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Abstract 
This work gives an analytical theory of the signal-to-thermal-noise ratio 
(SNR) of classical Hall plates with four contacts at small magnetic field. In 
contrast to previous works, the symmetry of the Hall plates is reduced to only 
a single mirror axis, whereby the average of potentials of the two output con-
tacts off this mirror axis differs from the average of potentials at the two 
supply contacts on the mirror axis, i.e. the output common mode differs from 
50%. Surprisingly, at fixed power dissipated in the Hall plate, the maximum 
achievable SNR is only 9% smaller for output common modes of 30% and 
70% when compared to the overall optimum at output common modes of 
50%. The theory is applied to Vertical Hall effect devices with three contacts 
on the top surface and one contact being the buried layer in a silicon BiC-
MOS process. Geometries are found with large contacts and only a moderate 
loss in SNR. 
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1. Introduction 

This paper focuses on impedances, magnetic sensitivity, and thermal noise of 
Hall plates with four contacts at small magnetic field. The specific question we 
want to answer is, how much does the signal to noise ratio (SNR) deteriorate for 
devices with reduced symmetry. This is a matter of layout and shape—not of 
technology. Conventional Hall plates are 90˚ symmetric (Figure 1(a)) or they  
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Figure 1. Hall plates with four contacts and (a) with 90˚ symmetry, (b) with two perpendicular mirror symmetries, (c) vertical 
Hall effect device with a single mirror symmetry. The theory in this paper applies to all these topologies. There, the current flow 
lines span a plane which is perpendicular to the detectable magnetic field B⊥ : in ((a), (b)) this plane is the top surface of the 
substrate; in (c) this plane intersects the top surface of the substrate at 90˚. The thickness Ht  of the device is defined along the 
direction of B⊥ . The figures show the current flow lines for a large Hall angle of 45˚, and the colour coding gives the electric 
potential (red means positive potential, blue means negative potential). 
 

have at least two perpendicular mirror symmetries (Figure 1(b)), both of which 
can have maximum SNR for properly sized contacts [1]. Yet, for Vertical Hall 
effect devices, one is forced to use shapes having only a single mirror symmetry 
(Figure 1(c)) [2] [3]. These devices are able to detect the magnetic field parallel 
to the main surface of a chip, whereas conventional Hall plates detect the mag-
netic field orthogonal to the main chip surface. Vertical Hall effect devices are 
attractive in cost sensitive mass markets for linear [4], rotational [5], and 3D po-
sition sensing in automotive, industrial, and home appliance applications. 
Compared to competing XMR technologies (like tunneling magneto-resistance) 
they can be cheaper in manufacturing and end of line testing, more robust 
against environmental conditions, more linear versus magnetic field, they have 
no saturation at reasonable flux densities, no hysteresis and no crosstalk between 
orthogonal magnetic field components1, and they offer still lower zero point er-
rors when operated in spinning current schemes [6]—even for wide analogue 
bandwidths up to 400 kHz [7]. The drawback of silicon Vertical Hall effect de-
vices against XMRs is limited SNR, even though their low frequency noise is in-
herently removed by the spinning scheme [8]. 

Hall plates with four extended contacts and four-fold symmetry with equal 
input and output resistance in outR R=  are discussed in [9] [10] [11] [12] [13]. 
Their equivalent resistor circuit (ERC) at vanishing magnetic field is shown in 
Figure 2(a). It consists of two resistors ,H DR R —thus, it has two electrical de-
grees of freedom DoF: one DoF can be attributed to the sheet resistance 

( ) 1
sh 0 HR tσ −=  and the second DoF can be attributed to the effective number of 

squares shin inR Rλ =  with ( )|| 2in H DR R R=  (with the specific electric conduc-
tivity 0σ  and the Hall plate thickness Ht ; the two vertical strokes denote pa-
rallel connection of resistors). The sheet resistance describes the thickness of  

 

 

1Strictly speaking the crosstalk of orthogonal magnetic field components vanishes only for zero 
mechanical shear stress. 
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Figure 2. Equivalent Resistor Circuits (ERCs) of Hall plates with four contacts at zero 
magnetic field. Devices (a) with 90˚ symmetry (b) with two perpendicular mirror 
symmetry axes along contacts C2-C4 and C1-C3, yet with different resistances between 
C1-C3 and C2-C4 (c) with a single mirror symmetry along contacts C2-C4 (d) with no 
mirror symmetry but zero Hall-output voltage at zero magnetic field for current flow 
between C1-C3 and C2-C4 (e) with no symmetry at all. 

 
the Hall plate, which is an out-of-plane parameter. Conversely, inλ  describes 
the lateral geometry of the Hall plate in the plane of the current flow. inλ  is an 
in-plane parameter. Although Vertical Hall effect devices of Figure 1(c) have 
different orientations than Hall plates of Figure 1(a) & Figure 1(b), the plane 
which we refer to is orthogonal to the detectable magnetic field B⊥  in both cas-
es. inλ  is a ratio of two parameters sh,inR R  which are accessible to electrical 
measurements: inR  is simply measured with an Ohm-meter and shR  is meas-
ured according to a generalization of van der Pauw’s method [10] [11]. There-
fore, inλ  links the in-plane geometry of the Hall plate with electrically measur-
able quantities. However, this link is not a simple ratio of length over width of 
the Hall plate, except for the case of rectangular plates with flush input contacts 
and point-sized output contacts [14]. 

The magnetic sensitivity of a Hall plate at weak magnetic field is defined as 
change in output voltage outV  per change in flux density B⊥  orthogonal to the 
Hall plate [1] [2] [13] 

0
0 sh 00

d
lim

d
out H

H in H H inB
in

V GS V R G I
B

µ µ
λ⊥→ ⊥

= = =
            

 (1) 

with the Hall mobility Hµ , the Hall input or supply voltage inV , and the Hall 
input or supply current inI . The low field Hall geometry factor 0HG  depends 
only on the in-plane geometry of the Hall plate, just like inλ  does. It holds 

00 1HG≤ ≤ . 0HG  can be expressed as a function of geometrical parameters of 
the Hall plate, but it can also be expressed more generally as a function of the 
dimensionless DoFs. Thus, for a symmetric Hall plate with in outR R=  the Hall 
geometry factor 0HG  is a function of the in-plane parameter inλ , not of the 
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out-of-plane parameter shR  [13]. 
In [1] [14] [15] we also discussed Hall plates with four contacts and two per-

pendicular mirror symmetries, yet with different input and output resistances. 
Their common mode output voltages (along both diagonals C1-C3 and C2-C4, 
respectively) are at half of the input voltage: ( ) ( )1 3 2 42 2V V V V+ = +  for cur-
rent flowing between contacts C2 and C4, or between contacts C1 and C3. Thereby, 
the potential at contact Cn is denoted by Vn for n = 1, 2, 3, 4. The ERC of these 
Hall plates has three resistances 1 2, ,H D DR R R  as in Figure 2(b). These devices 
have three DoF: the sheet resistance shR  and the effective number of squares 
for both input and output resistances shin inR Rλ = , shout outR Rλ = . Many de-
vices can be obtained by conformal transformation on one arbitrary device, and 
they all have the same ERC, the same inλ , outλ , shR , and the same magnetic 
sensitivity 0S . The Hall-geometry factor is a function of the in-plane DoFs only 

( )0 0 ,H H in outG G λ λ=  (see Fig. 2 in [1] or Fig. 7b in [14]). 
The topic of this paper is Hall plates with single mirror symmetry whereby the 

symmetry axis goes through the centers of two opposite contacts C1 and C3 like 
in Figure 1(c). These devices have four degrees of freedom: sheet resistance 

sh , , ,R W b s    (see Figure 3(a)) or alternatively sh , , ,f pR cmλ λ . The new 
parameter cm  is called the common mode and it is defined by 

( )1 3 2

4 2

2V V V
cm

V V
+ −

=
−                      

 (2) 

for current flowing from C4 to C2. Generally, it holds 0 1cm≤ ≤ . Devices with 
two perpendicular mirror symmetries have 1 2cm = . The ERC of devices with 
only a single mirror symmetry has six resistors with four resistances:  

1 2, , ,H H D DR R R Rγ  with ( )1cm γ γ= + , ( ) ( )sh 21 2 || 2f H DR R Rλ γ= + ,  
( ) ( ) ( )sh 12 || 2 || 2p H H DR R R Rλ γ= . The low field Hall-geometry factor is a func-

tion of three in-plane parameters ( )0 0 , ,H H f pG G cmλ λ= . 
Amongst all useful Hall plates with zero output signal at zero magnetic field 

there are some with no mirror symmetry at all (see Figure 2(d)). They have ar-
bitrary common mode for both pairs of output contacts, which gives a total of 
five degrees of freedom: sh 13 24, , , ,f pR cm cmλ λ . Their ERC has six different re-
sistors yet with the additional constraint that the ratio of two neighboring resis-
tors in the H-bridge-portion is identical to the ratio of the other two resistors in 
the H-bridge-portion: 13 24, ,H H HR R Rγ γ , 13 24 1 2, ,H D DR R Rγ γ  with  

( )13 13 131cm γ γ= + , ( )24 24 241cm γ γ= + ,  
( ) ( ) ( )sh 24 13 13 21 || 1 || 2f H H DR R R Rλ γ γ γ= + + ,  
( ) ( ) ( )sh 13 24 24 11 || 1 || 2p H H DR R R Rλ γ γ γ= + + . The low field Hall-geometry factor 

0HG  is a function of the four in-plane parameters 13 24, , ,f p cm cmλ λ . 
In the most general case a resistive device with four terminals has an ERC 

composed of 3 + 2 + 1 = 6 resistors: between each couple of terminals there is 
one resistor, as was shown in [16] (see Figure 2(e)). The six resistors correspond 
to six DoF: the sheet resistance and five in-plane geometrical parameters (see al-
so page 92 in [17]). The low field Hall-geometry factor is a function of these five 
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in-plane parameters. On the other hand, we can normalize all resistances by the 
sheet resistance, which gives 1 sh 2 sh 6 sh, , ,R R R R R R . This set of six values 
covers only five DoF, because it does not cover shR  any more. In other words, 
one of them must be a function of the others: ( )1 sh 2 sh 6 sh, ,R R f R R R R=  . If 
we measure 1 2 6, , ,R R R  we can solve this implicit equation numerically for 

shR —this is a generalization of van der Pauw’s measurement of sheet resistance 
for devices with extended contacts: The sheet resistance is a function of resis-
tances of the ERC. 

( )sh sh 1 2 6, , ,R R R R R=                       (3) 

Moreover, if we normalize 2 sh 6 sh, ,R R R R  by 1 shR R  we do not lose any 
DoF. Therefore, the set 

2 sh 3 sh 6 sh 3 62

1 sh 1 sh 1 sh 1 1 1

, , , , , ,
R R R R R R R RR
R R R R R R R R R

   
=   
  

 

          
(4) 

also covers the five in-plane DoF and finally it holds 

( )0 0 2 1 3 1 6 1, , ,H HG G R R R R R R=  .               (5) 

The low field Hall geometry factor is a function of ratios of resistances of the 
ERC. Inserting (3) and (5) into (1) leads to the remarkable conclusion that at 
small Hall angles the output voltage is fully determined by the ERC, the Hall an-
gle, and the Hall supply current or voltage. We do not need any information on 
the geometry of the Hall plate. The electrical parameters of the ERC fully deter-
mine the sensitivity of the Hall plate output signal with respect to changes in the 
Hall angle. A similar conclusion was drawn in [18], but there the authors did not 
link the resistances to the ERC. 

The rest of the paper mainly elaborates on the relation ( )0 0 , ,H H f pG G cmλ λ=  
for Hall plates with four contacts of finite size and only one mirror symmetry 
having ERCs like in Figure 2(c). The author is not aware of any published work 
about analytical calculations on the magnetic sensitivity of Hall plates of this re-
duced type of symmetry, although there are a few prior works on entirely asym-
metric Hall devices [18] [19]. Conformal mapping was also applied to Vertical 
Hall devices with five contacts and single mirror symmetry [20]. All these papers 
compute the Hall signal as a function of geometrical parameters, yet they do not 
relate the Hall geometry factor to electrical parameters , ,f p cmλ λ  and they do 
not address signal-to-noise ratio versus cm . They also do not use the low mag-
netic field approximation to simplify the calculations. 

2. The Resistance between the Flush Contacts on the Axis of 
Symmetry and the Common Mode Potential of the Partial 
Contacts off the Axis of Symmetry 

First we compute the resistance between the flush contact pair and the common 
mode potential of the partial contacts—both at zero magnetic field. To this end 
we map the rectangular plate in the z-plane of Figure 3(a) via a conformal  
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Figure 3. (a) Shows the original Hall plate in z-domain with mirror symmetry relative to the y-axis. (b) Upper half of the ζ-plane 
with contacts on the real axis. (c) A rectangular plate where the partial contacts 3 4 5W W W  and 8 9 10W W W  are folded and parallel to 

the flush contacts 1 2WW  and 6 7W W . The aspect ratio 2 6 1 2:W W WW  is equal to the number of squares fλ  between the flush 

contacts. If 1 V is applied to contact 6 7W W  while 1 2WW  is tied to ground potential the common mode potential of the partial 

contacts is equal to 2 3W W . It holds 1 2 6 7WW W W= . 
 

transformation onto the upper half of the zeta plane and from this into another 
rectangle in the w-plane. The partial contacts in the w-plane are parallel to lines 
of constant potential, which greatly facilitates the calculation of their potential 
and the calculation of the resistance between the other contacts. 

A mapping from the ζ-plane onto the z-plane is given by Schwartz-Christoffel’s 
formula 

1 2 2 2
0 6

d

1
z C

ζ ζ

ζ ζ ζ
=

− −
∫ .                    (6) 

Applying (6) to the width of the rectangle in the z-plane gives 
1

1
1 2 2 2

0 6 66

d 1
2 1

CW C Kζ
ζ ζζ ζ ζ

 
= =  

− −  
∫ .              (7) 

The complete elliptic integral K is defined in Appendix A. Applying (6) to the 
length of the rectangle in the z-plane gives 

6
1

1 2 2 2
1 6 66

d 1

1

CC K
ζ ζ

ζ ζζ ζ ζ

 
′= =  

− −  
∫                (8) 

K ′  is the complementary complete elliptic integral defined in Appendix A. 
Dividing (8) by (7) gives 

( )
( )

6

6

12
1

K
W K

ζ
ζ

′
=


.                        (9) 

Equation (9) defines 6ζ . Applying (6) to 5 6Z Z  and using (61) in [14] gives 

6 5 2 2
6 51

1 2 22 2 2 2 2 2
1 1 6 6 66 6

d d 1, 1
11 1

Cb C F
ζ ζ ζ ζζ ζ

ζ ζ ζζ ζ ζ ζ ζ ζ

   −   = − = −
   −− − − −   

∫ ∫ .  

(10) 
with the incomplete elliptic integral F defined in Appendix A. (10) can be solved 
for 5ζ  by use of the Jacobi-sn function (see Appendix A) 
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2
5 6 2 2

66 6

1 1 11 1 sn , 1b Kζ ζ
ζζ ζ

    
′= − − −         

.          (11) 

In an analogous way one can apply (6) to 3 6Z Z . This gives 

2
3 6 2 2

66 6

1 1 11 1 sn , 1b s Kζ ζ
ζζ ζ

    + ′= − − −         

.         (12) 

From (12) one can compute b s+  from which one can subtract (10). With 
[21] it follows 

( )
2 2 2 2 2 2

5 5 6 3 3 3 6 5
6 22 2 2 2 2

66 3 5 3 5

6

1 11 1, 1
1 1

s F
K

ζ ζ ζ ζ ζ ζ ζ ζ
ζ

ζζ ζ ζ ζ ζ
ζ

 − − − − − = −
   + − − ′ 

 



.  (13) 

From (11), (12), and [21] it follows 

( )
2 2 2 2 2 2

5 5 6 3 3 3 6 5
6 22 2 2 2 2

66 3 5 3 5

6

1 12 1 1, 1
1 1

b s F
K

ζ ζ ζ ζ ζ ζ ζ ζ
ζ

ζζ ζ ζ ζ ζ
ζ

 − − + − −+  = −
   + − − ′ 

 



. (14) 

For the symmetric case 1 2cm =  it holds 2b s+ =  . Then the first argu-
ment in the incomplete elliptic integral in (14) is equal to unity. This gives 

3 5 6ζ ζ ζ=  for 1 2cm = .                   (15) 

By now we have expressed all parameters defining the contacts in the ζ-plane 
by parameters of the z-plane. Turning to the mapping from the ζ-plane onto the 
w-plane in Figure 3(c) we can again use the transformation of Schwartz-Christoffel 

2 2
4

2
0 3 5 6 6 5 3

d
1 1

w C
ζ ζ ζ

ζ
ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ

−
=

− − − − + + + +∫ . (16) 

Note that 21 1 1ζ ζ ζ− + ≠ − , because for 2ζ = −  we get  
21 1 3 1 3 3iζ ζ− + → − − = = −  which is different from 2 1 3ζ − → . 

The integral (16) is more difficult than (6). It contains additional factors which 
are caused by the 90˚ corners at points 3 5,W W  and by the 180˚ turn at point 

4W  (plus their symmetric counterparts at 8 9 10, ,W W W ). 
The parameter 4 9ζ ζ= −  is defined by the requirement 3 4 4 5W W W W=  or 

3 5 0W W =  which means that the contacts are folded in such a way that points 

3W  and 5W  become identical. This gives 
5

3

2 2
4

2 2 2 2 2 2 2
3 5 6

d0
1

ζ

ζ

ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ

−
=

− − − −
∫ .           (17) 

Equation (17) can be solved to give the parameter 4ζ  
5

3

5

3

2

2 2 2 2 2 2 2
3 5 62

4

2 2 2 2 2 2 2
3 5 6

d
1

d
1

ζ

ζ

ζ

ζ

ζ ζ

ζ ζ ζ ζ ζ ζ ζ
ζ

ζ

ζ ζ ζ ζ ζ ζ ζ

− − − −
=

− − − −

∫

∫
.           (18) 
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With the abbreviations (B4) defined in Appendix B Equation (18) becomes 
2
4 2 0G Gζ = .                        (19) 

The number of squares between the flush contacts is defined as the resistance 
between these contacts divided by the sheet resistance. With Figure 3(c) it is 
given by 

( ) ( ) ( ) ( )

( ) ( )

3 6

5

2 2 2 2
4 4

12 6 2 3 5 6
1

2 21 2 1 2
4

0

d d

2 d
f

g g
W W W W W W
WW WW g

ζ ζ

ζ

ζ ζ ζ ζ ζ ζ ζ ζ
λ

ζ ζ ζ ζ

− + −
+

= = =
−

∫ ∫

∫
. (20) 

For the common-mode potential of the partial contacts 3 4 5W W W  at zero 
magnetic field we assume that contact 6 7W W  is at potential inV  and contact 

1 2WW  is at zero potential, i.e. ground potential. From Figure 3(c) we get 

( ) ( )

( ) ( )

6

5

3

2 2
4

2 6 5 6

2 22 3 2 3
4

1

d
1 1 1

d

g
W W W W

cm W W W W g

ζ

ζ
ζ

ζ ζ ζ ζ

ζ ζ ζ ζ

−

= = + = +
−

∫

∫
.         (21) 

With the functions defined in Appendix B we may write (20), (21) like this 

2 0 0 2

2 0 0 2
1

G G G Gcm
cm G G G G

− +
=

− −
,                    (22) 

2 0 0 2

2 0 0 2

2 f
G G G Gcm
G G G G

λ
−

=
′ ′−

.                    (23) 

For large impedance between the two contacts on the axis of mirror symmetry 
it follows from (9) 

( )6 3 5 6  for 1fW ζ λ ζ ζ ζ→∞ ⇔ →∞ ⇔ →∞ > ∨ <    . (24) 

For 3 5 61ζ ζ ζ→ ∧ →  all contacts touch and inputs and outputs are shorted. 

3. The Resistance between the Partial Contacts off the Axis 
of Symmetry 

We compute the resistance pλ  between the partial contacts at zero magnetic 
field. For this purpose we map the interior of the rectangle in Figure 4 with both 
folded contacts on the single axis of mirror symmetry onto the upper half of the 
ζ-plane in Figure 3(b). 

5
0 3 5 6 6 5 3

d
1 1

w C
ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ
=

− − − − + + + +∫   (25) 

The center of the folded bottom contact 1 2WW  is mapped to the origin of the 
ζ-plane, whereas the center of the folded top contact 6 7W W  is mapped to infin-
ity of the ζ-plane. Therefore it does not show up in the integrand of the 
Schwartz-Christoffel integral (see also [22]). This leads to a simple expression 
for the number of squares between the partial contacts of the original device in 
Figure 3(a). 
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Figure 4. With conformal mappings (6) and (25) the original partial contacts in the 
z-plane of Figure 3(a) become flush contacts in the w-plane of this figure: 8 10W W  and 

3 5W W . The original flush contacts in the z-plane of Figure 3(a) are folded in this figure: 

1 2WW  and 6 7W W . 0 2 6W W W W∞≠  because at zero magnetic field different current flows 
through both contacts on the axis of symmetry along its way between left and right 
contacts (due to the asymmetry 1 2cm ≠  of the device). 

 

( )

( )

3

5

3

2 3 1 1

13 5

d
22 2

d
p

g
W W G

GW W g

ζ

ζ

ζ

ζ ζ ζ
λ

ζ ζ ζ
= = =

∫

∫
.               (26) 

In (26) both integrals can be solved explicitly as functions of 3 5 6, ,ζ ζ ζ  (see 
Appendix B). Thus, in general the three parameters 3 5 6, ,ζ ζ ζ  are linked via 

pλ  
2 2 2
6 5 3
2 2 2
6 3 5

12
1p

L ζ ζ ζ
λ ζ ζ ζ

  − −
=   − − 

.                   (27) 

The modular lambda function L is defined in Appendix A. The resistance 
between the partial contacts gets large for (see (13) or Figure 3(b)) 

( )3 5 60   for 1ps ζ ζ λ ζ→ ⇔ → ⇔ →∞ > .        (28) 

Figure 4 shows that for 1 2cm ≠  the current through both original flush 
contacts is different, because the original partial contacts are closer to one than 
the other (see also Figure 3(a)). Therefore, 0 2 6W W W W∞≠  and this gives 

1 1G G′ ′′≠ . Only for 1 2cm =  we have equal current over both flush contacts and 
this means 0 2 6 1 1W W W W G G∞ ′ ′′= ⇔ =  which means 3 5 6ζ ζ ζ=  according to 
(B12). It holds 

1 1 3 5 61 2cm G G ζ ζ ζ′ ′′< ⇔ > ⇔ <              (29) 

1 1 3 5 61 2cm G G ζ ζ ζ′ ′′> ⇔ < ⇔ >              (30) 

Obviously the transformation 1cm cm→ −  keeps 0, ,f p HGλ λ  constant, 
while it swaps 1G′  with 1G′′ . This corresponds to the transformation 
( ) ( )3 5 6 6 5 6 3 6, , , ,ζ ζ ζ ζ ζ ζ ζ ζ→ , which has the fix point 6 3 5ζ ζ ζ=  for sym-
metric devices with 1 2cm = . 
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For 1 2cm =  it holds 4 2 2Z W i= +   according to Figure 3(a) & Figure 
3(c). With (6) and with ( )( ) 2sn 2, 1 1 1K k k k= + −  from [23] we get 

4 6ζ ζ=  for 1 2cm = .                   (31) 

Such a device can be mapped onto a disk with two perpendicular mirror 
symmetries like in Figure C2 in the appendix. Comparison of Figure C2(b) 
with Figure 3(b) gives relations between 3 5,ζ ζ  and the half aperture angles 

1 2,α α  of the contacts. These angles are linked to the numbers of squares via 
(C24, C25). Thus, the parameters 3 5,ζ ζ  are linked to the numbers of squares 

,f pλ λ  for 1 2cm = : 

3 5

3 5

3 5

3 5

1

1

f

K

K

ζ ζ
ζ ζ

λ
ζ ζ

ζ ζ

 +′ + =
 +
 +                       

 (32) 

3 5 3 5

3 5 3 5

3 5 3 5

3 5 3 5

1
1
1
1

p

K

K

ζ ζ ζ ζ
ζ ζ ζ ζ

λ
ζ ζ ζ ζ
ζ ζ ζ ζ

 − +′ + − =
 − +
 + − 

                   (33) 

Inverting (32), (33) gives 3 5,ζ ζ  as functions of ,f pλ λ . With ( ) ,f fL L λ=

( )p pL L λ=  we get for 1 2cm = : 

( )( )
( )3

1 1 1

1

f p f f p

f p

L L L L L

L L
ζ

+ + − −
=

+
              (34) 

( )( )
( )5

1 1 1

1

f p f f p

f p

L L L L L

L L
ζ

− + − −
=

−
              (35) 

For 1 2 f pcm λ λ= ∧ =  it holds 1 2α α=  in Figure C2(a) in the appendix. 
Inserting this into (C15)-(C17) and into (C8)-(C10) gives 

( ) ( )6 5 3 5 3ζ ζ ζ ζ ζ= + − .               (36) 

Inserting (15) into (36) gives 

( )2
2

6 5 3 3 3 3
1 1 6 1
4

ζ ζ ζ ζ ζ ζ= = + + + +               (37) 

which holds for devices with 90˚ symmetry. 

4. The Hall Output Voltage at the Contacts  
on the Symmetry Axis 

Here we consider only the case when current flows between the original partial 
contacts off the symmetry axis and the output voltage is tapped between the 
original flush contacts on the axis of symmetry. At magnetic field the rectangle 
in Figure 4 is skewed by the Hall angle ( )arctan H Bβ µ ⊥=  [24] [25]. Then ho-
rizontal lines are at constant potential and { }Im w  is the electric potential in 
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Figure 5. The current streamlines are also straight and parallel to the left and 
right edges of the parallelogram in Figure 5. We use πm β=  (which differs by 
a factor 2 from [12] and [24]). 

A Schwartz-Christoffel mapping from the upper half-plane of Figure 3 onto 
the inside of the parallelogram in Figure 5 is 

( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

12 67
3 41 2 1 2 1 2 1 2 1 2 1 21 2 1 2

0 3 5 6 6 5 3

d

1 1m m m m m mm mw C C
ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ+ − + − + −− +

− −
′′ ′′= +

− − − − + + + +
∫ . (38) 

For small magnetic field it holds 1m   and we may approximate 

( )exp ln 1 lnmx m x m x= ≅ + . 12ζ  and 67ζ  are determined by the require-

ments 
1

1
0

−
=∫   and 6

6
0

ζ

ζ

∞ −

−∞
+ =∫ ∫   with integrands like in (38). With the 

abbreviations in Appendix B this leads to the equations 

( )2 12 67 0 1 12 67 0G G mHζ ζ ζ ζ′ ′ ′+ − + =                 (39) 

( )2 12 67 0 1 12 67 0G G mHζ ζ ζ ζ′′ ′′ ′′+ − + =                 (40) 

with the solutions 

2 1 2 1
12 67

0 1 0 1

G H G H
G H G H

ζ ζ
′′ ′ ′ ′′−

=
′ ′′ ′′ ′−

                    (41) 

0 2 0 2
12 67

0 1 0 1

1 G G G G
m G H G H

ζ ζ
′ ′′ ′′ ′−

+ =
′ ′′ ′′ ′−

.                  (42) 

From (38) one gets 

( )( ) ( ){

( ) ( ) ( ) ( )
( ) ( ) ( ) }

3

5

12 67
3 5 3 2 2 2 2 2 2 2

3 5 6

3 3 5

5 6 6

1 ln 1
1

ln 1 ln ln ln

ln ln ln d

w w C m
ζ

ζ ζ

ζ ζ ζ ζ
ζ

ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ

=

− −
′′− = + −

− − − −

− + + + − − + −

− + + + − − 

∫

  

 (43) 

which is identical to 
 

 
Figure 5. In the presence of a magnetic field the Hall plate of Figure 4 is mapped onto a 
rectangle which is skewed by the Hall angle β . The homogeneous current flows in 

streamlines parallel to 3 10W W  between the original partial contacts at top and bottom of 
this figure. The equipotential lines are horizontal. Equipotential lines and current 
streamlines intersect at an angle of π 2 β− . The flush contacts of the original device in 
Figure 3(a) are folded in this figure and they are also horizontal. Thus, they do not 

distort the equipotential lines. The output voltage is ( )2 3 5 6 cosW W W W β− . The current is 
2

3 5 shcosW W Rβ . 

https://doi.org/10.4236/jamp.2018.610174


U. Ausserlechner 
 

 

DOI: 10.4236/jamp.2018.610174 2043 Journal of Applied Mathematics and Physics 
 

( )

( ) ( ) ( ) ( )

( ) ( ) ( )( )

3

5

5

3

2
12 67 12 67 3

3 2 2 2 2 2 2 2 2
33 5 6

5 5 6 6

2
12 67 12 67

3 2

11 ln
11

π ln ln ln π ln d

d

C m
i

i i

C g mh
i

ζ

ζ ζ

ζ

ζ ζ

ζ ζ ζ ζ ζ ζ ζ ζζ
ζ ζ ζζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ
ζ ζ ζ

=

=

 − + +  +−′′ +   
+ −− − − −   

+ + − − + + + − − − 


− + +
′′= − +

∫

∫

 (44) 

The arbitrary scaling 3 5 1w w− =  gives the real valued constant 3C′′ . 

( ) ( )( )3
2 12 67 1 12 67 0 2 12 67 1 12 67 0

1C
G G G m H H Hζ ζ ζ ζ ζ ζ ζ ζ

′′ =
− + + + − + +

 
 (45) 

3 0C′′→  for 0m →  due to (42). Next we compute the potential at the sense 
contacts in Figure 5. With (38) we get 

( )( )

( ) ( ) ( ) ( ){
( ) ( ) ( ) ( ) }

3

1 10

1
12 67

3
6 5 3 3 5 6

3 3

5 5 6 6

1 1

1 ln 1 ln 1 ln ln

ln ln ln ln d

w w

C

m

ζ ζ

ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ ζ ζ

−

=−

−

− −
′′=

+ + + + − − − −

× + − − + + + − −

+ − − + + + − − 

∫
  

( )

( ) ( ) ( ) ( ){
( ) ( ) ( ) ( ) ( ) }

3

21
12 67 12 67

3 5
6 5 3 3 5 6

3

3 5 5 6 6

1 1

1 π 1 1 1 1 1 ln 1 ln 1 ln

ln ln ln ln ln d

C
i

im m

ζ ζ

ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ

−

=−

− + +
′′=

+ + + − − − + − + − + − +

× + − − + − + − + − − − + +

− − + + − + − + + + − − + 

∫

 

( )

( ) ( ) ( ) ( ){
( ) ( ) ( ) ( ) }

( ) ( ) ( ) ( )

( ) ( )

3

3

2
12 67 12 67

3
1 6 5 3 3 5 6

3 3

5 5 6 6

2
12 67 12 67

3
1

2 12 67 1

1 1

1 π ln 1 ln 1 ln ln

ln ln ln ln d

1 π d

π

C
i

im m

C im g mh
i

i m G G

ζ

ζ

ζ

ζ

ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ
ζ ζ ζ

ζ ζ ζ

=

=

+ + +
′′=

− + − + − + − + + + +

× − + + − − + − + − +

+ + − − + + − + − + 

+ + +
′′= − −  

− − + + +
=

∫

∫

( ) ( )( )
( ) ( )( )

12 67 0 2 12 67 1 12 67 0

2 12 67 1 12 67 0 2 12 67 1 12 67 0

G im H H H

G G G m H H H

ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ ζ

+ + + +

− + + + − + +
 

(46) 
Thus, the potential at this sense contact 12  is 

{ }
( )( ) ( )( )
( ) ( )( )

( )( ) ( )( )
( ) ( )

1 10

2 12 67 1 12 67 0 2 12 67 1 12 67 0

2 12 67 1 12 67 0 2 12 67 1 12 67 0

2 12 67 1 12 67 0 2 12 67 1 12 67 0 2

1 12 67

Im

2

2 2
pp

w w

G G G m H H H

G G G m H H H

G mH G G mH G
m O m

G m

ζ ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ λ ζ ζ ζ ζλ
ζ ζ

−

− + + + + + + +
=

− + + + − + +

− + + + − + +
= + +

+

 (47) 

where we used (26) and neglected higher powers in m. At zero magnetic field the 
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potential is 2pλ , which is half the supply voltage. Hence, the change in poten-
tial at sense contact 12  caused by small magnetic field is  

{ }1 10Im 2out pdV w w λ= − − . With tanH dBµ β⊥ =  and (1) we define the low 
field Hall geometry factor for this single sense contact 

{ }1 10
0,12

sh

Im 2
tan

p
H

in

w w
G

R I
λ
β

− −
= − .                (48) 

In (48) the negative sign in front of the fraction is needed to make the Hall 
geometry factor positive, even though the potential at this contact 12  decreases 
with rising field according to Figure 5. 

The Hall supply current is equal to the integral of the current density compo-
nent perpendicular to the contact along the contact: 

 
( )3

5
3 5d cos

W
in H v HW

I t J t J w w β= = −∫  with J being the homogeneous current den-

sity. Computing the scalar product of both sides of general Ohm’s law 

0 Hσ µ= − ×J E J B  with J  we get 0 cosJ Eσ β=  ( J , E , B  are the vec-

tor fields of current density, electric field and magnetic flux density with J = J  

and E = E ). Finally, 1E =  in Figure 5, because the voltage drop over the 

device is { }3Im W  and the distance between both supply contacts is also 

{ }3Im W  and the electric field is homogeneous. This gives 

( ) 2
3 5 0 cosin HI w w tσ β= −                    (49) 

with 3 5 1w w− =  from (45) [26]. With (B23), (B24), and (B41) in Appendix B 
we get 

0 2 2 0
0,12 1 1 1

1 0 2 2 0

1 2
πH f

G G G GG H H cmH
G G G G G

λ
 ′ ′ − ′= − + − ′ ′− 

.         (50) 

For the other sense contact 67  we get 

( )( )

( ) ( ) ( ) ( ){
( ) ( ) ( ) ( ) }

6

5

7 8

12 67
3

6 5 3 3 5 6

3 3

5 5 6 6

1 1

1 ln 1 ln 1 ln ln

ln ln ln ln d

w w

C

m

ζ

ζ ζ

ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ ζ ζ

−

=−

−

− −
′′=

+ + + + − − − −

× + − − + + + − −

+ − − + + + − − 

∫
 

( ) ( ) ( ) ( ){ }

( )( )( ) ( )( )
( ) ( )( )

6

5

2
12 67 12 67

3 7

2 12 67 1 12 67 0 2 12 67 1 12 67 0

2 12 67 1 12 67 0 2 12 67 1 12 67 0

1 π 1 1 1 1 1 1 1 d

π

C g im mh
i

G G G i m im H H H

G G G m H H H

ζ

ζ ζ

ζ ζ ζ ζ ζ ζ
ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ ζ

=

+ + +
′′= − + − + − + − − −  

+ + + − − + + + +
=

− + + + − + +

∫

 

(51) 

{ }

( )( ) ( )( )
( ) ( )

7 8

2 12 67 1 12 67 0 2 12 67 1 12 67 0 2

1 12 67

Im

2

2 2
pp

w w

G mH G G mH G
m O m

G m

ζ ζ ζ ζ λ ζ ζ ζ ζλ
ζ ζ

−

− + + + − + +
= + +

+

 (52) 

We define 
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{ }7 8
0,67

sh

Im 2
tan

p
H

in

w w
G

R I
λ
β

− −
= ,                 (53) 

which gives 

( )0 2 2 0
0,67 1 1 1

1 0 2 2 0

1 2 1
πH f

G G G GG H H cm H
G G G G G

λ
 ′ ′− ′= − − − ′ ′−  

.       (54) 

Obviously, (50) and (54) are different: The magnetic sensitivity of the Hall 
signal at the two contacts on the axis of mirror symmetry is different. For 

1 2cm >  more current is shunted via contact 67  than via 12 , and therefore 

0,12 0,67H HG G> . Thus, the output contact that is closer to a supply contact has 
smaller Hall signal. It also follows that contacts on the axis of mirror symmetry 
have a common mode of ½ at zero magnetic field, but their common mode 
changes when magnetic field is applied. It depends on the sign of the magnetic 
field if the common mode increases or decreases. 

The total Hall geometry factor is the sum of Hall geometry factors of both 
output contacts 

( ) ( )
0 0,12 0,67

0 2 2 2 0 0

1 1 1 1
1 0 2 2 0

1 2
π

H H H

f

G G G

G G G G G G
H H H H

G G G G G
λ

= +

 ′ ′− − − ′= + − − ′ ′− 
 

    (55) 

With (B23), (B24), and (B41) in Appendix B we finally get 

( )( ) ( )( )2 2 0 1 0 1 0 0 2 1 2 1

0 1 1
1 0 2 0 2

1
πH

G G G H G H G G G H G H
G H H

G G G G G

 ′′ ′ ′ ′′ ′′ ′ ′ ′′− − − − − = − + ′′ ′ ′ ′′− 
 

. (56) 

For 1 2cm =  it holds 1 1H H′ ′′= − . This is readily proved by a transformation 
of the integration variable 3 5ζ ζ ζ ζ ′=  in (B35) and by (15). With (B41) it fol-
lows 1 0H = . Moreover, (50) and (54) must be equal due to the symmetry. Thus, 

1 1H H= − . Finally 

{ }0 1 1
1

2
πH fG H H

G
λ ′= −  for 1 2cm =               (57) 

(57), (34), and (35) give the weak field Hall geometry factor of devices with 
1 2cm = , i.e. with two perpendicular mirror symmetries, as function of the 

numbers of squares. An alternative formula for this Hall geometry factor was 
given in (5a-c) in [1]. Although there is no apparent similarity in the two for-
mulae their numerical results are identical. 

5. Discussion of the Hall Geometry Factor 

The Hall geometry factor 0HG , the common mode cm , and the numbers of 
squares ,f pλ λ  at low magnetic field are functions of three parameters 

3 5 6, ,ζ ζ ζ  which are subject to the relations 3 5 61 ζ ζ ζ≤ ≤ ≤ . On the other hand 

0HG  is an implicit function of the three parameters , ,f p cmλ λ , which we study 
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in the following. Thereby the quantity 0H f pG λ λ  plays an important role. 
This ratio of Hall geometry factor over the square-root of the product of num-
bers of squares of inputs and outputs sums up the effect of the shape of the de-
vice on the signal-to-noise ratio at a fixed power dissipation (SNRP – P denotes 
fixed power). This is explained in [1] and there we also saw that 0H f pG λ λ  
cannot exceed an upper limit of 2 3 0.471≅ , which corresponds to Hall plates 
of highest symmetry (i.e. f pλ λ=  and 1 2cm = ) with mid-sized contacts hav-
ing 2f pλ λ= =  (see Figure 3 in [1]). If the symmetry is reduced by having 
different input and output resistances f pλ λ≠  but still 1 2cm =  this will give 
notably smaller SNRP (see Figure 3 in [1]). The main motivation for this work is 
to answer the question whether a reduction in symmetry via 1 2cm ≠  leads to 
an equally pronounced drop in SNRP or to just a minor drop. With the results of 
the preceding sections we can answer this and we also know the contact size (i.e. 

fλ  and pλ ) for the maximum SNRP for every cm . With these findings one 
can optimize Vertical Hall effect devices of the type in Figure 1(c), as shown in 
Appendix C. 

The Reduction in SNR of Hall Plates with Four Contacts and cm ≠ 
1/2 

Here we are looking for the maximum of 0H f pG λ λ  for all allowed values of 
the three parameters 3 5 6, ,ζ ζ ζ  under the additional constraint that cm  has a 
fixed value between zero and one. To this end we use (22), (23), (26) and (56). 
However, the numerical evaluation of the involved integrals is tricky and there-
fore we need to use some identities and transformations of Appendix B. For the 
optimization algorithm it is also important to deal with the allowed range of pa-
rameters 3 5 61 ζ ζ ζ≤ ≤ ≤ . If the algorithm leaves this allowed range during its 
search, 0H f pG λ λ  will get complex valued and the algorithm will have 
troubles to find the maximum. We avoid this problem by introducing additional 
parameters , ,x y z  via 2

3 1 xζ = + , 2 2
5 1 x yζ = + + , 2 2 2

6 1 x y zζ = + + + . The 
new parameters , ,x y z  can attain any real values without leaving the allowed 
region of 3 5 61 ζ ζ ζ< < < . In spite of all these provisions the search for maxi-
mum 0H f pG λ λ  lasted several hours for 0cm →  or 1cm →  (for details 
of the computer used see section 6). 

In Figure 6 and Table 1 we chose specific values for cm  and varied fλ  and 

pλ  to maximize 0H f pG λ λ . This maximum 0, , ,H opt f opt p optG λ λ  is located 
in , ,,f f opt p p optλ λ λ λ= = . The plot in Figure 6(a) shows that 0, , ,H opt f opt p optG λ λ  
has a flat maximum versus cm  near 0.5cm = : in 0.5 0.1cm − <  we loose 
less than 2.1% in 0H f pG λ λ  w.r.t. its maximum, in 0.5 0.2cm − <  we 
loose less than 8.7% and in 0.5 0.3cm − <  we lose less than 20.8%. Thereby, in 
all these common mode ranges the quantity 0H f pG λ λ  evaluated at 

2f pλ λ= =  is nearly as large as the maximum 0, , ,H opt f opt p optG λ λ . The Hall 
geometry factor ( )0, 0 , ,,H opt H f f opt p f optG G λ λ λ λ= = =  is similar to  

( )0 2H f pG λ λ= =  except for 0.05cm <  or 0.95cm >  (see Figure 6(b)). 
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Figure 6(c) shows the exact location , ,,f opt p optλ λ  of the maximum 

0, , ,H opt f opt p optG λ λ  at various cm : ,p optλ  remains closely below 2  for all 
common modes, but ,f optλ  increases drastically for 0cm →  or 1cm →  
(note that shf Rλ  is the resistance between the two contacts on the axis of mir-
ror symmetry). Interestingly, at extreme common modes 0,H optG  remains larger 
than 0.321, whereas ( )0 2H f pG λ λ= =  decreases to zero (see Figure 6(b)). 
Figure 6(d) shows how 3, 5,opt optζ ζ  and 5, 6,opt optζ ζ  vary versus cm . 6,optζ  
has a minimum in 1 2cm = , whereas it increases drastically at extreme com-
mon modes (not shown). 

For 1 2 2f pcm λ λ= ∧ = =  the SNRP is maximal. The exact location of this 
global maximum follows from (27) and (37). 

3,max 1 2 2 2 2 2 3.35916ζ = − + + − ≅              (58) 

5,max 1 2 2 2 2 2 7.52395ζ = + + + ≅               (59) 

6,max 7 4 2 2 20 14 2 25.27410ζ = + + + ≅            (60) 

 

 

Figure 6. (a) Maximum of 03 2H f pG λ λ  versus ,f pλ λ  for varying common mode cm . The maximum possible value of 

03 2H f pG λ λ  at 1 2cm =  is 1, and for 1 2cm ≠  it is smaller. In 2f pλ λ= =  the parameter 03 2H f pG λ λ is only a tiny 

bit smaller than in , ,,f f opt p p optλ λ λ λ= = . (b) The Hall geometry factor 0HG  in , ,,f f opt p p optλ λ λ λ= =  and in 2f pλ λ= = : 

they are similar in the range 0.3 0.7cm< <  but they are quite different for 0.05cm ≤  or 0.95cm ≥ . (c) The number of squares 

, ,,f opt p optλ λ  are close to 2  in the range 0.3 0.7cm< <  but outside this range ,f optλ  increases sharply while ,p optλ  decreases 

moderately. (d) Variation of 3, 5,opt optζ ζ  and 5, 6,opt optζ ζ  for varying common mode cm . 
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On the other hand, it is known from [27] that such devices of highest symme-
try have 

( )0 3,max 5,max 6,max, , 2 3HG ζ ζ ζ = .                 (61) 

A strict mathematical proof of (61) based on (57) seems to be challenging and 
has not yet been accomplished. 

6. Numerical Verification 

Let us consider a first rectangular Hall plate of Figure 3(a) with tH = W = 1 m, ℓ 
= 1.770130 m, b = 0.162917 m, s = 0.239699 m. This gives a common mode cm = 
0.85 with maximum 0H f pG λ λ  and 1.726, 1.270f pλ λ≅ ≅  (see italic line in 
Table 1). A second rectangular Hall plate with tH = W = 1 m, ℓ = 1.435180 m, b = 
0.099209 m, s = 0.113905 m also has a common mode cm = 0.85, yet with 

1.414f pλ λ= ≅  and with slightly smaller 0H f pG λ λ  (see italic line in Table 
2). Table 3 compares the parameters of both Hall plates obtained by our theory 
with results from finite element simulations (FEM) done with COMSOL 
MULTIPHYSICS. The FEM simulation used a 2D static conduction model with a 
conductivity tensor with values 1/(1 + 0.012) in the main diagonal and ±0.01/(1 + 
0.012) in the minor diagonal. This corresponds to a small Hall angle of 0.573˚. 
The triangular meshing was fine: it had more than 3.6 million elements. Lagrange 
multiplier was used to get accurate values of the current through the supply con-
tacts. The values of the analytical theory were obtained with MATHEMATICA 
8.0 (see also details in Appendix B.3). All computations were carried out on a 
desktop computer with Intel Core i7-4930K CPU, ASRock X79 Extreme 6 main-
board, PNY Quadro K2000D graphics board with 64 GB RAM and 3.4 GHz clock 
cycle. 

The differences between the analytical theory and the FEM simulation are 
smaller than 0.03% for all values of Table 3, except for 0,12HG  and 0,67HG . 
There the difference is up to 0.1%, probably due to insufficient meshing. The dif-
ference in the noise relevant parameter 0H f pG λ λ  between both Hall plates is 
only 1.4%, and it is correctly given by the theory. The difference in Hall geometry 
factor between both Hall plates is 5.8%, and it is also given accurately by the 
theory. Also the ratios of contributions to magnetic sensitivity of contact 12  
versus contact 67  are predicted accurately by the theory: it is 2.69 for the first 
Hall plate and 3.17 for the second Hall plate. The numbers of squares ,f pλ λ  of 
the first Hall plate differ by a factor of about 1.36, whereas they are identical for 
the second Hall plate – all are given precisely by the theory. 

From a practical view point this example shows that a Hall plate with a fairly 
pronounced common mode of 0.85 may still achieve a good noise performance. It 
has the largest SNRP if input and output resistances differ by 36%. Then its SNRP 
is only 30% less than for an optimum Hall plate with 90˚ symmetry and 1.4 
squares impedance. If the electronic circuit requires equal input and output 
resistances at the same common mode of 0.85, the SNRP loss is only slightly 
larger (31% instead of 30% for 2f pλ λ= = ). 
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7. Summary 

This work gave an analytical theory on the signal-to-thermal-noise ratio (SNR) of 
Hall plates with reduced symmetry, where the common mode potential of the two 
output contacts was not midway between the two supply potentials. The method  

 
Table 1. 0, , ,H opt f opt p optG λ λ  for noise-optimized Hall plates with reduced symmetry 1 2cm ≠ . Each line of the table gives the 

global maximum of 0H f pG λ λ  if the common mode is fixed to the specific value of the leftmost column while ,f pλ λ  are 

varied. This maximum is obtained for , ,,f f opt p p optλ λ λ λ= = . It is irrelevant if fλ  or pλ  refer to the input, however, fλ  refers 

to those two contacts, which lie on the single axis of mirror symmetry. 0,H optG  is the Hall geometry factor at 

, ,,f f opt p p optλ λ λ λ= = , and 3, 5, 6,, ,opt opt optζ ζ ζ  are the corresponding ζ-parameters of (9), (11), (12). The data of this table is plotted 

in graphical form in Figures 6(a)-(d). SNRP loss is the reduction in 0, , ,H opt f opt p optG λ λ  compared to the overall maximum at 

1 2cm = . 

cm  SNRP loss 0max H

f p

G
λ λ

 
,f optλ  ,p optλ  0,H optG  3,optζ  5,optζ  6,optζ  

0.01 −81.3% 0.08820403 13.5684191 0.97714897 0.3211689 1.0126975 1.4154623 9.316E+17 

0.02 −73.5% 0.12473934 6.78427221 0.97715402 0.3211712 1.0126981 1.4154656 51666217 

0.03 −67.6% 0.15277365 4.52444172 0.97734957 0.3212595 1.0127186 1.4155907 426524.66 

0.05 −58.2% 0.19716117 2.83246755 1.00077903 0.33195 1.0153938 1.4313833 2094.4638 

0.10 −41.4% 0.27614336 1.96616646 1.16343939 0.4176540 1.0549779 1.6190136 137.64742 

0.15 −29.7% 0.33163219 1.72558712 1.27010636 0.4909590 1.1338450 1.9121322 65.026289 

0.20 −20.8% 0.37346478 1.60523057 1.33229454 0.5461582 1.2528145 2.2935627 44.890437 

0.25 −13.9% 0.40569653 1.53222002 1.36884971 0.5875431 1.4165467 2.771975 35.952151 

0.30 −8.7% 0.43040045 1.48401527 1.3903129 0.6182273 1.6326833 3.3638489 31.098303 

0.35 −4.8% 0.44875400 1.45144223 1.4027452 0.6403208 1.9129024 4.0933519 28.218344 

0.40 −2.1% 0.46146003 1.43019915 1.4096867 0.6552298 2.2746276 4.9945976 26.49560 

0.45 −0.5% 0.46893594 1.41813302 1.41316212 0.6638470 2.7437445 6.1154838 25.567890 

0.50 0.0% 0.47140451 1.41384147 1.41435319 0.6666119 3.3591589 7.5239390 25.274102 

0.55 −0.5% 0.46893594 1.41813133 1.41316432 0.6638471 4.1808368 9.3185630 25.567722 

0.60 −2.1% 0.46146003 1.4301982 1.40968893 0.6552301 5.3048460 11.648275 26.495482 

0.65 −4.8% 0.44875400 1.45144239 1.40274751 0.6403214 6.8937092 14.751561 28.218323 

0.70 −8.7% 0.43040045 1.48401705 1.39031541 0.6182282 9.2449019 19.047404 31.098440 

0.75 −13.9% 0.40569653 1.53222002 1.36884971 0.5875431 12.969869 25.380138 35.952151 

0.80 −20.8% 0.37346478 1.60523879 1.33229834 0.546160 19.572788 35.832430 44.891549 

0.85 −29.7% 0.33163219 1.72558712 1.27010636 0.4909589 34.007214 57.350248 65.026289 

0.90 −41.4% 0.27614336 1.96616645 1.16343939 0.4176540 85.019310 130.47422 137.64742 

0.95 −58.2% 0.19716117 2.83241167 1.00076829 0.3319452 1462.9986 2062.3557 2094.1005 

0.97 −67.6% 0.15277365 4.52444219 0.97734963 0.3212595 301305.52 421168.63 426525.29 

0.98 −73.5% 0.12473934 6.78430801 0.97715692 0.3211725 36505282 51024117 51672041 

0.99 −81.3% 0.08820403 13.5684191 0.97714897 0.3211689 6.583E+17 9.202E+17 9.318E+17 
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Table 2. 0H f pG λ λ  and 0HG  for Hall Plates with 1 2 2f pcm λ λ≠ ∧ = = . Each line of the table gives 0H f pG λ λ  and 

0HG  for common mode fixed to the specific value of the leftmost column and 2f pλ λ= = . 3 5 6, ,ζ ζ ζ  are the corresponding 

parameters of (9), (11), (12). The data of this table is also plotted in graphical form in Figures 6(a)-(d). The three rightmost 

columns specify the geometry of a rectangular Hall plate of Figure 3(a) to achieve the specific common mode and 2f pλ λ= = . 

For each value of cm  the noise relevant parameter 0H f pG λ λ  is only negligibly smaller than in Table 1, but the devices of 

Table 2 have the advantage of equal input and output resistances sh2in outR R R= = . SNRP loss is the reduction in 0H f pG λ λ  

compared to the overall maximum at 1 2cm = . 

cm  SNRP loss 0H

f p

G
λ λ

 
0HG  3ζ  5ζ  6ζ  W  b   s   

0.025 −76.7% 0.109905743 0.155430192 1.002335535 1.013536098 21.31686947 1.4150 0.9630 0.0216 

0.05 −62.7% 0.175994946 0.248894440 1.009521765 1.054276928 21.46355938 1.4171 0.9263 0.0427 

0.1 −43.6% 0.266102531 0.376325808 1.040865803 1.218890953 21.99558033 1.4250 0.8547 0.0816 

0.15 −30.6% 0.327057404 0.462529016 1.101607638 1.497368164 22.71303885 1.4352 0.7869 0.1139 

0.2 −21.2% 0.371430098 0.525281482 1.202125012 1.893182063 23.44626216 1.4453 0.7237 0.1384 

0.25 −14.1% 0.404827226 0.572512154 1.353665966 2.412091843 24.07721415 1.4538 0.6650 0.1558 

0.3 −8.8% 0.430064674 0.608203294 1.567884442 3.06612838 24.56018366 1.4601 0.6099 0.1674 

0.35 −4.8% 0.448649712 0.634486508 1.857742246 3.875385898 24.89883052 1.4645 0.5573 0.1749 

0.4 −2.1% 0.461439423 0.652573890 2.238880866 4.867146861 25.1162362 1.4672 0.5066 0.1795 

0.45 −0.5% 0.468934647 0.663173737 2.730987815 6.073054588 25.2360367 1.4687 0.4572 0.1820 

0.5 0.0% 0.471404521 0.666666667 3.359160854 7.523945255 25.27414237 1.4692 0.4086 0.1827 

0.55 −0.5% 0.468934647 0.663173737 4.155410812 9.240625886 25.2360367 1.4687 0.3609 0.1820 

0.6 −2.1% 0.461439423 0.652573890 5.160361279 11.21821021 25.1162362 1.4672 0.3139 0.1795 

0.65 −4.8% 0.448649712 0.634486508 6.42486482 13.40273689 24.89883052 1.4645 0.2677 0.1749 

0.7 −8.8% 0.430064674 0.608203294 8.01016155 15.66453688 24.56018366 1.4601 0.2227 0.1674 

0.75 −14.1% 0.404827226 0.572512154 9.981881174 17.78667319 24.07721415 1.4538 0.1792 0.1558 

0.8 −21.2% 0.371430098 0.525281482 12.38457865 19.50401324 23.44626216 1.4453 0.1379 0.1384 

0.85 −30.6% 0.327057404 0.462529016 15.16864015 20.61808402 22.71303885 1.4352 0.0992 0.1139 

0.9 −43.6% 0.266102531 0.376325808 18.04556863 21.13200402 21.99558033 1.4250 0.0637 0.0816 

0.95 −62.7% 0.175994946 0.248894440 20.35855931 21.26111604 21.46355938 1.4171 0.0310 0.0427 

0.975 −76.7% 0.109905723 0.155430165 21.03217264 21.26719592 21.31686619 1.4150 0.0154 0.0216 

 
relies on conformal mapping theory introduced by [24] but it employs a novel 
way to derive the weak magnetic field limit. The numerical problems in the eval-
uation of the integrals are reduced via several transformations and closed form 
integrals given in the appendix. The agreement between the analytical theory and 
selected numerical simulation results is excellent. The set of Equations ((1), (22), 
(23), (27), (50), (54), (56)) gives the Hall output signal as an implicit function of 
electrically measurable quantities , ,f p cmλ λ  irrespective of the device geometry. 
To the best of the author’s knowledge, this work gives the most comprehensive 
closed form treatment of magnetic detectivity for a very general class of Hall  
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Table 3. Comparison of analytical theory of this paper with finite element simulation for 
two Hall plates with 0.85cm = . The Hall plates are rectangular as in Figure 3(a). Both 
have a common mode equal to 0.85. The first Hall plate has optimized sizes of contacts to 
maximize 0H f pG λ λ , which leads to different input and output resistances 

, sh , sh,f opt p optR Rλ λ  with , ,,f opt p optλ λ  from Table 1 for 0.85cm = . The second Hall plate 

has 1.4% smaller SNRP (= 0H f pG λ λ ) but with equal input and output resistances of 

2  squares. The table compares values of these quantities obtained by our analytical 
theory with values obtained by finite element simulations (FEM), and it gives the 
differences of both. 

Quantity 
First Hall plate Second Hall plate 

Theory FEM Difference Theory FEM Difference 

W   1.77012983   1.43517967  

b    0.09203691   0.09920905  

s    0.13541332   0.11390467  

cm  0.85000 0.85000 0.0003% 0.85000 0.84999 0.001% 

fλ  1.72559 1.72560 −0.001% 1.41421 1.41419 0.001% 

pλ  1.27011 1.26983 0.022% 1.41421 1.41399 0.016% 

0HG  0.49096 0.49083 0.026% 0.46253 0.46251 0.005% 

0,67HG  0.13312 0.13325 −0.097% 0.11091 0.11097 −0.058% 

0,12HG  0.35784 0.35771 0.038% 0.35162 0.35154 0.024% 

0H f pG λ λ  0.33163 0.33158 0.015% 0.32706 0.32708 −0.006% 

03 2H f pG λ λ  0.70350 0.70339 0.015% 0.69379 0.69384 −0.006% 

f pλ λ  1.35862 1.35892 −0.022% 1.00000 1.00014 −0.014% 

 
effect devices. 

With this theory, it was shown that the SNR is only slightly impaired if the 
common mode output potential deviates moderately from half of the supply po-
tential. Despite the lack in symmetry for 1 2cm ≠  it is possible to keep input 
and output resistances equal without significant further loss in SNR. In Appendix 
C, the theory was applied to optimize of Vertical Hall effect devices with three top 
contacts and one buried layer contact. There it was possible to specify geometries 
with sufficiently large contacts for practical use and with only moderate loss in 
SNR. Moreover, it was shown that for 1 2cm ≠  the magnetic sensitivity of both 
contacts on the axis of mirror symmetry is not the same. 

The theory is so general that it also covers former results on Hall plates with 
four contacts having two perpendicular mirror symmetries [1] and also former 
results on Hall plates with three contacts having only single mirror symmetry 
[31]. However, the mathematical expressions for the Hall plate parameters from 
the present theory show no apparent similarity to former work in [1] [31]. 
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Appendix A 

Here are the definitions of some functions used in the text. The imaginary unit is 
denoted by 1i = − . The incomplete elliptic integral of the first order is defined 
as 

( ) ( ) ( )1 2 1 22 2 2
0

, 1 1 d
w

F w k kα α α
− −

= − −∫ .            (A1) 

The complete integral of the first order is given by 

( ) ( )1,K k F k= .                      (A2) 

It holds ( )0 π 2K = . Asymptotic limit ( ) ( )21 ln 4 1K k k→ = − . We also 
use the common notation for the complementary elliptic integral 

( ) ( )21K k K k′ = − .                     (A3) 

Inversion of (A1) gives the Jacobi-sn function 

( )( )sn , ,w F w k k= .                     (A4) 

From (A4) it follows ( )0 sn 0, k=  and ( )( )1 sn ,K k k± = ± . 
The modular lambda function is defined as the inverse of the monotonic func-

tion ( ) ( )K k K k′  in the interval 0 1k≤ ≤  

( ) ( )( ) 2L K k K k k′ = .                    (A5) 

Further useful properties of this function are given in [15]. 

Appendix B 
B1. The G-Functions 

We introduce the following functions which appear in the calculation of the re-
sistances at zero magnetic field. 

( )
( )( )( )( )2 2 2 2 2 2 2

3 5 6

1 0
1

g ζ
ζ ζ ζ ζ ζ ζ ζ

= >
− − − −

        (B1) 

with 3 5 61 ζ ζ ζ≤ ≤ ≤ . For n = 0, 1, 2 

( )
1

0

dn
nG g

ζ

ζ ζ ζ
=

′ = ∫                      (B2) 

( )
3

1

dn
nG g

ζ

ζ

ζ ζ ζ
=

= ∫                      (B3) 

( )
5

3

d 0n
nG g

ζ

ζ ζ

ζ ζ ζ
=

= >∫                     (B4) 

( )
6

5

dn
nG g

ζ

ζ ζ

ζ ζ ζ
=

= ∫                      (B5) 

( )
6

dn
nG g

ζ ζ

ζ ζ ζ
∞

=

′′ = ∫                      (B6) 
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The integrands of nG′  and nG′′  have only a single pole, whereas the inte-
grands of , ,n n nG G G  have two poles. All G-functions are positive. For n = 1 
these integrals can be solved explicitly by [28] (if we use the substitution 2x y=  
in the integrand of [28]). 

( )( )
2 2 2
5 3 6

1 2 2 22 2 2
6 3 56 3 5

11
11

G K ζ ζ ζ
ζ ζ ζζ ζ ζ

 − −′ =
 − −− −  

           (B7) 

( )( )
2 2 2
5 3 6

1 2 2 22 2 2
6 3 56 3 5

11
11

G K ζ ζ ζ
ζ ζ ζζ ζ ζ

 − −
 =
 − −− −  

           (B8) 

From Figure 4 it follows 

2 3 5 6 1 1W W W W G G= ⇔ = .                  (B9) 

One can get (B9) by direct calculation of the integrals according to [29]. With 
[30] it holds 

( )( )
2 2 2 2 2
6 3 5 3 6

1 2 2 2 22 2 2
3 6 6 3 56 3 5

11 1 ,
1 11

G F ζ ζ ζ ζ ζ
ζ ζ ζ ζ ζζ ζ ζ

 − − −′  =
 − − −− −  

,    (B10) 

( )( )
2 2 2 2
5 5 3 6

1 2 2 2 22 2 2
6 6 3 56 3 5

1 11 ,
1 11

G F ζ ζ ζ ζ
ζ ζ ζ ζζ ζ ζ

 − − −′′  =
 − − −− −  

.      (B11) 

and with the addition theorems for elliptic integrals in [21] one gets 

( )( )
2 2 2

3 5 6 5 3 6
1 1 2 2 22 2 2

5 3 6 6 3 56 3 5

11 ,
11

G G F ζ ζ ζ ζ ζ ζ
ζ ζ ζ ζ ζ ζζ ζ ζ

 ± − −′ ′′  ± =
 ± − −− −  

.   (B12) 

The physical meaning of 1 1G G′  and 1 1G G′′  is the size of the folded contacts 

0 2W W  and 6W W∞  on the axis of symmetry in Figure 4. Only in the particular 
symmetric case 1 2cm =  it holds 0 2 6W W W W∞=  and therefore 1 1G G′ ′′= . Yet in 
general 1 1G G′ ′′≠ . A comparison of (B8) and (B12) gives 1 1 1G G G′ ′′+ ≤ , where the 
equal sign is only valid in the two degenerate cases 3 1ζ →  (which means 

0cm → ) and 5 6ζ ζ→  (which means 1cm → ). In both cases 0pλ =  (see 
(27)). 

Another identity between G-functions can be proven with Figure B1. It shows 
a mapping from the upper half of the ζ-plane onto the interior of a polygon in the 
w′ -plane. The valid Schwartz-Christoffel transformation is 

2 2
3

2 2 2 2 2
0 5 6

d
1

w C
ζ ζ ζ

ζ
ζ ζ ζ ζ ζ

−
′ ′=

− − −
∫ .            (B13) 

With (B13) we compute the following segments 

( )( )( )( )
( )

2 21
3 2

0 2 3 0 2
2 2 2 2 2 2 20

3 5 6

d
1

W W C C G G
ζ ζ

ζ ζ
ζ ζ ζ ζ ζ ζ ζ

−
′ ′ ′ ′ ′ ′= = −

− − − −
∫  (B14) 
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( )( )( )( )
( )

5

3

2 2
3 2

3 5 2 3 0
2 2 2 2 2 2 2

3 5 6

d
1

W W C C G G
ζ

ζ

ζ ζ
ζ ζ

ζ ζ ζ ζ ζ ζ ζ

−
′ ′ ′ ′= = −

− − − −
∫  (B15) 

( )( )( )( )
( )

6

2 2
3 2

6 2 3 0
2 2 2 2 2 2 2

3 5 6

d
1

W W C C G G
ζ

ζ ζ
ζ ζ

ζ ζ ζ ζ ζ ζ ζ

∞

∞

−
′ ′ ′ ′ ′′ ′′= = −

− − − −
∫  (B16) 

According to Figure B1 it holds 0 2 3 5 6W W W W W W∞′ ′ ′ ′ ′ ′+ = . This gives 

( )2
3 0 0 0 2 2 2G G G G G Gζ ′ ′′ ′ ′′− + = − + .               (B17) 

A similar mapping is shown in Figure B2. It is given by 

2

2 2 2 2 2 2
0 3 5 6

1
dw C

ζ ζ
ζ

ζ ζ ζ ζ ζ ζ

−′′ ′′=
− − −

∫             (B18) 

with the lengths 

( )( )( )( )
( )

1 2

1 2 0 2
2 2 2 2 2 2 20

3 5 6

12 d 2
1

W W C C G Gζ
ζ

ζ ζ ζ ζ ζ ζ ζ

−′′ ′′ ′′ ′′ ′ ′= = −
− − − −

∫  (B19) 

( )( )( )( )
( )

5

3

2

3 5 2 0
2 2 2 2 2 2 2

3 5 6

1 d
1

W W C C G G
ζ

ζ

ζ
ζ

ζ ζ ζ ζ ζ ζ ζ

−′′ ′′ ′′ ′′= = −
− − − −

∫
  

 (B20) 

( )( )( )( )
( )

6

2

6 7 2 0
2 2 2 2 2 2 2

3 5 6

12 d 2
1

W W C C G G
ζ

ζ
ζ

ζ ζ ζ ζ ζ ζ ζ

∞ −′′ ′′ ′′ ′′ ′′ ′′= = −
− − − −

∫  (B21) 

With Figure B2 it holds 1 2 3 5 6 72W W W W W W′′ ′′ ′′ ′′ ′′ ′′+ = . This gives 
 

 
Figure B1. (a) Is a representation of the Hall plate with single mirror symmetry in the 
upper half of the ζ-plane with contacts on the real axis—it is identical to Figure 3(b). (b) 
Shows the same Hall-plate after conformal transformation (B13). 

 

 
Figure B2. (a) Is a representation of the Hall plate with single mirror symmetry in the 
upper half of the ζ-plane with contacts on the real axis—it is identical to Figure 3(b). (b) 
Shows the same Hall-plate after conformal transformation (B18). 
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0 0 0 2 2 2G G G G G G′ ′′ ′ ′′− + = − + .                 (B22) 

The combination of (B17) and (B22) gives two remarkable identities. 

0 0 0G G G′ ′′= +                        (B23) 

2 2 2G G G′ ′′= +                        (B24) 

B2. The H-Functions 

In the calculation of the Hall signal the following function appears. 

( ) ( ) 3 5 6

3 5 6

1ln
1

h g ζ ζ ζ ζ ζ ζζ
ζ ζ

ζ ζ ζ ζ ζ ζ ζ
+ − +−

=
+ − + −            (B25) 

with 3 5 61 ζ ζ ζ< < < . ( )h ζ  has four zeros. 

( ) ( ) ( ) ( )13,0 35,0 56,00 0h h h hζ ζ ζ= = = =
            (B26) 

1 13,0 3 5 3 5 6 3 6 5 6 3sqrt 2ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ< = − + + − + − <     (B27) 

3 5 6 3 6 3 5 5 6
3 35,0 5

3 5 61
ζ ζ ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ
ζ ζ ζ

+ − −
< = <

− + − +          
 (B28) 

5 56,0 3 5 3 5 6 3 6 5 6 6sqrt 2ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ< = − + + − + + <     (B29) 

with 

( )2
3 5 6 3 5 6 3 5 3 6 5 6sqrt 4ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ= − + − + + − + .     (B30) 

We define for n = 0, 1, 2 

( )
1

0

dn
nH h

ζ

ζ ζ ζ
=

′ = ∫                     (B31) 

( )
3

1

dn
nH h

ζ

ζ

ζ ζ ζ
=

= ∫                      (B32) 

( )
5

3

dn
nH h

ζ

ζ

ζ ζ ζ= ∫                      (B33) 

( )
6

5

dn
nH h

ζ

ζ ζ

ζ ζ ζ
=

= ∫
                   

 (B34) 

( )
6

dn
nH h

ζ ζ

ζ ζ ζ
∞

=

′′ = ∫                     (B35) 

The integrands of nH ′  and nH ′′  are singular only at one end of the integra-
tion interval, whereas the integrands of , ,n n nH H H  are singular at both ends. 
The integrands of nH ′  and nH ′′  have no zeros, yet the integrands of 

, ,n n nH H H  have one zero. Therefore, the signs of , ,n n nH H H  are not obvious, 
whereas 0nH ′ <  and 0nH ′′ > . 

There are several relations between these integrals such as 0 0H H=  and 

2 2H H=  (given without proof). For the purpose of this work we need relations 

https://doi.org/10.4236/jamp.2018.610174


U. Ausserlechner 
 

 

DOI: 10.4236/jamp.2018.610174 2058 Journal of Applied Mathematics and Physics 
 

of H-functions with index 1. To this end we consider the conformal transforma-
tion of Figure B3 given by 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 21 2
1 6

01 2 1 2 1 2 1 2 1 21 2
0 3 5 6 5 3

1

1

mm

m m m m mm

C d
w C

ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ

−+

+ − − + −+

′′′ − −
′′′ ′′′= +

+ − − + + +
∫  (B36) 

with πm β= . In the limit of small m it holds 

( )( )

( ) ( ) ( ) ( )

( ) ( )( )
( ) ( )

6

6

3 5 6
6

3 5 6
7 6 1 1 2 1 2 1 2 1 22 2 2 2 2 2 2

3 5 6

1 2 6 1 6 0 2 6 1 6 0

2 6 1 6 0 2 6 1

11 1 ln d
1

1

1 1

1 1

m
W W C

C G G G m H H H

G G G m H H

ζ

ζ

ζ ζ ζ ζ ζ ζζζ ζ ζ ζ
ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ

ζ ζ ζ

− ∞

−∞

  + − +−
− − +  + − + −  ′′′ ′′′ ′′′= +

− − − −

′′′ ′′ ′′ ′′ ′′ ′′ ′′= + + + − + + +
′′ ′′ ′′ ′′ ′′+ − + + + − + +

∫ ∫

( )6 0Hζ ′′ 

 (B37) 

( )( ) ( ) ( )( )

( ) ( )( )

5

3

5 3 1 6

1 2 6 1 6 0 2 6 1 6 0

1 d

1 1

W W C g mh

C G G G m H H H

ζ

ζ

ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ

′′′ ′′′ ′′′= − − +

 ′′′= − + + − + − + + − 

∫
 (B38) 

( )( )

( ) ( ) ( ) ( )

( ) ( )( )
( ) ( )( )

3 5 6
60 1

3 5 6
2 1 1 1 2 1 2 1 2 1 22 2 2 2 2 2 2

1 0 3 5 6

1 2 6 1 6 0 2 6 1 6 0

2 6 1 6 0 2 6 1 6 0

11 1 ln d
1

1

1 1

1 1

m
W W C

C G G G m H H H

G G G m H H H

ζ ζ ζ ζ ζ ζζζ ζ ζ ζ
ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ

ζ ζ ζ ζ

−

  + − +−
− − +  + − + −  ′′′ ′′′ ′′′= +

− − − −

′′′ ′ ′ ′ ′ ′ ′= + + + − + + +
′ ′ ′ ′ ′ ′+ − + + + − + + 

∫ ∫

 (B39) 

( )( ) ( ) ( )( )

( ) ( )( )

3

5

8 10 1 6

1 2 6 1 6 0 2 6 1 6 0

1 d

1 1

W W C g mh

C G G G m H H H

ζ

ζ

ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ

−

−

′′′ ′′′ ′′′= − − +

 ′′′= + + + − + + + 

∫
  (B40) 

With Figure B3 it holds 8 10 7 6 5 3 2 1W W W W W W W W′′′ ′′′ ′′′ ′′′ ′′′ ′′′ ′′′ ′′′= + + . At vanishing mag-
netic field this is fulfilled for 0m  terms due to (B23), (B24). Also the 1m  terms 
at small magnetic field must be identical. This gives 

1 1 1H H H′ ′′= + .                      (B41) 

 

 
Figure B3. (a) Is a representation of the Hall plate with single mirror symmetry in the 
upper half of the ζ-plane with contacts on the real axis—it is identical to Figure 3(b). (b) 
Shows the same Hall-plate after conformal transformation (B36). 
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B3. Numerical Evaluation of the Integrals 

The numerical evaluation of the integrals (B2-B6) and (B31-B35) may get tricky 
for 3 1ζ →  (which means 0cm → ), 5 6ζ ζ→  (which means 1cm → ), and 

3 5ζ ζ→  (which means small partial contacts). The situation improves if we 
transform the integrals in the following way, which is explained exemplarily for 

nH  (n = 0, 1, 2). This integral extends from 5ζ  to 6ζ  with poles of the inte-
grand at both ends. We split up the integration interval into two parts ( )5 56,0,ζ ζ  
and ( )56,0 6,ζ ζ , because then we have only a single pole of the integrand in each 
of these intervals. Next we substitute the integration variables: for the lower in-
terval we set 5 coshζ ζ α= , and for the upper interval we set 6 cosζ ζ β= . (Al-
ternatively one could also substitute 5 cosζ ζ α=  and/or 6 coshζ ζ β= .) This 
gives 

56,0

5

5 5 3 6 5arccoshyp

5 5 3 6 5
5 2 2 2 2 2 2 2 2

0 5 5 3 6 5

6 6 3

6
6

cosh 1 cosh coshcosh 1ln
cosh 1 cosh 1 cosh cosh

cosh d
cosh 1 cosh cosh

cos 1 coscos 1ln
cos 1 cos 1

cos

n n
n

n n

H

ζ
ζ

α

ζ α ζ α ζ ζ ζ αα
α ζ α ζ α ζ ζ ζ α

ζ α α
ζ α ζ α ζ ζ ζ α

ζ β ζ β ζβ
β ζ β ζ

ζ β

=

 − + +−
 + + − − =

− − −

− ++
− +

+

∫

56,0

6

6 5arccos

6 3 6 5

2 2 2 2 2 2 2 2
0 6 6 3 6 5

cos
cos cos

d
cos 1 cos cos

ζ
ζ

β

ζ β ζ
β ζ ζ β ζ

β
ζ β ζ β ζ ζ β ζ=

 −
 − + 

− − −
∫

 (B42) 

Thus, we avoided the poles in the denominators. Only the arguments of the 
logarithms have poles, which are easier to deal with by numerical integration 
routines. For the nG  functions we simply skip the logarithms in (B42), and 
then we have no singularities at all. For the functions , , ,n n n nH H G G′ ′′ ′ ′′  we do 
not need to split up the original integration interval. Then the integration in-
tervals become ( )0,π 2  or ( )0,∞ . The numerical integration routines of 
MATHEMATICA can handle the singularities in the H-integrals, when we 
choose the integration method Double Exponential, however, the maximum re-
cursion limit and the working precision for numerical computations also have to 
be increased sufficiently. 

Appendix C 

Here we look for Vertical Hall effect devices of Figure 1(c) with large contacts 
and large SNRP. The geometrical parameters , , , ,a b c d     of these devices are 
labeled in Figure C1(a). In Figure C1(b) the geometry is scaled, and in Figure 
C1(c) it is mapped onto the upper half of the t-plane. These transformations are 

q z=   ,                          (C1) 

( )( )sn 2 ,t qK κ κ= ,                     (C2) 

( )1w tκ= − ,                        (C3) 

with the parameter κ  given by the aspect ratio of the Hall tub 

( ) ( )( ) ( )2 2d K K L dκ κ κ′= ⇔ =  .           (C4) 

For the contacts we get 
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Figure C1. (a)-(d) Mapping of a Vertical Hall effect device with four contacts onto the upper half of the w -plane. 
In (a) contact C4 extends along the entire length of the Hall tub, because in silicon BiCMOS technology it is made 
from the n-buried layer,which cannot be patterned differently than the Hall tub. When moving from contact C1 
over C2, C3 to C4 the Hall effect region is on the left hand side. Contact C2 is centered in the , ,z q t -planes and it is 
at infinity in the w -plane. The device in the w -plane of Figure C1(d) is identical with the device in the ζ-plane 
in Figure 3(b). (e) Mapping from the w -plane onto the original device in Figure 3(a). 

 

( ) ( )( )sn ,a aT K κ κ=   ,                   (C5) 

( ) ( )( )sn 2 ,b a bT K κ κ= +    ,                (C6) 

( ) ( )( )sn 2 2 ,c a b cT K κ κ= + +      .            (C7) 

A comparison of Figure C1(c) with Figure 3(b) gives 

( )3 1c cW Tζ κ= − = ,                     (C8) 

( )5 1b bW Tζ κ= − = ,                     (C9) 

( )6 1a aW Tζ κ= − = .                    (C10) 

Inserting (C4-C7) into (C8-C10) gives three relations between the parameters 

3 5 6, ,ζ ζ ζ  and the geometrical parameters of the device in Figure C1(a), which 
can be solved for , ,a b c   . 

( ) ( )1 1
6 ,a F Kκ ζ κ κ− −=                   (C11) 

( ) ( ) ( )( )1 1 1 1
5 6, , 2b F F Kκ ζ κ κ ζ κ κ− − − − = −  

         (C12) 

( ) ( ) ( )( )1 1 1 1
3 5, , 2c F F Kκ ζ κ κ ζ κ κ− − − − = −            (C13) 

Before we turn to the case of general common mode, we study the special case 
1 2cm = . Such a device may have a circular shape as in Figure C2. The two ho-

rizontal contacts have half aperture angle 1α  and the two vertical contacts have 
half aperture angle 2α . The centers of the contacts are on the { }Re z′ - and 

{ }Im z′ -axes; with this symmetry the common mode is 1/2. This device can also 
be mapped to the upper half of the w′ -plane via the Möbius transformation 
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( )2tan 2
i z iw

z iα
′− +′ =
′ −

.                   (C14) 

The mappings of a aZ W′ ′→ , b bZ W′ ′→ , and c cZ W′ ′→  give 

2

2

cos 1
cos 1aW α

α
+′ =
−

,                     (C15) 

2 1 1

2 1 1

sin 1 cos sin
cos 11 cos sinbW α α α

α α α
+ +′ =

− + −
,              (C16) 

2 1 1

2 1 1

sin 1 cos sin
cos 11 cos sincW α α α

α α α
+ −′ =

− + +
.               (C17) 

For 1 2cm =  the w -plane in Figure C1(d) is identical to the w′ -plane in 
Figure C2(b). Inserting (C15-C17) into (C8-C10) gives (15). The impedance of 
the device of Figure C2 is computed by the transformations z w t q→ → →  in 
Figures C3(a)-(d). 

22

2

1
1

zw
z

 −
=  

+                        
 (C18) 

2

A wt
C wκ

−
=

+                        (C19) 

( ) 1
1 21 cos sinA α α −= −                    (C20) 

( )2 2C Aκ= −                       (C21) 

1 2
2

1 2

cos sin
cos sin

α α
κ

α α
−

=
+                    

 (C22) 

( )2,q F t κ=                        (C23) 

Equations (C19-C22) define a Möbius transformation. The number of squares 
between the vertical contacts (the ones with half aperture angle 2α ) is 

( )
( )

( ) ( )( )
( ) ( )( )

( )
( )

2 22 2 1
2

2 2 12 2

1 12 sin cos
sin cos1 1

KK K
K KK

κ κκ α α
λ

κ α ακ κ

′ − + ′
= = =

′ − +
,    (C24) 

where we used [32] and ( ) ( )K k K k′ ′=  for the second identity in (C24). For the 
number of squares between the horizontal contacts (with half aperture angle 1α )  

 

 
Figure C2. Mapping of a circular Hall plate with four contacts and 1 2cm =  onto the 
upper half of the w′ -plane. When moving from contact C1 over C2, C3 to C4 the Hall 
effect region is on the left hand side. 
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Figure C3. Mapping of a quarter of a circular Hall plate with four contacts and 1 2cm =  
onto a rectangle in the q-plane to compute the number of squares between the vertical 
contacts of the device in Figure C2(a). 

 
we only have to swap indices 1 and 2. 

( )
( )

1 2
1

1 2

sin cos
sin cos

K
K

α α
λ

α α
′

=                    (C25) 

We can solve (C24, C25) for the half aperture angles with the help of the mod-
ular lambda function and insert this into (C15-C17), insert this again into 
(C8-C10) and finally into (C11-C13). With the abbreviations ( )1 1L L λ= , 

( )2 2L L λ=  we get 

( )
( )

( ) 













−

−−−
= κ

κκ
,

1
111

12

2

221

LL
LLL

F
Ka


            (C26) 

( )
1 2 2 1 2 1 2 1

2 1 1 2 1 2 1

1 1 1 1 11 ,
2 21 1 1 1

a
b

L L L L L L L L
F

K L L L L L L L
κ

κ κ

 − − − − − − + −
= −  − − + − − − 



  (C27) 

( )
1 2 2 1 2 1 2 1

2 1 1 2 1 2 1

1 1 1 1 11 ,
2 21 1 1 1

a
c b

L L L L L L L L
F

K L L L L L L L
κ

κ κ

 − − − − + − + −
= − −  − − − + − + − 



   (C28) 

This gives the geometrical parameters of the device in Figure C1(a) for the 
case 1 2cm =  as a function of the numbers of squares 1 2,λ λ . According to [1] 
the maximum signal to noise ratio for fixed power (SNRP) is achieved for 

1 2 2λ λ= =  and this means 1 2 3 2 2L L= = −  [15]. Inserting this into 
(C26-C28) gives the relative lengths , ,a b c       as functions of the aspect 
ratio d   of the Hall tub (see (C4)). 

( ) ( )1 1
6,max ,a F Kκ ζ κ κ− −→  ,                (C29) 

( ) ( )( )1 1
5,max , 2 2b aF Kκ ζ κ κ− −→ −   ,            (C30) 

( ) ( )( )1 1
3,max , 2 2c b aF Kκ ζ κ κ− −→ − −    ,          (C31) 
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with the numbers 3,max 5,max 6,max, ,ζ ζ ζ  from (58-60). For 20=  µm and 
5d =  µm one gets 0.254a =  µm, 0.302b =  µm, 0.556c =  µm. In prac-

tice these values are smaller than the feature size of many CMOS technologies, 
and they give rise to large electric fields when operated at typical supply voltages 
of around 2 V. Large electric fields lead to velocity saturation and electrical 
non-linearity and local self-heating, which reduce the efficiency of the spinning 
current Hall probe scheme [16]. Since the tub depth d cannot be increased in 
standard technologies we can only play with the length  . According to Figure 
C4 the length   should be small in order to make the contact spacing b  large. 
However, the arguments in the incomplete elliptic integrals in (C29-C31) must 
not exceed 1 for real valued solutions. Equation (C31) gives the most stringent 
requirement: 

( )
( )

2 1 2 2 2 2 2
1.22004

1 2 2 2 2 2

K
d d

K

− + − −
≥ ≅

′ − + − −
           (C32) 

For maximum SNRP the length of the Hall tub must be at least 22% larger than 
its depth. Moreover, the outer contacts should reach towards the end of the tub 

2 2a b c+ + =    . This follows from (C31) when the first argument of the in-
complete elliptic integral equates 1. For 5d =  µm one gets 0.506a =  µm, 

0.628b =  µm, 2.170c =  µm and 6.100=  µm. In the following we will see 
that it is possible to increase the contacts even further if we depart from 

1 2cm = . 
In the general case of Hall effect devices with different input and output resis-

tances it is advantageous to operate them in a stacked way according to Figure 
C5. Two identical devices are connected in series such that the entire supply cur-
rent flows through C1-C3 of one device and through C2-C4 of the other device. 
Then a spinning Hall probe scheme can be implemented, where input and output  

 

 
Figure C4. Contact spacing b  as a function of tub length   and depth d for Vertical Hall 

effect devices of Figure C1(a) with maximum SNRP, i.e. with 1 21 2 2cm λ λ= ∧ = =  - 
computed with (C27) in the valid range of (C32). b  is small and ,a c 

 (not shown) 
are similarly small. 
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Figure C5. Two identical Vertical Hall effect devices of Figure C1(a) are operated in a 
stack: supply wise the devices are connected in series. The device at higher potential is in 
p-phase with current flowing across its axis of mirror symmetry, while the device at lower 
potential is in f-phase with current flowing along its axis of mirror symmetry. The output 
voltages are tapped at different common mode potentials, amplified by operational 
amplifiers, whose outputs are added and low pass filtered. The switches implement a 
spinning current Hall probe scheme where each device toggles between p and f mode at a 
frequency well above the low pass corner frequency. If all phases of the spinning scheme 
last equally long and the current is constant during all phases the offset (zero point) error 
of the output vanishes in linear electrostatic theory. In practice a tiny residual offset is left: 
it corresponds to an offset equivalent field of about 10 - 100 µT in silicon technology. This 
residual offset is caused by small asymmetries in combination with electrical 
nonlinearities such as velocity saturation, self-heating, and thermoelectric voltages caused 
by the Seebeck effect. The residual offset increases with the magnitude of the electric field 
in the devices. 

 
terminals of both devices are swapped synchronously while a constant supply 
current is forced through them, and the output voltages at the remaining termin-
als are added for both devices and both operating phases. This cancels out offset 
errors and low frequency 1/f-noise [8] [16]. The sum of resistances of both devic-
es is nominally the same in both operating phases: ( )stacked

in f p shR Rλ λ= + . Thus, 
at the fixed supply current stacked

inI  also the total supply voltage across both de-
vices is nominally constant in both operating phases. The sum of output voltages  
of both devices in each operating phase is stacked

02 H sh H inR G I Bµ ⊥  and the thermal 

noise voltage in this sum of output voltages is ( )4 b f p shk T R ENBWλ λ+ , with 

Boltzmann’s constant bk , the absolute temperature T, and the effective noise 
bandwidth ENBW of the signal path. This gives the signal-to-noise ratio 

( )
stacked

stacked 0
stacked24

H in
H

f pb in

G VBSNR
k T ENBW R

µ
λ λ

⊥=
+         (C33) 

The last factor in (C33) is equal to the square-root of the power dissipated in 
both devices. Equation (C33) gives the SNR of stacked Hall effect devices related 
to the dissipated power. This SNRP of the stack uses the arithmetic mean 
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( ) 2f pλ λ+  whereas the SNRP of single devices discussed above used the geo-
metric mean f pλ λ  (see also (8) in [1]). Both are identical for symmetric de-
vices with f pλ λ= , but in the general case the arithmetic mean is larger than the 
geometric mean and therefore it holds stackedSNRP SNRP≤ . The maxima of both 
SNRP-s are also identical and so the maximum value of ( )02 H f pG λ λ+  is 
again 2 3 . Hence, we should look for large contacts and contact spacing with 

( )03 2 H f pG λ λ+  close to 1. Thereby, , ,f p cmλ λ  may vary arbitrarily. Results 
of a numerical search are given in Table 4 and Figure C6. The first lines in Table 
4 show that there exist Vertical Hall devices with low noise and with geometries 
that avoid unduly small contacts and contact spacing. 

 
Table 4. Collection of Vertical Hall effect device geometries of Figure C1(a). The depth of the Hall tub is 5d =  µm and the 
three lengths , ,a b c  

 were varied in integer multiples of 0.5 µm. The length of the Hall tub was varied as 4,5, 6, 7=  µm. The 

SNRP loss is given for stacked operation according to Figure C5—it is equal to ( )03 2 1H f pG λ λ+ − . The one but rightmost 

column gives the distance between the outer contacts and the edges of the Hall tub. The rightmost column gives the smallest 
length. The table is sorted according to ( )min , ,a b c    and SNRP loss. The table comprises only data of the 50 devices with 

largest contact lengths and largest SNRP. Figure C6 gives a plot of the data in 2nd and 3rd columns for all 138 possible 
combinations of contact lengths. 

# SNRP loss cm  fλ  pλ  0HG    [µm] a  [µm] b  [µm] 
c   

[µm] 
( ) 2a b c− − −     

[µm] 
( )min , ,a b c    
[µm] 

1 −4.1% 0.483 1.173 1.716 0.6532 7 1 1 2 0 1 

2 −4.5% 0.486 1.175 1.751 0.6589 7 1 1 1.5 0.5 1 

3 −5.9% 0.535 1.253 1.918 0.7035 6 1 1 1.5 0 1 

4 −6.0% 0.497 1.181 1.872 0.6763 7 1 1 1 1 1 

5 −6.9% 0.540 1.255 1.983 0.7104 6 1 1 1 0.5 1 

6 −9.0% 0.529 1.056 1.868 0.6274 7 1.5 1 1.5 0.25 1 

7 −10.6% 0.537 1.059 1.968 0.6380 7 1.5 1 1 0.75 1 

8 −10.6% 0.451 1.187 2.133 0.6996 7 1 1.5 1.5 0 1 

9 −11.3% 0.600 1.370 2.225 0.7511 5 1 1 1 0 1 

10 −11.7% 0.455 1.188 2.203 0.7056 7 1 1.5 1 0.5 1 

11 −12.7% 0.586 1.134 2.130 0.6718 6 1.5 1 1 0.25 1 

12 −14.6% 0.567 0.974 2.005 0.5999 7 2 1 1.5 0 1 

13 −15.1% 0.508 1.262 2.486 0.7502 6 1 1.5 1 0 1 

14 −15.7% 0.571 0.975 2.071 0.6048 7 2 1 1 0.5 1 

15 −16.9% 0.499 1.065 2.360 0.6705 7 1.5 1.5 1 0.25 1 

16 −20.0% 0.628 1.052 2.324 0.6365 6 2 1 1 0 1 

17 −20.4% 0.432 1.192 2.679 0.7259 7 1 2 1 0 1 

18 −21.5% 0.604 0.912 2.195 0.5750 7 2.5 1 1 0.25 1 

19 −23.6% 0.539 0.979 2.573 0.6392 7 2 1.5 1 0 1 

20 −28.3% 0.639 0.863 2.373 0.5469 7 3 1 1 0 1 

21 −0.2% 0.519 1.363 1.453 0.6627 7 0.5 0.5 1 1.75 0.5 

22 −0.2% 0.530 1.418 1.369 0.6554 6 0.5 0.5 1.5 0.75 0.5 

23 −0.3% 0.497 1.340 1.324 0.6259 7 0.5 0.5 1.5 1.25 0.5 

24 −0.3% 0.523 1.408 1.323 0.6416 6 0.5 0.5 2 0.25 0.5 
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Continued 

25 −0.6% 0.547 1.437 1.484 0.6846 6 0.5 0.5 1 1.25 0.5 

26 −0.8% 0.484 1.323 1.257 0.6033 7 0.5 0.5 2 0.75 0.5 

27 −1.1% 0.478 1.315 1.228 0.5925 7 0.5 0.5 2.5 0.25 0.5 

28 −1.5% 0.576 1.541 1.449 0.6939 5 0.5 0.5 1.5 0.25 0.5 

29 −2.0% 0.422 1.380 1.582 0.6842 7 0.5 1 2 0.25 0.5 

30 −2.1% 0.587 1.553 1.534 0.7122 5 0.5 0.5 1 0.75 0.5 

31 −2.2% 0.428 1.385 1.637 0.6965 7 0.5 1 1.5 0.75 0.5 

32 −2.3% 0.469 1.462 1.749 0.7398 6 0.5 1 1.5 0.25 0.5 

33 −2.6% 0.542 1.134 1.355 0.5715 7 1 0.5 2 0.5 0.5 

34 −2.6% 0.539 1.131 1.337 0.5665 7 1 0.5 2.5 0 0.5 

35 −2.7% 0.551 1.392 1.740 0.7186 7 0.5 0.5 0.5 2.25 0.5 

36 −2.7% 0.553 1.144 1.415 0.5868 7 1 0.5 1.5 1 0.5 

37 −2.8% 0.587 1.220 1.451 0.6120 6 1 0.5 2 0 0.5 

38 −3.0% 0.591 1.224 1.481 0.6181 6 1 0.5 1.5 0.5 0.5 

39 −3.2% 0.441 1.394 1.771 0.7221 7 0.5 1 1 1.25 0.5 

40 −3.3% 0.477 1.467 1.848 0.7552 6 0.5 1 1 0.75 0.5 

41 −3.3% 0.576 1.463 1.759 0.7341 6 0.5 0.5 0.5 1.75 0.5 

42 −3.7% 0.573 1.160 1.541 0.6135 7 1 0.5 1 1.5 0.5 

43 −4.2% 0.605 1.235 1.585 0.6370 6 1 0.5 1 1 0.5 

44 −5.0% 0.609 1.574 1.790 0.7527 5 0.5 0.5 0.5 1.25 0.5 

45 −5.5% 0.528 1.581 1.994 0.7966 5 0.5 1 1 0.25 0.5 

46 −5.5% 0.644 1.347 1.606 0.6578 5 1 0.5 1.5 0 0.5 

47 −6.3% 0.582 1.028 1.443 0.5457 7 1.5 0.5 2 0.25 0.5 

48 −6.3% 0.642 1.743 1.638 0.7467 4 0.5 0.5 1 0.25 0.5 

49 −6.3% 0.649 1.352 1.663 0.6655 5 1 0.5 1 0.5 0.5 

50 −6.7% 0.590 1.033 1.491 0.5550 7 1.5 0.5 1.5 0.75 0.5 

 

 
Figure C6. Scatter plot of normalized SNRP versus common mode cm of Vertical Hall effect devices like in Figure C1(a). The 
plot contains all 138 geometries explained in the caption of Table 4. 50 devices with large contact length and large SNRP are ex-
plicitly given in Table 4. The envelope of the scatter plot ressembles the graph in Figure 6(a). Due to the discretization in 0.5 µm 
steps for , ,a b c  

, points corresponding to short tubs tend to be at 0.5cm > . 
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