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Abstract 
 
Partial differential equations arise in formulations of problems involving functions of several variables such 
as the propagation of sound or heat, electrostatics, electrodynamics, fluid flow, and elasticity, etc. The pre-
sent paper deals with a general introduction and classification of partial differential equations and the nu-
merical methods available in the literature for the solution of partial differential equations. 
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1. Introduction 
 
An equation involving derivatives or differentials of one 
or more dependent variables with respect to one or more 
independent variables is called a differential equation. 
The study of differential equations is a wide field in pure 
and applied mathematics, physics, meteorology, and en- 
gineering, etc. All of these disciplines are concerned with 
the properties of differential equations of various types. 
Pure mathematics focuses on the existence and uni- 
queness of solutions, while applied mathematics empha- 
sizes the rigorous justification of the methods for appro- 
ximating solutions. Differential equations play an im- 
portant role in modeling virtually every physical, tech- 
nical, or biological process, from celestial motion, to bri- 
dge design, and interactions between neurons. Diffe- 
rential equations which are used to solve real-life pro- 
blems may not necessarily be directly solvable, that is, 
do not have closed form solutions. Instead, solutions can 
be approximated using numerical methods. Mathema- 
ticians also study weak solutions (relying on weak de- 
rivatives), which are types of solutions that do not have 
to be differentiable everywhere. This extension is often 
necessary for solutions to exist, and it also results in 
more physically reasonable properties of solutions, such 
as possible presence of shocks for equations of hyper- 
bolic type. 

The theory of differential equations is quite developed 
and the methods used to study them vary significantly 
with the type of the equation. 

A differential equation involving derivatives with re- 
spect to single independent variable is called an ordinary 
differential equation. In the simplest form, the dependent 
variable is a real or complex valued function, but more 
generally, it may be vector-valued or matrix-valued: this 
corresponds to considering a system of ordinary differen- 
tial equations for a single variable. Ordinary differential 
equations are classified according to the order of the 
highest derivative of the dependent variable with respect 
to the independent variable appearing in the equation. 
The most important cases for applications are first-order 
and second-order differential equations. In the classical 
literature, the distinction is also made between diffe- 
rential equations explicitly solved with respect to the 
highest derivative and differential equations in an im- 
plicit form. 

A differential equation involving partial derivatives 
with respect to two or more independent variables is 
called partial differential equation. The partial differen- 
tial equations can also be classified on basis of highest 
order derivative. 

Some topics in differential geometry as minimal sur- 
faces and imbedding problems, which give rise to the 
Monge-Ampere equations, have stimulated the analysis 
of partial differential equations, especially nonlinear equ- 
ations. Moreover, the theory of systems of first order 
partial differential equations has a significant interaction 
with Lie theory and with the work of E. Cartan. 

The development of partial differential equations in 
the 18th and 19th century is given in Kline’s book [1].  
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Until the 1870, the study of partial differential equation 
was mainly concerned with heuristic methods for finding 
solutions of boundary value problems as well as explicit 
solutions for particular problems (for an example, the 
solution of Dirichlet boundary value problem = 0, u  

introduced by Riemann). 2 in  ,u   
Poincaré [2] gave the first complete proof of the exi- 

stence and uniqueness of a solution of the Laplace equa- 
tion for any continuous Dirichlet boundary condition in 
1890. In a fundamental paper of, Poincare [3] established 
the existence of an infinite sequence of eigenvalues and 
corresponding eigen-functions for the Laplace operator 
under the Dirichlet boundary condition. Picard applied 
the method of successive approximation to obtain solu- 
tions of nonlinear problems which were mild perturb- 
ations of uniquely solvable linear problems. The constru- 
ction of elementary solutions and Green’s functions for 
general higher order linear elliptic operators was carried 
through to the analytic case by E. E. Levi [4]. Up to 
about 1920’s solutions of partial differential equations 
were generally understood to be classical solutions, that 
is,  for a differential operator of order  kC .k

Keeping in view the requirement of the new resear- 
chers, the present paper describes the basic fundamentals 
of partial differential equations which has been collected 
from a large number of research articles published in re- 
puted journals and literature available in the books with 
the intension to provide all important relevant material in 
a condense form related to partial differential equations 
and numerical methods for their solutions. Also, since 
analytical and computational solution of partial diffe- 
rential equations is the major concern from the early 
years, this paper gives a small step towards the deve- 
lopment of computational analysis of partial differential 
equations, which have lot of utilization in the field of 
science and engineering. 
 
2. Classification of Partial Differential 

Equations 
 

Both ordinary and partial differential equations are broa- 
dly classified as linear and nonlinear. A linear partial di- 
fferential equation is one in which all of the partial deri- 
vatives appears in linear form and none of the coeffi- 
cients depends on the dependent variables. The coeffici- 
ent may be function of the independent variables. A non- 
linear partial differential equation can be described as a 
partial differential equation involving nonlinear terms. 
 
2.1. Types of Non-Linear Partial Differential 

Equations 
 
The non-linear partial differential equations describe many 

different physical systems, ranging from gravitation to 
fluid dynamics and have been used in mathematics to 
solve problems such as Poincare conjecture and Calabi 
conjecture. 

A non-linear partial differential equation is known as 
semi-linear if it is linear in highest order derivatives and 
the coefficients of highest order derivatives depend only 
on independent variables.  

 1
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A nonlinear partial differential equation is known as 
quasi-linear if it is linear in highest order derivatives and 
the coefficients of highest order derivatives depend on 
independent variables as well on lesser order derivatives.  
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A nonlinear partial differential equation is known as 
fully non-linear if the coefficients depends on dependent 
variable or the derivatives appear in nonlinear form.  

Example 2.1 

=   is linear equationxx yy x yf f f f f xy     (3) 

2 =   is semilinearxx yy x yaf bf f f c       (4) 

2 = 0  is quasilinearx xx y yy xf f f f f f      (5) 

= 0  is nonlinearxx yy x yff f af bf      (6) 

where a, b are functions of x, y and c is function of x, y 
and f. 

But further classification into elliptic, hyperbolic, and 
parabolic equations, especially for second-order linear 
equations, is of utmost importance. For more study on 
linear and quasi linear elliptic equations, see [5,6].  
 
2.2. Classification Based on Discriminant 
 
The general quasi linear second-order non-homogeneous 
partial differential equation in two independent variable 
is  

=xx xy yy x yAf Bf Cf Df Ef Ff G         (7) 

The classification of partial differential equations de- 
pends on the sign of discriminant  as fallow: 2 4B A C

,

,

,

1) If  the partial differential equation 
is hyperbolic.  

2 4 > 0B AC

2) If  the partial differential equation 
is parabolic.  

2 4 = 0B AC

3) If  the partial differential equation 
is elliptic.  

2 4 < 0B AC

Copyright © 2011 SciRes.                                                                                  AM 
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2.3. Eigenvalue Based Classification of Partial 
Differential Equations 

 
Since method for classification of partial differential equ- 
ations fails if it is partial differential equation in three or 
more independent variable then we are not able to find 
discriminant. 

Let us consider a general second order partial equation 
in n independent variables 

11 12 13 11 1 1 2 1 3 1

21 22 23 22 1 2 2 2 3 2

1 2 31 2 3

1 2 31 2 3
= 0.

x x x x x x n x xn

x x x x x x n x xn

n x x n x x n x x nn x xn n n n

x x x n xn

a u a u a u a u

a u a u a u a u

a u a u a u a u

b u b u b u b u cu

   

   

   

    





    




 

(8) 
which also can be written in compact form as:  

2

=1 =1 =1

= 0.
n n n

ij i
i j ii j i

u u
a b cu

x x x

 
 

         (9) 

Then coefficient matrix of highest order derivatives is  
= [ ]ijA a . 

Let   be an eigenvalue of A  corresponding to ei- 
genvector X   

=AX X  

= 0AX X  

( ) =A I X 0  

= 0               Since X 0A I   

then  

11 12 1

21 22 2

1 2

= 0














   


n

n

n n nn

a a a

a a a

a a a

. 

The characterisic equation will have  roots as n  
eigenvalues. 

n

Characterization of differential equation is based on 
following: 
 If any eigenvalue is zero, then partial differential equ- 

ation is parabolic.  
 If all eigenvalues are non-zero and one eigenvalue 

has opposite sign, then partial differential equation is 
hyperbolic.  

 If all eigenvalues are nonzero having same sign, then 
partial differential equation is elliptic. 

Example 2.2 Consider the following differential equ- 
ation of flow:  

 
2 2

2
2 2

1 =M
x y

 


 
 

 

where M  is Mac number.   
1) First we characterize by discriminant 

2

2 2

= 0, = 1 , = 1, 

then  4 = 4(1 ) = 4( 1).

B A M C

B AC M M



 


2   

 

 If flow is subsonic i.e. < 1,M  then  
2 4 <B AC 0

0

0

. 
The equation of flow is elliptic.  

 If flow is sonic i.e. = 1,M  then  
2 4 =B AC . 

The equation of flow is parabolic.  
 If flow is subsonic i.e. > 1,M  then  

2 4 >B AC . 
The equation of flow is hyperbolic.  
2) Now by eigenvalues  

21 0
=

0 1

M
A  

 
 

 

   
2

21 0
 = =  

0 1


 


 1, 1 

 
 



M
A I M . 

 If < 1,M  then all eigenvalues are nonzero and of 
same sign thus equation of flow is elliptic. 

 If = 1,M  then all eigenvalues are zero thus equ- 
ation of flow is parabolic.  

 If > 1,M  then all eigenvalues are nonzero and of 
one eigenvalue of opposite sign thus equation of flow 
is hyperbolic.  

 
2.4. Significance of Classification 
 
The classification of a partial differential equations is 
intimately related to the characteristics of the partial 
differential equations. The characteristics are  1n  - 
dimensional hyper-surfaces in n-dimensional hyper- 
space that have some very special features. In two-dim- 
ensional space, which is the case considered generally, 
characteristics are paths in the solution domain along 
which information propagates. In other words we can say 
information propagates throughout the solution domain 
along characteristics. 
 
2.5. Classification by Physical Problems 
 
Physical problems falls into one of the following general 
classification: 

1) Equilibrium Problem;  
2) Propagation Problem; 
3) Eigenvalue Problem.  
Equilibrium Problem: Equilibrium problems are 

steady state problems in closed domain  in 
which the solution 

( , )D x y
( , )f x y  is governed by an elliptic 

0,  

Copyright © 2011 SciRes.                                                                                  AM 
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partial differential equations subject to boundary con- 
ditions specified at each point on the boundary  of 
the domain. 

B

).

Such type of problems have no real characteristic and 
thus the solution at every point in the solution domain is 
influenced by the solution at all other points and the 
solution at each points influence the solution at all other 
points. 

Equilibrium problems are solved by method of relaxa- 
tion numerically. 

Propagation Problem: Propagation problems are ini- 
tial value problems in open domains. Here by open do- 
main means that open with respect to one of the in- 
dependent variables.  

Example 2.3 

0=  with initial condition ( , ) = (t xxf f f x t f x  

Eigenvalue Problem: Eigenvalue problem are special 
problems in which the solution exits only for special 
values (i.e. eigenvalues) of a parameter of the problem. 
The eigenvalues are to be determined in addition to the 
corresponding configuration of the system. 

 
2.6. Types of Conditions 
 
Initial Value Problem: An initial value problem is one 
in which the dependent variable and possibly its deriva- 
tives are specified initially (i.e. at time ) or at the 
same value of independent variable in the equation. 
Initial value problems are generally time-dependent pro- 
blems.  

= 0t

Example 2.4 
2

02
= , ( , ) = (

u u
u x t f x

t x
 

 
).   

Boundary Value Problems: A boundary value pro- 
blem is one in which the dependent variable and possibly 
its derivatives are specified at the extreme of the in- 
dependent variable. For steady state equilibrium pro- 
blems, the auxiliary conditions consists of boundary con- 
ditions on the entire boundary of the closed solution 
domain. There are three types of boundary condition.  

Example 2.5 Let  be a bounded domain in  
with a smooth boundary  and let 

 n
, :f     

be a locally Hölder continuous function. The BVP  

= ( , ), in u f x u             (10) 

= 0,on u                 (11) 

is called nonlinear elliptic boundary value problem. This 
type of BVP arises in several domains, for example in 
physical problems involving the steady-state tempera- 
ture distribution see [7-9].  

1) Dirichlet boundary condition: The value of the 
function  is specified on the boundary. The depen- 
dent variable of the partial differential equation are pre- 

scribed in domain at different points. For example if an 
iron rod had one end held at absolute zero then the value 
of the problem would be known at that point in space. A 
Dirichlet boundary condition imposed on an ordinary or 
a partial differential equation specifies the values of a 
solution is to take on the boundary of the domain. The 
question of finding solutions to such equations is known 
as the Dirichlet problem as in (10).  

f

2) Neumann boundary condition: The value of de- 

rivative normal to the boundary is specified (
f

n




 is 

specified on the boundary). For example if one iron rod 
had heater at one end then energy would be added at a 
constant rate but the actual temperature would not be 
known. A Neumann boundary condition imposed on an 
ordinary or a partial differential equation specifies the 
derivative values of a solution is to take on the boundary 
of the domain. For example  

= ( , ), in u f x u   

= 0,on .
u

x





 

3) Mixed boundary condition: The linear combi- 
nation of Dirichlet and Neumann boundary conditions:  

f
af b

n





 

is specified on the boundary. 
Mixed boundary conditions are also known as Cauchy 

boundary condition. A Cauchy boundary condition im- 
posed on an ordinary or a partial differential equation 
specifies both the values a solution of a differential equ- 
ation is to take on the boundary of the domain and the 
normal derivative at the boundary.  

= ( , ), in u f x u   

1 2 = 0,on .
u

c c u
x


 


 

 
3. Various Methods for Solving Partial 

Differential Equation 
 
In literature various method exits for solution of partial 
differential equations. Here we will discuss some of them 
briefly as following: 

1) Finite Difference Method: The finite difference 
method is a numerical procedure which solves a partial 
differential equation by discretizing the continuous phy- 
sical domain into a discrete finite difference grid, appro- 
ximating the individual exact partial derivatives in the 
partial differential equations by algebraic finite diffe- 
rence approximations (i.e. FDA), substituting the FDA’s 
into the partial differential equations to obtain an alge- 

Copyright © 2011 SciRes.                                                                                  AM 
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braic finite difference equation(FDE), and solving the 
resulting algebraic finite difference equations for the 
dependent variable. 

For detailed study on finite difference method, we en- 
courage to readers to consult the references [10-19]. 

2) Finite Volume Method: The finite volume me- 
thod is a method for representing and evaluating partial 
differential equations in the form of algebraic equations. 
Similar to the finite difference method, values are calcu- 
lated at discrete places on a meshed geometry. “Finite 
volume” refers to the small volume surrounding each 
node point on a mesh. In the finite volume method, volu- 
me integrals in a partial differential equation that contain 
a divergence term are converted to surface integrals, us- 
ing the divergence theorem. These terms are then eva- 
luated as fluxes at the surfaces of each finite volume. 
Because the flux entering a given volume is identical to 
that leaving the adjacent volume, these methods are con- 
servative. The method is used in many computational 
fluid dynamics packages 

One advantage of the finite volume method over finite 
difference methods is that it does not require a structured 
mesh (although a structured mesh can also be used). Fur- 
thermore, the finite volume method is preferable to other 
methods as a result of the fact that boundary conditions 
can be applied non-invasively. This is true because the 
values of the conserved variables are located within the 
volume element, and not at nodes or surfaces. Finite vo- 
lume methods are especially powerful on coarse nonu- 
niform grids and in calculations where the mesh moves 
to track interfaces or shocks. 

For more details on finite volume method, we refer to 
[20-22].  

3) Finite Element Method: The finite element me- 
thod, where functions are represented in terms of basis 
functions and the partial differential equations is solved 
in its integral (weak) form. In the finite element method 
(FEM) the domain  is partitioned in a finite set of 
elements , so that  i   =i j    for ,i j  and 

= .i   Usually one takes for i  triangles or 
quadrangles. Then the function is approximated by 



= (h i iu a x ),  where i  are functions that are poly- 

nomials on each i  (i.e. piecewise polynomials). Usua- 
lly the functions i  are continuous polynomials of a 
low degree. Further they are constructed so that their su- 
pport extends only over a small number of elements. 

Now we will give detail discussion of Finite element 
method.  

 
4. Finite Element Method 
 
The key idea: The finite element is a numerical method 

like finite difference method but it is more general and 
powerful in its application to real-world problems that 
involve complicated physical geometry and boundary 
conditions. 

In FEM, a given domain is viewed as a collection of 
sub-domains, and over each sub-domain the governing 
equation is approximated by any of the traditional vari- 
ational methods. 

The main reason behind taking approximate solution 
on a collection of sub-domains is the fact that it is easier 
to represent a complicated function as a collection of 
simple polynomials. 

The method is characterized by three features: 
1) The domain of the problem is represented by a co- 

llection of simple sub-domains called finite elements. 
The collection of finite elements is called the finite ele- 
ment mesh.  

2) Over each finite element, the physical process is 
approximated by functions of the desired type and alge- 
braic equations relating physical quantities at selective 
points, called nodes of the element are developed.  

3) The element equation are assembled using conti- 
nuity and/or “balance” of physical quantities.  

In FEM, we seek an approximation un of u in the form  

=1 =1

=
n n

n j j
j j

u u u c j j             (12) 

where ju  are the values of n  at the element nodes u

j  are the interpolation function, jc  are coefficients 
that are not associated with nodes, and π j  are the 
associated approximation functions. Direct substitution 
of the such approximation into the governing differential 
equation does not always result, for an arbitrary choice 
of the data of the problem, in a necessary and sufficient 
no. of equations for the under-determined coefficients 

ju  and jc  Therefore a procedure whereby a necessary 
and sufficient number of equations can be obtained is 
needed. 

There is only one method of finite element model of 
the same problem. There can be more than one finite 
element model of the same problem. The type of model 
depends on the differential equations, method used to 
derive the algebraic equations for the undetermined coe- 
fficients over an element, and nature of the approxi- 
mations function used.  
 
4.1. Variational Principles and Methods 
 
The idea of using a variational formulation of a boundary 
value problem for its numerical solution goes back to 
Lord Rayleigh (1894,1896) and Ritz (1908), see, e.g., 
Kantorovich and Krylov [13]. In Ritz’s approach the 
approximation solution was sought as a finite linear com- 

Copyright © 2011 SciRes.                                                                                  AM 
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bination of functions such as, for instance, polynomial or 
trigonometric polynomials. The use in this context of 
continuous piecewise linear approximating function 
based on triangulation adapted to the geometry of the 
domain proposed by Courant (1943) in the paper based 
on an address delivered to the American Mathematical 
Society in 1941. Even though this idea had appeared 
earlier, also in work by Courant himself (see Babuska 
[23]), this is often thought as the starting point of the 
finite element method, but the further development and 
analysis of the method would occur much later. 

Classical sense of the variational principle is to find 
the extremum or the variables of the problem. The fun- 
ctional includes all the intrinsic features of the problem 
such as the governing equations, boundary conditions, 
and constraints condition, if any. 

In solid and structural mechanics problems, the fun- 
ctional represents the total energy of the system and in 
other problems it is simply an integral representation of 
the governing equations. 

First many problems of mechanics are posed in terms 
of finding the extremum and thus by their nature, can be 
formulated in terms of variational statement. Second, 
there are problems that can be formulated by other means, 
but these can also be formulated by means of variational 
principles. Third, variational formulations form a power- 
ful basis for obtaining approximate solutions to practical 
problems, many of which are intractable otherwise. The 
principle of minimum total potential energy, for example, 
can be regarded as a substitute to the equations of equi- 
librium of an elastic body as well as a basis for the de- 
velopment of displacement finite element models that 
can be used to determine approximate displacement and 
stress fields in the body. 
 
4.2. Variational Formulations 
 
The classical sense of the phrase “Variational Formu- 
lation” refers to the construction of a functional or vari- 
ational principle that is equivalent to the governing equ- 
ations of the problem. The modern use of the phrase 
refers to the formulation in which the governing equa- 
tions are translated into equivalent weighted integral 
statements that are not necessarily equivalent to a vari- 
ational principle. 

The importance of variational formulation of physical 
laws, in the modern or general sense of the phrase, goes 
for beyond its use as simply an alternate to other formu- 
lation. In fact, variational forms of the laws of continuum 
physics may be only natural and rigorously correct way 
to think of them. While all sufficiently smooth fields 
leads to meaningful variational forms the converse is not 
true. There exits physical phenomena which can be ade-  

quately modeled mathematically only in a variational 
setting they are nonsensical when viewed locally. 

The starting point for the discussion of the finite 
element method is differential equations governing the 
physical phenomena under study. As such, we shall first 
discuss why integral statement of differential equations 
are needed.  
 
4.2.1. Need for Weighted-Integral Statements 
The weighted-integral statement are required in order to 
generate the necessary and sufficient number of algebraic 
equations to solve for the parameters jc  in Equation 
(13) of approximate solution.  

=1

( ) = .
N

N j j
j

u x u c              (13) 

The use of integral statement is equivalent to the 
governing differential equation is necessitated by the fact 
that substitution of Equation (13) into the governing 
differential does not always results in the required 
number of linearly independent algebraic equations for 
the unknown coefficients .jc  One way to insure that 
there are exactly the same number  of equations as 
there are unknowns is to require weighted integrals of the 
error in the equation to be zero. We can require the 
approximate solution  to satisfy the given differential 
equation in the weighted integral sense,  

n

u

 d = 0,w R x
             (14) 

where  is called residual. R
 
4.2.2. Linear and Bilinear Functional 
Consider the integral expression  

d
( ) = ( , , )d ,  = ( ),  = .

d

b

a

u
I u F x u u x u u x u

x
     (15) 

For a given real function  is a real 
number. Therefore, 

= ( ), ( )u u x I u
I  can be viewed as an operator that 

transforms functions  into real numbers, and such 
operators called “functionals”. 

( )u x

Example 4.1  

2d
( ) = ( ) ( ) ( ).

d

b

a

u
I u P x q x u Pu

x
   
  a     (16) 

d d
( , ) = ( , ) ( , ) d d   d .

d d

u v
I u v P x y q x y v x y Q u s

x x 

   
    

(17) 
A functional  is said to be linear in u if and only 

if it satisfies the relation  
( )l u

( ) = ( ) (l u v l u l v).            (18) 

for any real numbers   and   and dependent vari- 
able  and u .v  

Copyright © 2011 SciRes.                                                                                  AM 
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am 2  Ex ple 4.   

1) ( ) = ( )
b

d ( ) ( ).
a

I u f x u x q x u b  

2)  ( , ) = ( , ) ( , ) d d .I u v f x y u q x y v x y


   

unction is said to be bilinear if it is linear 
in

, )

A bilinear form is said to be symmetric in its 
ar

      (19) 

 
.2.3. Variational Operator and First Variation 

A f ( , )B u v  
rgumen each of its a ts u  and :v   

 1 2 1, = ( , )B u u v B u    2( , )v B u v  

linear in first argument.  

 1 2 1 2, = ( , ) (B u v v B u v B u v      

linear in second argument.  

( , )B u v
f  

 
guments u and v i

( , )B u v = ( , ), for all  , .B v u u v  

4
Consider the function ( , , ).F x u u  For any fixed value 
of the independent variable ,x  F  depends on u  and 

.u  The change v  in u wh eer    is a constant uan- 
 and v  is a fu tion of 

 q
tity nc x  is called the variation of 
u  and is fined by u de    

u = .v                 (20) 

  is called variational operator. 
The variation u  of a function u represents an admi- 

ssible change in t  function ( )u x  at a fixed value of 
the independent variable .

he
x   is specified value 

cannot be varied. Thus, the riatio  of a function u  is 
zero there because the specified on the boundary, the 
variation of u  is zero there because the specified value 
cannot be va ed. Thus, the variation of a function u  
should satisfy the homogeneous form of the boundary 
conditions for u   

If u
nva

ri

= ( , , )F F x u v u v   .        (21) 

Fundamental lemma of variational c
fu

          (22) 

holds for any arbitrary function

alculus: The 
ndamental lemma of variations can be stated as follows 

for any integrable function ( ),G x  if the statement  

b
( ) ( )d = 0,aG x x x  

 ( ), ( , ),x x a b  
.  

tal lemma is as fo

 then 

llow- 
in

it follows that ( ) = 0G x  in ( , )a b
General state undament of f men
g: 
If ( )x  is arbitrary in  and < <a x b ( )a  is arbi- 

trary the

     (23) 

because 

n the statement  

( )d
b

( ) ( ) = 0

= 0 in < <  and ( ) = 0
a
G x x B a a

G a x b B a

 


  

( )x  is independent of ( ).a   

tural dar nditions 
po- 

   (24) 

These conditions are also known as Dirichle
m

on, which require specifi- 
ca

4.2.4. Na  and Essential Boun y Co
Essential boundary conditions which require v  and 
ssible its derivatives to vanish at the boundary. Thus, we 
have  

ˆSpecify = 0, or =  on the boundary.v u u  

t or geo- 
etric boundary conditions. 
Natural boundary conditi
tion of the coefficient of v  (and possibly its deriva- 

tives). Thus we have  

Specify = , on the boundary.
F

Q
u




    (25) 

Natural boundary conditions are also known as Neu- 
m

nction  such that 

  (26) 

ann boundary conditions.  
Example 4.3 Finding a fu = ( )u u x

( ) = , ( ) =a ba u u b u  and  u

( ) = ( , ( ), ( ))d  is a minimum
b

a
I u F x u x u x x  

d
( , , ) = = 0 in < < .

d

F F
F x u u a x b

u x u

       
   (27) 

The necessary condition for I  to attain a minimum 
yields  

d
d ( )

d

b
b

a ba
a

( ) = 0.
F F

v x v Q v a Q v b
u x u u

                   
  

(28) 

Now suppose that 

F

F

u




 and v  are selected such that  

= 0 for = , = 0 for = .a b

F F
Q v x a Q v x b

u u

              
 

 (29) 
Then using the fundamental lemma of the calcu

va
y of 

th

2) 

lus of 
riations, we obtain the same Euler equation. 
Equations in (29) are satisfied identically for an
e following combination: 
1) ( ) = 0, ( ) = 0.v a v b  

( ) = 0, = 0.b
a b

F
v a Q

u





  

3) = 0, ( ) = 0.a a

F
Q v b

u


 


  

4) = 0, = 0.a a b b

F F
Q Q

u u

 
  

  
  

nsider the problem of finding  defined on a 
tw

Co ( , ),u v
o dimensional region   such that th ollowing fun- 

ctional is to be minimized  

( , ) = ( , , ,

e f
: 

, , , , )d dx x y yI u v F x y u v u v u v x y


   (30) 

with condition  
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ˆ=  so that = 0 on u u u          (31) 
ˆ=  so that = 0 on v v v           (32) 

= 0 on x y
x y

F F

u u
  


 

          (33) 

= 0 on .x y
x y

F F

v v
  

 
 

         (34) 

Equations (31) and (32) represent the essential bo- 
undary condition and Equations (33) and (34) represent 
the natural boundary conditions. The pair of elements 
(u,v) are called the primary variables and  

=   and  =x x y y x
x y

y

F
Q Q

x y v v

F F F    
 


   

 (35) 

are secondary variables.  

.2.5. Weak Form 
d to be a weighted integral statement 

.2.6. Ritz Method 
e coefficients 

 
4
Weak form is define
of a differential equation in which the differentiation is 
transformed the dependent variable to the weight func- 
tion such that all natural boundary conditions of the pro- 
blem are also introduced. 
 
4
In Ritz method, th jc

w
 of the approxi- 

mations are determined using the eak form of the 
problem, and hence choice of weight functions is re- 
stricted to the approximation function = .jw   

Consider the variational problem resulting from the 
w

         (36) 

for all sufficiently differentiable fun

v  i

eak form: find the solution u such that  

( , ) = ( )B w u l w     

ctions w  that satis- 
fy the homogeneous form of the specified essential boun- 
dary conditions on .u  In general, (, )B   can be un- 
symmetric in w  and  and l  is li  the problem 
in (36) is equi alent to minim zation of the quadratic 
functional  

 u near,

1
( ) = ( , ) ( ).

2
I u B u u l u          (37) 

In Ritz method, we seek an approxima
(3

     (38) 

where the constants 

tion solution to 
6) in the form of a finite series  

( ) = (
N

U x c  0
=1

) ( ),N j j
j

x x  

,jc  called the Ritz coefficients are 
determined such that (36) holds for each  

=  ( = 1: ).iw i N  
The function j  and 0 ,  

at 
called approximation fun- 

ctions are chosen uch th s NU  satisfies the specified 
essential boundary conditions.

N 


  

0
=1

, = ( ),     ( = 1i j j i
j

B c l i N    
 

  : ).

Since is linear in , we have  (, )B   
N

u

=1

( , ) = ( ) ( , )i j j i i j
j

B c l B     

=1

= , ( = 1: )
N

ij j i
j

K c F i N           (39) 

= ( , ), = ( ) (ij i j iK B F l B , )i j     .     (40) 

The algebraic equations in Equation (39) can be ex- 
pressed in matrix form as:  

[ ]{ } = [ ]  or =K c F Kc F .       (41) 

 
4.2.7. Approximation Functions 
Let approximate solution is sought in the fo

ed ary con- 
ditions is  then

rm  

=1j

and suppose that the specifi  essential bound

( ) =N j jU x c  ( )
N

x  

0 0( ) = ,u x u  NU
undary

 mu  satisfy the con- 
dition  a bo  point 

st

0 0N 0( ) =U x u  at = :x x  

0 0
=1

( .
N

j j
j

c x u  

Since 

) =

jc  
t easy

are unk  be determined, 
it is no  to choose 

nown parameters to
( )j x  

 we cans
such hat the above rela- 

tion hol f then  select all 
 t

ds. I 0 ,u  j  such that 

0( )j x  and satisfy the condition 0( ) = 0.NU x   

0 0 0 0
=1

( ) = ( ) ( )
N

N j j
j

x c x x       (42)  U  

0 0 0 0
=1 =1

= ( ) ( )
N N

j j j j
j j

u c x u c x    = 0   (43) 

, jc  by choosing  which is satisfied, for arbitrary 

0( ) = 0. j x  If all specified e tial boundary ssen

0

condi- 
tions are homogeneous, then   is taken to be zero and 

j  must still satisfy the same conditions, 0( ) = 0, j x  
= 1: .j N  Note that the requirement that w  be zero at 

the boundary conditions are specified is satisfied by the 
ice = ( ).jw xcho    

 
4.2.8. The Method of Weighted Residuals 
The me ighthod of we ted residual can be described in its 

on  generality by considering the operator equati

( ) =   in  .A u f              (44) 

where A  is an operator (linear or nonlinear), often a 
differential operator, acting on the d

f  a k
ependent variables 

and  is nown function of the independent variables. 
In the weighted residual method, the solution u  is 

approximated, in much the same way as in Ritz method 
by the expression  

0 0( ) = ( ) ( )
N

N j jU x c x x         (45) 
=1j
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uirements on except that the req 0  and j  for the 
weighted residual method are mo nge
for the Ritz method  

As the name suggests, the parameter 

re stri nt than those 

0
=1

= ( ) = 0
N

N j j
j

R A U f A c f 
 

    
 
 .    (46) 

.jc
 vani

 are deter- 
mined by requiring the residual  to
weighted integral sense:  

 R sh in the 

( ) ( , )d d .i jx R x c x y
            (47) 

where ( )i

  

x  are weight functions here are following 
type of well known method

. T
 based on weight functions. 

1) The Patrov-Galerkin method
ethod 

: The weighted resi- 
dual m is referred as the Petrov-Galerkin method 
when .i i   When operator A  is linear Equation 
(47) is simplified to the form  

   0
=1

( )d = ( ) d
N

i j j
j

iA x c f A x   


     (48) 


=1

=   or        ( = )
N

ij j i
j

A c F Ac F     

where .

  (49) 

= ( )dij i jA A x 
  

2) The Galerkin method: If the weight function i  
is chosen to be equal to the approximation function i  

- the we ethighted residual m od is better known as Ga
le inrkin method. The algebraic equations of the Galerk  
approximation are  

=Ac F                 (50) 

where 

 0 ,i= (ij i )d , = ( ) dj iA A  x F f A
 

  x 

the app
required

roximation functions are used in Galerkin method 
 to be higher order than those in the Ritz method. 

For further readings we suggest to see [24-28]. 
3) The least-square method: In the least-square me- 

thod, we determine the parameters jc  by minimizing 
the integral of the square of the residual.  

2 ( , )d = 0j
i

R x c x
c 


   

d = 0.
i

R
R x

c


                (51) 

Here weight function = .i
i

R

c
 


 

4) The collocation method: In the collocation me- 
ate solution thod, we seek an approxim NU  to Equation 

(44) in the form of NU  
N

by quirin sidual to 
vanish identically at  selected points 

re g the re
 = ( , , )i i i ix y z  x

( = 1: )i N  in the domain    

( , ) = 0    ( = 1: )iR c i Nx .         (52) 

The selection of points ix  is crucial a 

j

in obtaining 
well-condi tions and ultimately in 
obtaining an accurate so n. The col
can be shown to be a sp fied case o
w

tioned system of qua e
lutio
eci

location method 
f Equation (47) 

ith  = ,i
i  x x  wher ( )e  x  is the Dirac Delta 

fun- ctions which is defined by  

 ( ) d = ( )f f  


 x x x       (53) 

with he weigh ctions, the weighted 
residual statement becomes  

this choice of t t fun

  ( , )d = 0i
jR c


 x x x x  

( , ) = 0.i
jR cx  

The steps involved in finite element method of a pro- 
blem: 

1) Discretization of the given domain into a collection 
of prescribed finite element.  

ts.  

properties needed for pro- 
bl

ion of element equations for all typical ele- 
m

ial equation over the typical element.  

(a) Construct the finite element mesh of the prescribed 
elemen

(b) Number of nodes and elements.  
(c) Generate the geometry 
em.  
2) Derivat
ent in the mesh:  
(a) Construct the variational formulation of the given 

different
(b) Assume that a typical dependent variable u  is of 

the form  

=1

=
N

i i
i

u u  

and substitute it into step 2(a) to obtain element equation 
in the form  

.[ ][ ] = [ ]e e eK u F  

(c) Select, if already available in the literature, or 
derive element interpolation functions i  and compute 
the element matrices.  

3) Assembly of element equations to obtain the equa- 
tio

e results.  

ite element method.  
 
5.
 
In this section, we derive error estimates for the finite 

n of whole problem.  
4) Imposition of the boundary conditions of the pro- 

blem.  
5) Solution of the assembled equation.  
6) Postprocessing of th
Authors can view the references [29-47] for more stu- 

dy on fin

 Error Estimate 
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ersion of the Generalized 
, gives the uniqueness of the 
quation and gives a first estimate 

f the error. This theorem is in fact only applicable when 

ings and p

e element solution. This usually 
m

nerating the stiffness ma- 
tri

timates in local (elemental) norms may also pro-
vi

 depend
th

error estimates: A new flux is cal-
cu

n error estimates: Interpolation error
bo

Th

ols for their numerical solution available in the 
damental ideas and techniques in fi- 

ite difference and finite element methods have resem- 

d by Department of 
cience and Technology, New Delhi, Government of 

e to thank the anonymous 
viewers for their valuable comments and suggestions to 

  aux Derivees Partielles de 
athematique,” American Journal of Mathe- 
, No. 3, 1890, pp. 211-294.  

element method. The discrete v
Lax-Milgram theorem
solution to the discrete e
o
we use finite dimensional subspaces of our original Hil- 
bert spaces. We have a more general case when we don’t 
have such subspaces or when the operators in the vari- 
ational equation are replaced by approximations (for 
instance by quadrature). We give also error estimates for 
this case. The error estimates depend on how good we 
can interpolate elements of Banach spaces subspaces of 
these Banach spaces, so we have to discuss the inter- 
polation theory in Banach spaces, preceded by a nece- 
ssary discussion of the formalism of the finite element 
method. This will give us estimates in the Sobolev norms 

: ; ;.k km q  We will also give an estimate in the 2L - 
norm, but for this we need additional requirements on the 
problem we consider.   

1) The error estimate should give an accurate measure 
of the discretization error for a wide range of mesh spac- 

olynomial degrees.  
2) The procedure should be inexpensive relative to the 

cost of obtaining the finit
eans that error estimates should be calculated using 

only local computations, which typically require an eff- 
ort comparable to the cost of ge

x.  
3) A technique that provides estimates of point-wise 

errors which can subsequently be used to calculate error 
measures in several norms is preferable to one that only 
works in a specific norm. Point-wise error estimates and 
error es  

de an indications as to where solution accuracy is in- 
sufficient and where refinement is needed.  

A posteriori error estimates can roughly be divided 
into four categories: 

1) Residual error estimates: Local finite element pro- 
blems are created on either an element or a sub-domain 
and solved for the error estimate. The data s on 

 
e residual of the finite element solution.  
2) Flux-projection 
lated by post processing the finite element solution. 

This flux is smoother than the original finite element flux 
and an error estimate is obtained from the difference of 
the two fluxes.  

3) Extrapolation error estimates: Two finite element 
solutions having different orders or different meshes are 
compared and their differences used to provide an error 
estimate.  

4) Interpolatio  
unds are used with estimates of the unknown con- 

stants. 

6. Conclusions 
 

e present paper gives a comprehensive overview of 
the fundamentals of partial differential equations and re- 
lated to
literature. Many fun
n
blance, and in some simple cases they coincide. Never- 
theless, with its more systematic use of the variational 
approach, its greater flexibility, and the way it more 
easily lends itself to error analysis, the finite element 
method has become the dominating approach for tackling 
the partial differential equations together with their appli- 
cations in science and engineering. 
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