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Abstract 
 
A mathematical analysis of a model for nutritional exchange in a capillary-tissue exchange system is pre-
sented in this paper. This model consists of a single file flow of red blood cell in capillary when diameter of 
red blood cell is greater than tube diameter. In this case, the cell must be deformed. Due to concentration 
gradients, the dissolved nutrient in substrate diffuses into surrounding tissue. Introducing approximations of 
the lubrication theory, squeezing flow of plasma in between the gap between cell and capillary wall have 
been solved with the help of approximate mathematical techniques. The computational results for concentra-
tion of dissolved nutrients, diffusive flux and normal component of velocity have been presented and dis-
cussed through graphs. We have also shown the effect of deformation parameter and permeability on these 
results. 
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1. Introduction 
 
A major difficulty in studying the microcirculation is the 
small dimensions of the blood vessels. Experimental data 
on Pressure, velocity, flow, shear stress, mass transfer, 
etc. are difficult to obtain in vivo. Hence, a model in vi- 
tro experiment that obeys geometric and dynamic simi- 
larity has been very useful. Model experiments, however, 
are sometimes impractical, tedious or too difficult to 
carry out. As such, mathematical modeling is an attrac- 
tive alternative. The most physiologically important fun- 
ction of the circulation of blood through capillaries is to 
supply nutrients to every living cell of the organism and 
also to remove various waste products from every cell. 
This function is fulfilled by the transport of the various 
components of blood across a capillary wall into the sur- 
rounding tissue. Nutrients, dissolved in plasma, enter the 
tissue from capillary wall. The material is transported by 
convection and diffusion in the capillary, whereas in the 
tissue the material is transported through diffusion only 
as the convection velocity in the tissue is very small. 

As blood flows through the capillary, the dissolved 
materials exchange between plasma and surrounding 
tissue. These materials (glucose, albumin and lactoge) pre- 
sent in dissolved state. Renkin [1] has considered that the 

solute, in plasma enters at a constant rate into the capil- 
lary from the arterial end, escapes by diffusion as the 
plasma in the gap between cell and wall. He has calcu- 
lated the reduced concentration of the solute at the ve- 
nous end and suggested that the transport of the sub- 
stances across the wall is affected by the plasma flow at 
the interface of capillary and tissue as well as the capil- 
lary surface area, permeability and partition coefficient. 

Some authors [2-4] proposed various representative 
models for blood in narrow capillaries. Two, three region 
flow models [5,6] have also been developed. Tandon et 
al. [7] have developed a model consisting of the viscous 
fluid representation which is identically same as the sus- 
pending medium of the blood. Other models have also 
been proposed to discuss the nutrition transport in capil- 
laries, but no work has been undertaken except Tandon 
et al. [8] in very narrow capillary i.e. when capillary is of 
radius less than diameter of red cell including the study 
of mass transfer which also constitute a very important 
aspect to analyze nutritional transport from plasma to the 
capillary wall [9]. Only Flow problems in very narrow 
capillary have been discussed till now by some authors 
[10-15]. While the blood flow in microvessels constitute 
attractive problems for mathematical analysis. As capil- 
lary size decreases, most of the cells are seemed to move 
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like piston and some time quite a few of them move to- 
gether, like stacked coins. In smaller capillaries, the cells 
enter edge wise and deform into the bullet shape with a 
convex leading edge. As the capillary size further de- 
creases the sheared core flow changes to the axial train 
configuration. The red blood cells then move in a single 
file surrounded by thin plasmatic layer near the capillary 
wall when blood flows through the capillary whose di- 
ameter is less than that of a red cell, For such cases 
Lighthill assumed undeformed cell shape near the wall to 
be parabolic and cell deformation is depend on local 
pressure. Barnard et al. has assumed the cell as flexible 
circular sheet deformed into hollow thimble shape with 
isotropic tension acting on the membrane. Zarda et al. 
[12] considered red blood cell with axisymmetric shape 
for analyzing the flows in capillary at low velocity. Lin 
et al. [13] has done same work as Bernard but the cell 
was represented as a solid bullet like shape with isotropic 
tension acting in the cell membrane. A theoretical model 
is used to investigate the effect of flow velocity on mo- 
tion and axisymmetric deformation of red blood cell in a 
capillary with an endothelial surface layer [15,16] A 
theoretical model is also proposed by Secomb et al. [17] 
to analyze the effects of the glycocalyx layer on hema- 
tocrit and resistance to blood flow in capillaries. They 
have considered the glycocalyx as a porous layer that 
resist penetration by red blood cells. 

In all the above mentioned work, the problem of nutri-
tional transport in very narrow capillaries has not been 
discussed. Therefore, in this paper our aim is to study the 
nutritional transport through the plasma, in between the 
cell and capillary wall, into the tissue. Lubrication theory 
is used to describe the squeezing flow of plasma in be-
tween the cell and tissue wall. A detailed analysis of nu-
tritional transport has been discussed in this paper. The 
overall system has been modeled as two region flow and 
diffusion models: squeezing flow of purely viscous fluid 
in between cell and capillary wall and Darcy’s flow of 
filtered plasma at the capillary tissue barrier into the po-
rous tissue. 
 
2. Formulation of the Problem 
 
We have interoduced two dimensional cartesian geome-
try (Figure 1). The red cell is modeled as axisymmetric 
containing an incompressible fluid. Single file flow of 
red blood cell is considered and cell to cell interactions 
are neglected. The fluid film thickness  of the plasma 
between the cell and the tissue wall is represented by 

h

   
2

0 4

x
h

a
 

                 (1) 

where  is the pressure in fluid film region,  is the 
focal length of the initially assumed shape of parabola  

P a

 

Figure 1. Diagram of single red blood cell in capillary sur-
rounded by tissue. 
 
and    0        represent the further deformation 
due to increased pressure in wedge formed in between 
the parabola and the capillary, U0 is the velocity of cell, 

0  is the velocity of the fluid.  and  are parameters 
representing coefficients of small deformation in cell and 
wall, 

V

0  is the reference pressure.  
Flow region is divided into two Sub-regions: 
1) Fluid Film region; 
2) Porous tissue region. 

 
2.1. Governing Equations 
 
2.1.1. Fluid Film Region 
Using the following assumptions 

1) Thickness of the fluid layer between the cell and the 
wall is assumed to be sufficiently small so that stoke’s 
equation can be reduced to the Reynold’s equation using 
lubrication theory; 

2) The suspending fluid is assumed to be in com-
pressible and Newtonian. 

The governing equation of motion for the flow of 
plasma in between the cell and capillary tissue wall are 
given by 

2

2

u

x y


  


  
            (2) 

0
y





               (3) 

but due to small leakage in to the porous wall we retain 
the continuity equation as:  

0
u v

x y

  
 
  

            (4) 

where u  and v  are the velocity component along 
axial and transverse directions and   is the viscosity of 
plasma in the capillary. 
 
2.1.2. Porous Tissue Region 
Following Darcy’s law the axial and normal components 
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of velocity in tissue region are given by 

,
K K

u v
x y
      
  

        (5) 

where u  and v  are the axial and transverse veloci-
ties of the fluid in the porous matrix, K is the permeabil-
ity of tissue. 

Using these velocities in the equation of continuity, we 
get the Laplace’s Equation for the pressure distribution 
in the porous tissue region as given below: 

2 2

2 2
0

x y

    
 

  
.           (6) 

 
2.2. Nutritional Transport 
 
2.2.1. Fluid Film Region 
The concentration of the dissolved nutrients has been 
assumed to be uniform due to the mixing action of vortex 
ring type plasma flow in between the two cells and for 
very small wedge in between cell and the wall. 
 
2.2.2. Porous Tissue Region 
Under the admissible assumptions, the approximate dif-
fusion equation in porous matrix is given by: 

2

2

d d

d d

c c
v D

y y

 
m  

 
           (7) 

where  the concentration of dissolved nutrients in the 
tissue region, D is the diffusion coefficient and m

c
    is 



the rate of production or consumption of the nutrient 
with in the tissue. 
 
2.3. Boundary and Matching Conditions 
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2.4. Non-Dimensional Scheme 
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where H is the thickness of porous matrix, 0  is the 
uniform concentration of the nutrient in the capillary, 

c
  

is the Partition coefficient. 
 
2.5. Governing Equation in Dimensionless Form 
 
Using the non-dimensional scheme, the Equations (2) to 
(7) are transformed as given below: 

2

0

1h x 
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2
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Re Re
;

K K
u v

H x H y

 
   


  

;     (11) 
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2.6. Boundary and Matching Conditions in 

Dimensionless Form 
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2.7. Solution of the Problem 
 
2.7.1. Velocity Distribution in Capillary Region 
We have solved the equation of motion using the bound- 

ary conditions 0

0

U
u

V
  at  and y h

u
u

y
 

 
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 at 

0y  . we get the solution for axial velocity as given 
below: 
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2.7.2. Pressure Distribution in Capillary Region 
Considering velocity distribution in the equation of con-
tinuity, the pressure distribution in capillary region is 
obtained as 
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2.7.3. Pressure Distribution in Tissue Region 
Solving Laplace Equation (6) using method of separation 
of variables and boundary and matching condition the 
expression for pressure distribution in tissue region is 
obtained as: 
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2.7.4. Concentration Distribution 
Solving Equation (13) we have obtained the expression 
for concentration distribution of the nutrients in tissue 
region as given below. 
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2.7.5. Diffusive Flux on the Capillary Tissue Interface 
Diffusive Flux on the wall is given as 

d

d
 F

c
D D
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             (18) 
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and expression is given as below 
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3. Results and Discussions 

nd permeability of the 
elocity, deffusive flux 

 

Parameter Description Value 

 
Effect of deformation of the cell a
issue on normal component of vt

on the interface and concentration distribution in the tis- 
sue has been shown through the graphs. The following 
values of parameter are used in the model (Table 1). 

Figure 2(a) represents the variation of normal com-
ponent of velocity with axial distance for different values 
of deformation parameter ε. Normal component of veloc-
ity decreases with axial distance increases. As deforma-
tion parameter increases the normal component of veloc-
ity also increases. These deformations may be due to 
viscous stress or velocity of the fluid or due to the in-
creased pressure developed in the gap. 

Figure 2(b) shows the variation of diffusive flux with 
penetration depth for different value of permeability. 
Diffusive flux on the wall decreases as the permeability 
of the tissue decreases. As deformation increases, the 
normal component of velocity increases. Therefore dif-
fusive flux also increases. The increase in diffusive flux 
is beneficial for the health of the tissue due to fact that 
due to increased diffusive flux nutrition supply to the 
deeper region also increase, therefore they get proper 
nutrition. 

Figure 3(a) represents the normal velocity at the wall 
with axial distance for different values of permeability. 
As permeability increases normal velocity also increases. 
This is due to the fact that as permeability increases more 
fluid enters into tissue region and cells of the tissue get 
more nutrition. 

Figure 3(b) represents the variation of diffusive flux 
in penetration depth for different values of deformation 
parameter. As deformation parameter decreases, the flux 

 
Table 1. List of parameter used in the model. 

K Prmeability 10–12 m2 

ε 

 
(a) 

 
(b) 

Figure 2. (a) Variation of Normal component of velocit
with axial distance for diffe  values of deformation pa-

s in penetra-

y 
rent

rameter; (b) Variation of Diffusive flux with penetration 
depth for different values of permeability. 
 
of dissolved material is hindered so the diffusive flux 

ith in the tissue decreases. It also decreasew
tion depth. 

Figures 4(a) and (b) describe the concentration dis-
tribution in tissue region with penetration depth for dif-
ferent values of permeability and deformation parameters 
respectively. Concentration decreases towards the no 
flux boundary of the tissue. When the permeability of the 
tissue increases the concentration increases. In this case, 
the cells of the tissue of the deeper region also get nutri- 
tion. Due to increase in permeability of the tissue more 
fluid enters into tissue so that more dissolved nutrients 
enter into the tissue along with the fluid. As deformation 
parameter increases concentration in the tissue region 
also increases. This is due to the fact that due to defor- 
mation, normal velocity and diffusive flux increase 
therefore more solute diffuses into the tissue region 
along with the fluid. The results are similar to those ob-
tained by Tandon et al. [17,18]. 

Defo eter 0.00 015 

Radial f tube 0. b 

Ra ll 

ρ 1.0 3 

V a 0.01 dy c/cm2

rmation Param 5,0.01,0.

γ  compliance o 001 μm/m

β dial compliance of the ce 0.06 μm/mb 

  Length of the capillary 30 μm 

σ Slip Parameter 0.05 

Density of blood 5 gm/cm

μ iscosity of plasm ne se

Re Reynold Number 0.25 
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(a) 

 
(b) 

Figure 3. (a) Variation of Normal component of velocity
with axial distance for different values of permeability; (b
Variation of diffusive flux w  penetration depth for dif- 

 this paper, we have developed a model for nutritional 
hrough microvessels. Our results for 

e deformation of the cell are useful for continuous flow 

he authors are greatly indebted to Prof P. N. Tandon 
rtment of Mathematics, of

.B.T.I. Kanpur) for their invaluable suggestions and

 
) 

ith
ferent values deformation parameter. 
 
4. Conclusions 
 
In
transport to tissue t
th
of blood in capillary, so that the tissue gets proper nutri-
ents. The studies introduce the geometry of the deformed 
cell in the vicinity of the porous tube wall is most im-
portant in determining the pressure drop whereas as the 
shape of the rest of the cell and particle spacing had mi-
nor influence on the results.  
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