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Abstract 
 
In this paper, we propose a modified trust-region filter method algorithm for Minimax problems, which 
based on the framework of SQP-filter method and associated with the technique of nonmonotone method. 
We use the SQP subproblem to acquire an attempt step, and use the filter to weigh the effect of the attempt 
step so as to avoid using penalty function. The algorithm uses the Lagrange function as a merit function and 
the nonmonotone filter to improve the effect of the algorithm. Under some mild conditions, we prove the 
global convergence. 
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1. Introduction 
 
Consider the following Minimax problem: 

1
min max ( )i
x R i m

f x
  

            (1) 

where ( ) : n
if x R R  is a twice continuously differen- 

tiable function. 
The problem (1) can be transformed into the following 

problem below: 
min
. ( )i

t
s t f x t


   0               (2) 

The Minimax problem is one of the most important 
non-differentiable optimization problems. It does not 
only have broader applications in engineering design, 
electronic microcircuits programming, game theory and 
so on, but also has very close relationship with nonlinear 
equations, muti-object programming, nonlinear progra- 
mmming, etc. There are some methods e.g., line search 
method SQP method, trust region method and the active- 
set method, for solving Minimax problems. C. Chara-
lambous and A.R. Conn [1] proposed the line search 
method. A. Vardi [2] presented the trust region method 
with the active-set methods. There are many other effec-
tive algorithms, see Z. B. Zhu [3], L. Gao [4], J. L. Zhou 
[5] ,Y. Xue [6]. 

Recently, the filter method for nonlinear programming 
has broader applications and good numerical effects, see 
[7-12]. The major filter methods are of two kinds: line 
search and trust-region methods. 

R. Fletcher proposed the global convergent SQP-filter 
trust-region method [9], based on this idea, Huang [13] 
proposed a filter method for Minimax problems. In [14], 
Ulbrich S. used the Lagrange function to replace the fun- 
ction and gave the local superlinear convergence proof of 
the SQP-filter trust-region method. 

The nonmonotone technique can improve the effect of 
the algorithm, relax the accept criteria of the attempt step. 
Recently, Su [15] and Shen [16] presented the idea of 
using nonmonotone filter methods for nonlinear pro-
gramming. Motivated by their idea, we present a modi-
fied filter-method for Minimax problems. The algorithm 
uses the Lagrangian function instead of the function it-
self as a merit function, and combines it with a non-
monotone filter technique to improve the effect of the 
algorithm.  

Consider the SQP subproblem of problem (2): 

1
min ( )

2
( ). ( ) 1

t T
k k

i
i

q s s s H s

f xs t f x s t

s

 

     
  

           (3) 

We use the following notations: 
1( , ) , {1, 2, , },x t ns s s R I m    (1,1, ,1)Te    

1 2( , ) ( ) , ( ) ( ( ), ( ), ( ))T
mh x t f x te f x f x f x f x     

( 1) ( 1)
k

n nH R     is a symmetric matrix, and it is the 

approximate Hessian matrix of the subproblem (3). *This work was supported by Chinese NSF Grant 10201026. 
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Remark: kH  is updated by the Powell’s safeguard 
BFGS update formula. 

This paper is organized as follows. The new algorithm 
is described in Section 2. Basic assumptions and some 
important lemmas are given in Section 3. The analysis of 
the global convergence is given in Sections 4 and 5. 
 
2. Algorithm 
 
Now we introduce some definitions about the filter used 
in this paper. 

Definition 1: [14] 
Lagrange function: 

( , , ) ( , ),Tl x t t h x t    

Constrain violation function: 

 22

2
( , , ) ( , ) ( , )Tx t h x t h x t     

For simplicity, we just use the following notations: 

( , , ) , ( , , ) ,x t l x t l      

( , , ) , ( , , )j j j j j j j jx t l x t l      

Definition 2: 
A pair ( , )k kl  obtained on iteration  is said to do- 

minate another pair 
k

( , )l ll  if and only if 

andk l kl ll      

A filter set is a list of pairs ( , )j jl  such that no pair 
dominates any other. We denote the set by  for each 
iteration k. 

k

Similar to the definition in Fletcher. and Leyffer, S. [9], a 
point (( , ), )x t s   can be accept to ( , )k k kl  if  

,j   or ,jl l   ( , ) ( , )j j k k kl l    

Here we use the nonmonotone filter idea in [14] a 
point (( , ), )x t s   can be accept to ( , )k k kl  if 

0 ( ) 1
max k r
r m k

     
  or 

( ) 1

,0
max ,

m k

k k rr
l l 


     k rl 

)

      (4) 

where ( , ) ( ,k r k r k k kl l     , 0 1     

 1(0) 0,0 ( ) min ( 1) 1,    m m k m k M  
( ) 1

,0
1,

m k

k rr



  , ,(0,1), 0, 1k r k r M     1   

Update of the filter set 
If ( , )k kl  is added to the filter, then the new filter set 

is updated as follows: 

 1 : ( , ) ( , ) ,min , 0         k k k j j k j k j kl l l l    

Definition 3: [14] 

( ) ( ),k kpred s q s   

 

( ) 1

,0
( ) max ,

, , ( )

m kl
k k k rr

x t
k k

k r

k

rared s l

l x s t s s

l





 
   

  


 

 ( ) , , ( ) ,l x t
k k k k kared s l l x s t s s     

where ( )k s  is the Lagrange multiplier of the subprob-
lem (3). 

In order to improve both the feasibility and optimality 
if  

 1/2( ) : ( ) , 0T
k k k k kpred s pred s h           (5) 

then we require 
( ) ( )l

krared s pred s k            (6) 

and call it is a f-type iteration. 
If 

 1/2( )k k kpred s              (7) 

then we add ( , )k kl  to the filter set and update the filter 
set, calling it is a h-type iteration . ( )k 

If the subproblem (3) is not compatible or 

 1/2 1 , 0, 0,k
   

     1  

we also call it is a h-type iteration . ( )k 
Now we describe the detailed algorithm below: 
Step 0 (Initialization) 
Give , , , , (0,1), , 0,         

min , : , 0 k   0   set the initial filter set . o

Step 1: Solve subproblem (3) to get an attempt step s. 
Step 2: If the solution of (3) is not compatible or  

 1/2 1 , 0,k
  

   1  

Then add ( , )k kl  to the filter set and update the filter 

set, let: 1 1( ), ( , ) ( , )k k k kx x t x t 
1

k i
i m

t max f
  k   go to Step 1; 

If s  , stop; else go to step 3. 
Step 3: If (4) fails, then , go to Step 1; else 

go to Step 4. 
: 0.5  

Step 4: If (5) holds but (6) fails, then , go to 
step 1, else go to Step 6. 

: 0.5  

Step 5: If (5) fails, add ( , )k kl  to the filter set and 
update the filter  to k 1k  , else go to Step 6. 

Step 6: :ks s , 1 1: , : )x
k k k k 1,t

k k k k (x x s t     t s s  

kH  to 1kH  , min  update . , go to Step 1. 

rk 2 to tep 5 ar called inn
tio

sic Assumptions and Lemmas 

A1: All iterations 

: 1k k 
Rema . Step  S e er circle itera- 
n steps, while Step 1, Step 6 are called outer circle 

steps. 
 
. Ba3

 
irst we make the following assumptions: F

( , )k kx t  remain in a close and 
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bounded convex set  . 
A2: The functions ( )if x  are twice continuously dif-

ferentible. 
A3: The matrix kH  is bounded, k HH M . 

Lemma 1: If th tion of the su
 then ( , )

e solu bproblem (3) is s = 
0, k kx t  is KKT point of p . t roblem (2)he 

Proof: It is not difficult to get the result by using the 
first order necessary optimality conditions. 

Lemma 2: All the elements ( , )j jl  in the filter set 

k  satisfy 0j  . 
Proof. Suppose, by contradicti t the result is not 
e, then th us

on, tha
tru ere m it a t ex ( , )j j kl   and 0j  , 
which means ( , )j jx t  is a feasible solution of the pro- 

blem (2), and

 

 2 1
1

, 0T
j jh 

  ; but 0jsj    so 

 1/20j j  ( )j jpred s pred sed on t ate ( )js

 of the filter set, 

, ba

mechanism

he upd

( , )j jl  
radicti

can’t be added to 
on.Thus, the Lemma the filter set, which is a cont

olds is sufficiently large enough: 

is proven. 
Lemma 3: If { }kl  is bounded below and one of the 

following h when k  

1
0 ( ) 1

maxk k r
r m k

     
  

( ) 1

1 1 ,0
, ,

m k

k k k k rr k rl l 
  

 
   max  l

then lim 0k k  . 

Proof. We consider t e following two cases: 
e 1: 

h
maCas 1

0 ( ) 1
r

r m k
x ,k k     

  

ently larfo ough. r k suffici
Let ( (l k

ge en
ax

0 ( ) 1r m k
)) m , ( ( ) 1 ( ) )k r k m k l k k       

  

th



en 

1 1
1) 1 0 ( )

1

( ( 1)) ax max

                ( ( )), ) ( ( ))

0 (
m

max(

  

  

      



  

 

k r k r
k r m k

k

l k

l k l k
  r m

))which implies ( (l k  converges. 
By ( ( )) ) 1)), (0,1)l k k( ( (l l      we get 

( (l k)) 0, k    

So          1 ( ( )) 0k l k   

1k

ge en
 th

. 

Case 2: 
) 1

1kl


  (

,0
max , ,

m k

k k r k rr
l  
     l

fo ently lar ough. 
will show at, for all 

1

k

rr

r k suffici
First we 1k   

1k

0 1k r kr
l l 0l      




     

    (8) 

We prove (8) by in ction. 
When 1

du
l l1k  , 1 0 1 0l    , assume

ho ove it also holds for 

1

   that (8) 

lds for 1,2, , k , we want to pr
1 . k

We consider the following two cases: 

 (a) ,0
max , kk k r kr rl l l

    
( ) 1m k   

1 1 0 1

k

k k k r kr
l l l     

     

(b) r

( ) 1 ( ) 1

, ,0 0
max ,

m k m k

k k kr kr rr kr
l ll  




 
      

Let ( ) 1p m k  , then 

k

k

 
 
 

 

10

1

, 0 10 1

1 1

,0 0 11

1 2

,1 0 11

1

, 0 1

, 0 ,0

  

  

p

k t kt

p k t

k t r k t kt r

k p k

k r r kr r k p

k p k

k r rr r k p

k p

k p r k pr

p

k t k tt t

l

l

l

l

l

l

 

    

1 ,k t kl 

      

     

   

  



 
  

  

 

  

  
  

 




 

   

    

   

  

 


 

 

 







 1

1 0

, 10
  

k p p

rr

p

k t k t kt



   

 

 

 
 

 



 

By the fact that 

1

, ,0
1, , 0

p

k r k r rt
   


    

1

1

0 11

1 1
0 11

      

      

1 0     

  

  

 
   



 


 

  

  

 



k p k

r r k p

k

r kr

k k
r r rr

l

l

 

 k r kl l r

So (8) is true. Since is bounded below, so 

Thus the Lemma is proven. 
Some assumptions are needed for Lagrange multiplier 

es

{ }kl  

1
, 0,r kr

k  


    

timates ( )k s . 
A4: There exits constants , 0y LM M  , all of the La-

grange mu ( )k s  satisfies:ltiplier estimates  

0 ( )k i y , 1, 2, ,s M i m    

  2( ) ( , )k k k Li i
s h x t s M     

Lemma 4: Under the assumptions A1-A4 e have  , w

 
2

2 2 4

2

1
( , ) ( 1)

4k k fh x t s m n M


        (9) 

  2 2

2 2 4 4

1
( , ) , ( ) ( 1)

4

:

k k k f

L

x t s s m n M

m M M





 4  

  
 


  (10) 

Proof. Use the Taylor Expansion: 

2 2

( )
( ) ( )x t

i k k k i k 1
1 1

( ) ( 1)
2 2

T

i k

xT x
i k f

f x
f x s t s t f x     s

s f y s n M

 
   

 



 
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which implies (9) holds. 

  
2

2

2 4

( , ) , ( ) ( , )

( ( ) ( (( , ) ))

k k k k k

T
k k k

x t s s h x t s

s h x t s M

 




  

  
 

where 2 2 2 21
( 1)

4L fM m M m n M     which implies (10) 

holds. Thus, the Lemma is proven. 
 
4. The Well Definedness of the Algorithm 
 

Lemma 5: Let 
( , )

min
j j k

k j
l

 





, when 4
k M  , 

 ( , ) , ( )k k kx t s s  can be accept to .k  

Proof. From the definition of k , Use the result of 
(10), when 4

k M  have  , we

so 

 ( , ) , ( ) max ( , ),k k k r r k r kx t s s l         , 
0 ( ) 1

k k
r m k  

 ( , ) , ( )k k kx t s s  can be accepted to .k  
Thus, the oven. 
Lemma 6: umptions 

Lemma is pr
 Under the ass A1-A4, if ( , )x t   

oblem )
( , )

is a feasible point ,but not a KKT point of the pr  
ere must exit a 

(2
then th neighborhood N  of * *

  x t , and 
constants  , ̂ , ̂ >0

e   satisfying (11), the sub
 for all ( , )k kx t N  ,  and all 

ave a so-th problem must h
lution, and  

1
12

k
  

  , 

1/2 2 1/2 ˆˆ ( )k k
                 (11) 

 1/21
( )

3k kpred s                (12) 

( ) ( )l
krared s pred s  k

Proof. From the results of Lemma7 in [13], there must 
exit a neighborhood  of

         (13) 

 ( ) ( , ) ,l
k k krared s x t s   ( )s      (14) 

N  * *( , )x t , and some constants 
, , 0    , for all  and ( ,k kx t ) N 

2k k( , )h x t     , 

s a ion, athe subproblem (3) ha  solut nd 

2
( ) (( , ) )k k kared s h x t s

1
, ( ) ( ),

2k k kpred ared s s

 

 

 


   (15) 

next we will prove, there must exit , when (11)  

holds, then 

( )s pred

ˆ ˆ, 
1

12
k

  
   and (12)-(14) holds. 

If 
1

12
k

  
 

1/2( , )T
k k k kh x t   and the results of (15) we can deduce 

1/2, ) ( )k k k kpre x t pred s

1/2
k

( ) (

1 1

T
k kd s h 

3 6




    
 

If 

 

 

, then 
1 1

1 2 2
k

  


 
  , from 

1/2) k1(
6  





  then 

1/21
( ) ( , )

3
T

k k k kpred s h x t  k       

So if we take 
1

1ˆ , ,6
1

max    







    
  

 

then  1/21
( )kpred s

3 k    , (12) holds. 

From the definition of 





( )l
krared s  

 


2

( ) ( ) ( ) ( , ) )

( ) ( ) ( , ) )

( 1)
2

 







1
( )

   
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l T T
k k k k k k k
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k k k k

T
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ared s h t s
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and by Taylor Expansion we know 

 k k s h x

 k yared s

21
( ) ( ) ( 1)

2k kared s pred s n M   H . 

So we can deduce 



2
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



2

1 1
  ( 1) ( 1)

2 2
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1 1
  ( 1) ( 1)

2 2

1
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
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 



 

 

     
 

   
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 
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By simple calculation we know that if 

1

1
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


 
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 
4

( ) ( , ) , ( )

1

3

l
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 
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if we take So 
1

3

2

1

3 :
M






 
 

   
  
 


 

then 
take  

 then (13)-(14) hold Thus, the Lemma 

Lemma 7: Under the assumptions A1-A4, the inner 
on terminates finitely. 

 a KKT 
point, other

 ( ) ( , ) , ( )l
k k k krared s x t s s   . 

From the discuss above we know if we 
 1 2

ˆ max ,   
is proven. 

s. 

iterati
Proof. If 0s  , the algorithm terminates at

 if the inner iteration does not terminate 
finitely, then the rule for decreasing   ensures  


wise,

0 . 
We consider the following two cases: 
Case 1: 0k   

When 0  , 1/2 1
k

  
   cannot hold, so the al-

gorithm will enter a restoration phrase at step 2 and ter-
minates finitely. 

Case 2: 0k   This means ( , kkx t )  is a feasible 
po

f  satisfie
int. 
When , i s 

 
0  

 
1

1/2 2 1/2 4ˆˆ0 min ,k M      
      k k  

 

 the result of Lemma 6, the subproblem (3) must 
be ible a 2) . From Lemma 5 and 
(14) we know that 

From
 compat nd (1 -(14) holds

( , )k kx t s  can be accept to  

( , )k k kl . So all th itions for f-type step are 

satisfied and the inner iteration terminates successfully. 
 

Lemma 8: 
 

e cond

5. Global Convergence 
 

Under the assumptions A1-A4, if the algo-
rithm does not terminate finitely, and there are infinite

oints added to the filter set, then lim 0p k k    
Proof. Let 

( ) 1
max ,max ,

m k
l l      ,00 ( ) 1

k r k k k r k r ktr m k
     

We consider the following two cases: 
Case 1: 1 ,k

l

k

om the result
k  sufficiently la  then 

fr we know 
      for k rge,

s of Lemma 3, lim 0k k   
 a subset Case 2: ue, define  as 

follows: the first element  of  is the fi ex 
w

 if Case 1 is not tr 1

k 1 rst ind
hich satisfies j k   , and the next element k   is 

th hie index w ,j kch satisfies j k

m Ca

   . From the 
definition of the filter set, we can deduce that: 

1,k k k
l l k 

From the proof of the Lem a 3, se 2, we know that 

10,  k k

     

lim   . 

For k kj   , it is obviously j k 0   .  

Thus, the Lemma is proven. 
Theorem 1: Under the assumptions A1-A4, if the  

al
an accumulation point which is a KKT oint.  

Proof. We discuss it in two cases: 
se 1: there e iterations. 

gorith-m doesn’t terminate finitely,then there must exit 
 p

1) Ca  are infinite h-typ
From Lemma 8 we know lim 0k k  , from the up-  

date mechanism of the filter set, there must exit a subset 
S   , 1 ,k k k k S      . 

Without loss of generality,we can assume that 

* *k S k klim ( , ) ( , )x t x t  

from which we know * *( , )x t point. 
If, suppose, by contradict

 is a feasible 
ion , * *( , )x t  

point , then from Lemmas 6 and 7, we know that if:  
is not a KKT 

    
k k k 

1
1/2 2 1/2 4ˆˆ min , :M           

 
 . (15) 

ns for ied and 
sfully

Then all the conditio  f-type step are satisf
the inner iteration terminates succes . 

Because 0k k   , the upper bound   will be 
1/2 2 1/2greater than twice the lower bound . 

Initially a value 

ˆ ( )k k
   


min      is chosen, succes

halving 
sively 

  will ev cate a value in the in-
te

entually (a) lo
rval (15), or (b) locate a value to the right of this inter- 

val. It is obviously that  ( ) 0pred s   ukk

om the o f s, if (b) is true, note that 

nder case (a). 

Fr ptimality o

creases, so we  ( )pred s  is nondecreasing if   k

know 

 in

 ( ) 0kpred s  , which means a f-type iteration will 

occur, and it is a contradiction. 
2) Case 2: there are only  iterations. 
That means for k K  sufficiently large, no filter en-

tries are made and 

 finite h-type
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k k krared s pred

( )l
krared s

k s h    
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Similar to the proof of L mma 3 we can deduce: e

1
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K m K

l 1min( , ) 1/2x k r Mk
r r K

r K
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Because is bounded below, we know that 
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1 ( )max

k k r M T
k K m K r K r r rr K
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{ }kl  

 ( ) ( ) 0,
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Without loss of generality,we can assume that 
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* *( , )
 is a 

se, on the contrary, feasible point.If, suppo x t  is not 
a KKT point .Note that for , k Kk K     from Lemma

know that
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