M m

 F M

 resemble a smooth surface. Hence  

max  was represented by a polynomial 

 max

2 3
0 1 max 2 max 3 max 4 max

F M

b b M b M b M b M     4



2

   (15) 

And  was represented by a trend surface  ,G M m

  2
1 2 3 4 5

2 3 2 2
6 7 8 9

3 4 3 2
10 11 12 13

3 4
14 15

,G M m p p m p M p m p Mm

p M p m p Mm p M m

p M p m p Mm p M m

p M m p M

    

   

   

 

(16) 

Then the values of the parameters in Equations (15) 
and (16) were estimated by using the maximum like- 
lihood method based on the measurements of  maxF M  
and  ,G M m . The estimated parameter values are shown 
in Table 1. With these parameters, the RI hysteresis of 
the actuators can be evaluated for any given input  u t  
by using Equations (10) and (11). 
 
4.4. Creep Sub-Model Parameter Estimation 
 
Creep is a slow effect. To identify the parameters involved 
in the creep sub-model, a step voltage input of 30V was 
applied to the PEA for an extended period of time (30 s). 
The output displacement  x t  of the PEA was measured. 

And the corresponding  1x t  was obtained by simula- 

tion using the identified hysteresis and vibration sub-mo- 
dels. Then  2x t , which is the measured output of  2G s   

 
Table 1. Estimated values of the parameters in Equations 
(15) and (16). 

Par. Value Par. Value Par. Value 

b0 4.84 3p  2.85 × 106 10p  362 

b1 –745 4
 p 2.26 × 104 11p  4.58 

b2 5.50 × 104 5p  –3.35 × 104 12p  –9.67 

b3 2.85 × 106 6p  3.01 × 103 13p  5.17 

4b  5.75 × 104 7p  46.7 14p  1.66 

1p  9.10 × 105 8p  –49.0 15p  –3.03 

2p  –2.77 × 106 9p  –178   

in Figure 5 induced by the input  1x t , was obtained by 
     2 1x t x t x t  . By using the System Identification 

Toolbox in MATLAB, an ARX (Auto Regressive with 
eXogenous input) model with a sampling period of 0.1 s 
and having 4 poles, 1 zero, and 1 sampling period of de- 
lay between output and input was identified by the least 
squares method to model creep. This ARX model was 
then converted into a continuous-time model as 

 
3 2

2 4 3 2

0.1804 4.181 47.84 9.404

14.10 610.1 1018 125.0

s s s
G s

s s s s

  


   
 (17) 

The simulated (by using Equation (17)) and the mea- 
sured creep displacements of the PEA are compared in 
Figure 7. 
 
4.5. Validation of the Model of PEA 
 
The input voltage  u t  used for validating the integrated 
model of PEA is shown in Figure 8. In the experiments, 
1 vT  was set to 50, 100, 200, 300, 400, and 500 Hz. 
Two of the measured results are shown in Figure 9; 
along with the simulation results obtained form the de- 
veloped model, for the purpose of comparison. The root- 
mean-square (RMS) errors and the maximum errors cal- 
culated over two periods of the  waveform are given 
in Table 2. 

 u t

It can be seen from Figure 9 and Table 2 that the PEA 
model integrating the RI hysteresis model with the vibra- 
tion and creep sub-models can represent the dynamics of 
the PEA with good accuracy (the RMS error is less than 
1% of the maximum displacement of the PEA) when the 
PEA is subject to voltage input signals with a frequency 
up to 400 Hz. The increase in the RMS error as the input 
frequency increases is considered as a result of the un- 
modeled high-frequency dynamics of the PEA. The higher 
 

 

Figure 7. Measured and simulated creep displacements. 
 

 

Figure 8. u(t) used for PEA model validation. 

Copyright © 2011 SciRes.                                                                                 MME 



J. Y. PENG  ET  AL. 

Copyright © 2011 SciRes.                                                                                 MME 

30 

is specifically designed to enable the representation of 
the one-sided hysteresis behavior. The resultant model of 
PEAs was validated through experiments. And it is con- 
cluded that the resultant model developed is capable of 
representing the dynamic behaviors of PEAs, including 
one-sided hysteresis, creep, and vibration dynamics ac- 
curately, with an RMS error less than 1% of the maxi- 
mum PEA displacement and in operations with frequent- 
cies up to 400 Hz. 
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Table 2. Errors in the PEA model validation experiments. 7. References 
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