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ABSTRACT 

A parallel version of the traditional grid based cost-to-go function generation algorithm used in robot path planning is 
introduced. The process takes advantage of the spatial layout of an occupancy grid by concurrently calculating the next 
wave front of grid cells usually evaluated sequentially in traditional dynamic programming algorithms. The algorithm 
offers an order of magnitude increase in run time for highly obstacle dense worst-case environments. Efficient path 
planning of real world agents can greatly increase their accuracy and responsiveness. The process and theoretical 
analysis are covered before the results of practical testing are discussed. 
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1. Introduction 

Global path planning is an important part of robot navi-
gation through both static and dynamic environments. 
Many simple techniques exist for immediate obstacle 
avoidance [1], but without a high level path to follow to a 
desired destination an agent cannot guarantee near opti- 
mal travel. A current popular technique is to generate a 
two-dimensional occupancy grid based on the robot’s on- 
board sensing capabilities, such as laser range scanners 
[2-4]. On this occupancy grid a cost-to-go function is 
generated from a single destination point to any number 
of locations. A global holonomic path can be generated 
from this function by travelling from grid cell to grid cell 
by choosing the neighbour with the lowest global cost. 

Generation of the cost-to-go function from an occu-
pancy grid is an inherently sequential algorithm as the 
global cost of a cell depends on the calculation of a nei- 
ghbour closer to the destination point. This paper pre-
sents a modified version of the cost-to-go generation al- 
gorithm that makes use of the parallel hardware found on 
modern graphics cards, while maintaining numerically 
identical results to traditional sequential dynamic program- 
ming algorithms. This paper begins by giving a back-
ground on developing concurrent algorithms on modern 
graphics hardware, followed by a literature review of ex- 
isting sequential techniques. The paper then demonstrates 
how the proposed method achieves an order of magnitu- 
de increase in efficiency before showing experimental 

results and their practical benefit. 

2. Background 

Current forefront central processing unit (CPU) technol- 
ogy is making use of multiple cores to improve perform- 
ance and as such many software developers are attempt- 
ing to find new methods to parallelise existing algorithms 
for the new paradigm [5,6]. Running along side this CPU 
evolution in recent years is the growth of graphics hard- 
ware in capability and performance. This growth has 
been driven by market forces such as consumer demand 
for more realistic games and interactive media, but it has 
enabled a new research area known as General Purpose 
Computing on Graphics Processing Units (GPGPU) [7]. 
This section will give a brief outline of some foundation 
ideas of the field of GPGPU. 

2.1. General Purpose Computing on Graphics 
Processing Units 

Graphical processing units (GPUs) have evolved over the 
past two decades to have one to two orders of magnitude 
more cores than currently found in multi-core CPU tech- 
nology [8]. Rather than using a multiple instruction mul- 
tiple data (MIMD) paradigm like multi-core CPUs, GPU 
manufacturers have gone for a single instruction multiple 
data (SIMD) paradigm. That is, in SIMD, in each cycle, 
the same set of instructions is executed over a range of 
data. Graphical calculations have involved performing 
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the same transformation, colouring, texture interpolation 
and lighting calculations on many different vertices and 
fragments in a three-dimensional scene. From one point 
of view, this can be seen as limiting the flexibility of the 
hardware. On the other hand, it relieves the programmer 
from having to deal with a core problem associated with 
concurrent programming. 

The two main problems faced by concurrent progra- 
mmers are concurrent access of critical resources, such as 
common data, and synchronisation between the indepen- 
dent threads of execution. Graphics hardware removes 
the burden of concurrent data access by using the SIMD 
paradigm and enforces synchronisation at a regular inter- 
val via the rendering of a single frame to screen or other 
texture buffer. 

Some common programming constructs are known un- 
der different terminology in a GPGPU context. Memory 
is usually referred to as either a texture or a frame buffer 
as the programmer usually accesses data in this memory 
via pixel or texel lookups.1 A single program run on each 
pixel individually is known as a shader program from a 
traditional graphics programming perspective, or more 
recently a kernel in GPGPU research. 

A common example demonstrating the power of con- 
current programming on GPU is the grey scaling of an 
image. For an image that is n × n pixels a sequential al- 
gorithm will have to process each pixel individually and 
average the red, green and blue channels to calculate the 
grey scale intensity. Therefore, the sequential algorithm 
runs in O(n2) time. On a GPU, since each pixel’s calcula- 
tion is independent this kernel can be run on each pixel 
concurrently, therefore running in O(1) time.2 Analysis 
of similar computer vision methods ported to GPU are 
referred to in [9]. 

Another textbook example is matrix-matrix multipli-
cation [10,11]. Usually a sequential algorithm will run in 
O(n3) as each of the n × n cells in the solution matrix 
requires a process running in O(n) time (the sum of n 
multiplications). Again, this kernel can be run on each 
cell in the solution matrix independently, so a parallel 
implementation of this process will run in O(n) time. Of 
course, in practice, this linear algorithm would run 
slightly slower depending on the number of processors 
available. For example, many current consumer graphics 
cards have approximately one hundred thread processors, 
whereas a high end General Purpose GPU such as the 
nVidia Tesla [12] has around five hundred thread proc-
essors. Table 1 shows the increase in cycles based on the  

Table 1. Comparison of cycles required for differing num- 
ber of available processors. 
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number of calculations to be completed spread over the 
number of processors available. 

More generally this can be specified as the complexity 
of the sequential algorithm divided by the number of pro- 
cessors available. For current consumer graphics hard-
ware this means the matrix-matrix multiplication algori- 
thm could run anywhere between O(n3) and O(n) time 
depending on the size of n relative to the number of thr- 
ead processors. However, with no modification to the al- 
gorithm itself, this can reach O(n) in current forefront 
graphics hardware and therefore next generation consu- 
mer and mobile graphics hardware. 

2.2. The Ping-Pong Method 

In GPGPU, many simple algorithms require a single iter- 
ation or frame to be calculated, like image grey scaling or 
matrix-matrix multiplication. There are however many 
algorithms that have to be evaluated through a series of 
steps.3 The state of each step must be saved in a frame 
buffer ready for the next calculation. A textbook method 
outlined in [13] is the ping-pong method. This method 
uses the standard two texture/buffer approach of having 
one input buffer and one output buffer, rather than out-
putting to screen like normal graphics operations. The 
difference is that between each step the roles of the two 
buffers are reversed so that the input from one step be-
comes the output of the next step. By have one texture as 
read-only and the other write-only in each iteration, each 
kernel is allowed to make a clean state change. The ex-
ample used in [13] is finding the maximum value in an 
array of values. Sequentially, this algorithm runs in O(n) 
time, whereas the parallel version can run in O(log4n) 
time. The parallel algorithm partitions a two-dimensional 
matrix of these values into 2 × 2 grids. A kernel will take 
these four values, calculate the highest value and place 
the result in a known cell closer to the origin. This cell 
becomes part of another 2 × 2 group that comprises of 
other running local maxima. For example, given 16 
numbers in a 4 × 4 grid, each of the four 2 × 2 quadrants 1From a low-level hardware point of view graphics card memory is 

indifferent to traditional CPU accessible memory. However, a pro-
grammer using graphics programming languages is given access to this 
memory more like a two-dimensional array of RGBA values. 
2Assuming averaging the RGB channels of a pixel is negligible. 

3Some algorithms cannot be completely parallelised as there is some 
dependence between steps within an algorithm. However, many of 
these algorithms can have disjoint steps run concurrently. 
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can have their maximum calculated concurrently and 
placed in a corresponding cell in the bottom-left quadrant. 
On the next iteration the maximum of all 16 numbers 
will be the result of running the kernel on the 2 × 2 bot-
tom-left quadrant. This results in the maximum of 16 
values being calculated in two steps. 

3. Literature Review 

Cost-to-go function generation on an occupancy grid is a 
well established technique used for robot path planning 
[2] and other non-linear control problems such as Model 
Predictive Control (MPC) [14]. Many techniques for gen- 
erating this cost, given obstacles and a goal, initially re- 
lied on a potential function where obstacles have a repul- 
sive “charge” and the goal state(s) have an attractive 
“charge” [15,16]. The advantages of this method allowed 
a robot to not only plan a path towards a goal state by 
avoiding obstacles but by staying a distance from obsta-
cles if the environment allowed for it. Some publications, 
such as [16], have shown that for some state spaces this 
method can produce local minima which do not involve 
the goal state(s). 

Another method widely used that removes the local 
minima weakness of the potential field method above is 
the Laplacian method [17]. Given a single destination 
location on an occupancy grid, with a cost of zero, the 
cost from any point on the grid to that destination can be 
calculated using the Laplacian method by treating the 
destination point as a point charge. As a result, the cost- 
to-go evaluation runs as an increasing wave front ema- 
nating from the destination point. As with other graph 
based path planning algorithms [18,19] the cost of a node 
or cell cannot be globally determined until one of its im- 
mediate neighbours’ cost has been determined. 

In practice, when working with multiple agents it may 
be desirable for more than one agent to travel to a given 
common location. As a result, an exhaustive cost-to-go 
function can benefit all agents rather than a path planning 
algorithm that terminates when a single path is found for 
one agent. If the environment doesn’t change then this 
cost-to-go function can be used continuously without ch- 
ange until both agents reach the desired destination loca- 
tion. 

There is also an emerging direction in robot path plan- 
ning of calculating a path in a non-discretised domain 
[20]. Instead of the previously mentioned technique of 
using an occupancy grid to plan on, this area of path pla- 
nning decided on a path in continuous space. This can be 
desirable as the path generated is smoother. However, 
these techniques are inefficient for practical use with 
current hardware capabilities. 

Even though the method proposed in this paper relies 
upon a discretised space, if the algorithm does not have 

an overly strict time requirement then it can be given an 
occupancy grid with higher resolution. This may allow 
the solution to be close enough to continuous for all pra- 
ctical means without reducing the coverage or respon- 
siveness the pre-existing algorithm provided. 

Similar path planning techniques have also been appli- 
ed to multi-core architectures such as the GPU for consi- 
derable increase in efficiency. Bayesian estimation over a 
grid based representation of an environment is proposed 
in [21]. The technique makes use of matrix and vector 
calculations that are inherently efficient on GPU, for the 
prediction and update steps of maintaining a probabilistic 
belief of an agent’s location, for example. 

4. Method 

The generation of a cost-to-go function cannot be purely 
concurrent for every cell as there is a dependency betw- 
een one cell’s global cost and its neighbour’s cost. How- 
ever, as a cost generation function expands away from 
the zero cost destination cell, many of the cell calcula- 
tions are spatially disjoint from one another. This section 
outlines how these disjoint cell cost calculations can be 
done concurrently. 

4.1. Parallel Cost Function Generation 

Existing algorithms for cost function generation go th- 
rough every cell that is on the edge of the classified/ 
non-classified border and calculate a value for that cell x: 

       * *min , ,C x C y x y x y           (1) 

This equation is the basis of existing path planning al- 
gorithms as it maintains the Principle of Optimality [22] 
associated with dynamic programming. 

Figure 1 shows the definition of the terminology used 
in this paper. In particular, the wavefront is defined as 
the cells that have not been given a global cost value, but 
have at least one neighbour with a global cost. This algo- 
rithm assumes each cell has eight neighbours and hence 
includes the diagonal neighbours in each calculation. 
This means on the subsequent iteration of the algorithm 
every cell in the wavefront will have a global cost calcu- 
lated for it and become “classified”. 

For a grid containing n × n cells this algorithm will 
need to run a calculation for each cell, meaning an O(n2) 
run time from a traditional sequential point of view, let 
alone the overhead of maintaining an ordered priority 
queue of yet to be visited paths. The concurrent algori- 
thm does not require any supporting data structures. 

As a simplified example, the very first step of genera- 
ting the cost function is to assign the destination cell a 
value of zero. After this you would logically go to each 
of the neighbouring cells and calculate the cost of each 
neighbour. 
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Figure 1. Definition of different classification of cells. Black 
represents a non-traversable grid square (obstacle), blue 
represents a classified traversable region, green represents 
the wave front about to be evaluated/classified, and white 
represents the unknown/unclassified region. The figure shows 
the progression of the wave front through the first five it- 
erations of the algorithm. 

 
If the cost of traversal between cells is a uniform cost 

then the optimal cost value for each of these first genera- 
tion neighbouring cells can equally be based on the value 
of the original destination cell. In a two dimensional grid 
this means eight separate disjoint calculation steps. In a 
GPU these calculations can be done concurrently, thus 
using one iteration of the process rather than eight. In the 
subsequent wave front a sequential algorithm would re- 
quire sixteen cell calculations, which can also be done 
concurrently on a GPU. Table 2 shows how this number 
of “iterations” increases at different rates for sequential 
and parallel solutions. 

This reinforces the fact that from a theoretical point of 
view the traditional sequential algorithm runs in O(n2) 
time whereas the proposed parallel algorithm runs in O(n) 
time.4 

In theory, for uniform local cost environments it would 
be optimal if the cost calculation for a cell could only be 
run on a cell once. In practice, this is not possible without  

Table 2. Comparison of cycles for sequential and parallel 
based algorithms. 

Calculation per Wave Front 

# .Calcs ∑ cycles (seq) ∑ cycles (||) 

1 8 8 1 

2 16 24 2 

3 24 48 3 

4 32 80 4 

5 40 120 5 

6 48 168 6 

... ... ... ... 

 
having to do some per-cell calculation in the kernel to 
determine whether the calculation should be done, which 
can be inefficient for large n. 

The kernel makes the most significant progress when 
it is applied to cells in the wavefront. Therefore, a larger 
wave front will enable more cells to be calculated con- 
currently in one iteration. In practice wide open spaces in 
the occupancy grid promote larger wave fronts, while 
corridors limit wavefront growth. In an optimal best case 
where there are no obstacles an n × n grid can be comple- 
tely evaluated in n/2 steps, that is, O(n) time. In the worst 
case of a single cell wide corridor, the algorithm runs 
equally as slow as the sequential algorithm. As seen in 
the Experimental Results section the algorithm runs clo- 
ser to O(n) time than O(n2) in practice for environments a 
field robot would be expected to traverse. 

4.2. Implementation 

The parallel algorithm was implemented using Open 
GL’s Shading Language (GLSL) [23]. Other mainstream 
programming languages such as nVidia’s CUDA [24], 
ATI’s Stream [25] and the generic successor OpenCL 
[26] were considered, but the grid based nature of an oc- 
cupancy grid intuitively maps to the texture-kernel pa- 
radigm associated with traditional graphical applications. 

In most path planning algorithms mentioned in the Lit- 
erature Review section, unclassified cells are given the 
value of infinity to allow the algorithm to update the 
cell’s value given any initial finite calculation. In practice, 
this algorithm defines unclassified cells as having a value 
of –1. This value was chosen to represent unclassified 
cells for possible forward compatibility with stencil buf- 
fer operations (see the Future Work section). Obstacle 
cells are stored as –0.5. Negative numbers are used for 
determining special cells as normal classified cells will 
have a global finite cost greater than or equal to zero. 

4.3. Multiple Destination Point Optimisation 
4As stated in the Background section, in practice this may be hindered 
by the number of processors available on the hardware. As graphics 
card manufacturers continue to increase the number of processors in 
GPUs this algorithm will tend towards linear execution time in prac-
tice. 

As mentioned earlier in this section, the progression rate 
of the algorithm is related to the size of the wave front. 
That is, wave fronts that take up more grid cells can 
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make use of more processors in a single algorithm itera- 
tion. When working with multiple agents, there may be a 
situation where one or more agents are required to travel 
to more than one destination, where each destination has 
equal weight of importance. This scenario greatly bene- 
fits from the parallel implementation by providing multi- 
ple wave fronts and hence more grid cells situated in the 
wave front state every iteration. 

4.4. Optimisation of Calculation using  
Expanding Texture 

In the textbook definition of the ping-pong method the 
entire texture is requested to be rendered/evaluated every 
iteration. In the early stages of this algorithm there are 
many unclassified cells that are a large distance from the 
wave front that can be given to the shader pipeline if the 
entire texture (occupancy grid) is rendered every frame 
to iterate the algorithm. 

One rough method to speed up the process is to render 
a sub-area of the texture as large as the wave front could 
possibly be at a given iteration of the calculation. Under 
this method, the sub-texture requested to be rendered 
gradually increases in size for each iteration of the algo-
rithm. This technique is shown in Figure 2. Any texture 
cell not rendered will be left in its prior state, and hence 
will not change. It should be noted that this only applies 
for single destination cases. 

As an example, in the very first iteration all eight of 
the destination’s neighbours will be evaluated. Therefore, 
the wave front will never be further than one cell from 
the destination and therefore no other cells are required 
to be given to a shader program for evaluation for this 
iteration. In short, at each stage, the area of the texture 

 

 

 
Figure 2. The first four iterations of the algorithm. The red 
outline represents the size of the expanding texture re- 
quested to be evaluated/rendered by the GPU each itera- 
tion. 

that is requested to be rendered gradually grows with the 
wavefront, so that (in the early generations) many of the 
redundant calculations of cells away from the wave front 
are not even considered. This is not perfect, as seen in the 
fourth iteration in Figure 2, as cells immediately behind 
an obstacle are within the expanding texture’s bounds, 
but are still run through a shader program. Figure 3 shows 
the execution time difference with and without expanding 
textures for an indoor environment of similar complexity 
to the L205 Office experiment detailed later in this paper. 

Using the expanding textures method of evaluation 
cuts the total number of calculations down by an order of 
magnitude. For environments with uniform local cost of 
traversability between cells, this method still has a high 
level of redundancy, as cells closer to the middle of the 
expanding texture will be evaluated to the same value 
many times. Using a stencil buffer to limit evaluation to 
only wave front cells is mentioned in Future Work. 

However, for a non-uniform environment, revaluation 
of cells not on the edge of the expanding texture is re-
quired for correcting cells with differing traversal costs. 
In particular, this applies for paths that are spatially lon- 
ger (take up more cells) but have a lower cost due to effi- 
cient traversal between cells. Figure 4 shows a contrived 
example of this situation. 

 

 

Figure 3. Comparison of execution time with and without 
expanding textures. 

 

 

Figure 4. Example of a non-uniform environment. Black 
cells represent non-traversable cells, blue cells have a tra- 
versal cost of one unit and red cells have a traversal cost of two 
units. Two possible paths from point A to point B are shown. 
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Figure 4 shows two possible paths from A to B. Given 
the cost of traversal Ct between two cells, x and y, with 
local costs Cl(x) and Cl(y) can be given by the following 
equation: 

     1 2,
2t l l

c c
C f C x C y k


            (2) 

where k = 1 for horizontal and vertical neighbours and k 
= √2 for diagonal neighbours, then the cost of the upper 
and lower paths is summarised in Table 3. 

If the algorithm starts executing at B and begins to 
expand, at the seventh iteration it will first give cell A a 
global cost of 13.000. The wavefront that happens to be 
gradually evaluating the upper path will have just classi- 
fied cell b1 in the seventh iteration. Two iterations later, 
the algorithm will re-evaluate cell a3 and give it the more 
favourable value of 9.828. Unlike traditional path plann- 
ing algorithms, which expand based on lowest cost first, 
this algorithm expands on proximity or closest cell first, 
regardless of cost. 

The inefficient re-evaluation of cell values due to an 
implementation limitation helps the more efficient wave 
fronts “wash over” already classified cells to make the 
resulting cost-to-go function more accurate. In Figure 4 
this can also be seen in cell b3. As the algorithm evalu-
ates the lower path, b3 is initially given a global cost of 
11.5 from cell c3. When the upper path wave front even- 
tually “washes around” the obstacle from cell a2 it gives 
cell b3 a better global cost of 10.949. A cost-to-go func- 
tion is said to be mature if each cell had reached its final 
optimal value. Until the more efficient, but spatially 
longer, wave fronts wash over their sub-optimal counter- 
parts the function is considered immature. 

4.5. Reading Values from Graphics Hardware 

Current consumer graphics card hardware can have a 
large bottleneck in reading texture data back from graph- 
ics memory into the main memory used by the CPU rela- 
tive to algorithm execution time. The initial intension of 
this algorithm from a practical context was to make an 
identical function interface to the existing sequential al- 
gorithm so that there would be no modification to the 
other components of the system. That is, from an out-
sider’s view, both CPU and GPU based versions of the 
exhaustive cost-to-go evaluation would take in an occu- 
pancy grid, a local traversal cost grid and a destination 

 
Table 3. Comparison of lower and upper path options with 
differing traversal costs. 

Path Cost (3d.p.) Number of cells 

upper 9.828 9 

lower 13.000 7 

cell and fill out the traversable regions of the grid with 
global cost-to-go values. As a result, in the CPU based 
implementation, the entire grid evaluation for further 
path planning is provided ready of planning in CPU acce- 
ssible RAM. Although, internally, the evaluation step on 
a GPU is at least an order of magnitude better than the 
CPU version, the upload of values from graphical mem- 
ory to main memory provided a bottleneck that can, on 
some systems, nullify the GPU benefit. 

In practice, however, only the immediate area around 
an agent is required at any one time for path planning to 
occur. That is, even though a complete agent to destina- 
tion evaluation is required to properly plan on a global 
scale, the short term values of the evaluated traversability 
grid can be used to plan a local immediate path. For ex-
ample, Figure 5 shows how three agents plan a path to a 
common destination. Although the complete path from 
each agent to destination is calculated, it is only practical 
(even more so in dynamic environments) to decide upon 
a short term path. Therefore, only a small subregion of 
the cost-to-go function needs to be transferred back from 
GPU to CPU memory, as shown in the insets. 

This removes the burden imposed by the hardware 
bottleneck while still allowing the GPU to evaluate an 
exhaustive cost-to-go function efficiently.5 

 

 

Figure 5. Example of multiple agents planning paths to a 
common destination on campus. Even though the cost-to-go 
function needs to be globally evaluated from the destination, 
only a small immediate region around the agent is required 
at any instant to do short term path planning. 

5Of course, as graphics and motherboard hardware improves in terms 
of bus transfer speeds, a larger local area can be requested as required. 
A local cost-to-go is adequate for current field robotics applications. 
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4.6. Algorithm Termination 

Depending on the density of obstacles in the environment 
and layout of traversable paths for the evaluation wave 
front to travel through, the algorithm can take a different 
number of iterations before it generates a complete cost- 
to-go of the entire grid, or at least a required sub grid. 
For example, an environment with a low proportion of 
obstacles will allow the algorithm to spread quickly. On 
the other hand, a spiral or snaking corridor arrangement 
will force more iterations as less cells are being evaluated 
each iteration. 

Knowing when to terminate the algorithm is important 
for practical applications as you may want to have an ex- 
haustive solution without having to do more calculations 
than required. The easiest approach is to look at the state 
space being evaluated and arbitrarily decide on a fixed 
number of iterations that would guarantee exhaustive eva- 
luation. For example, for an n × n grid, choosing an itera- 
tion count of a nominal value like 5n would work, but 
will result in redundant calculations being done on envi- 
ronments with open spaces. The advantage of this method, 
however, is that there is no overhead in determining algo- 
rithm termination. 

An alternate method of measuring the progression of 
the algorithm is to calculate either the maximum or sum 
of the differences of all cells between step k – 1 and k. 
That is, if 

   1 where k kx C x C x               (3) 

then the wavefront is still progressing into previously 
unclassified cells. From an implementation point of view, 
this condition can be applied to the entire grid via either 
of the following conditions of termination: 

   1 0k i k ii
C x C x                 (4) 

    1max 0k i k iC x C x                (5) 

Both sum and maximum methods can theoretically run in 
O(1) + O(log4n) time,6 although the maximum method 
provides more numerical stability on hardware that does 
not meet the full 32-bit floating point specification.7 Like 
the minimum cell value method mentioned above, this 
can also be run periodically to reduce overhead on exe- 
cution time. 

For environments that are explored and developed at a 

slow rate a hybrid method can be utilised. Such a method 
would periodically use a maximum of differences algori- 
thm to check on the state for one complete evaluation. 
The number of algorithm iterations to complete this eva- 
luation can then be stored and assumed as a set value for 
a number of cycles, as previously discussed in the arbitr- 
ary value method. 

The algorithm could also potentially be terminated ear- 
ly by monitoring the cell an agent resides in or monitor- 
ing a user defined set of cells or subregions, which inclu- 
de an agent’s cell. When the subregion’s cells all contain 
non-negative values, a path exists from the subregion to 
the destination cell. This path may not be the optimal path, 
but under some circumstances it could be close enough to 
optimal for practical purposes. Of course, if the agent 
does not have a valid path to the destination then the al- 
gorithm would still need to terminate based on a second- 
dary condition. 

5. Experimental Results 

The concurrent algorithm was applied to both simulated 
and real world environments to test both extreme cases 
and average operational cases, respectively. To test true 
practical benefit against an existing sequential algorithm, 
the execution or completion time of each test includes 
sending the occupancy grid data from CPU memory to 
graphical memory, performing the algorithm and copying 
a small portion of the texture back from graphical mem-
ory to perform CPU based path planning on.8 Images of 
the cost-to-go in the following experiments were gener- 
ated via a CPU based simulator. Real GPU benchmarks 
were done in two stages. The first stage used an on board 
laptop graphics card (ATI Radeon HD 2400 XT) for mo- 
re realistic test of practical applications. The second stage 
used a high end desktop graphics card (nVidia GeForce 
GTX 480) to show future potential of on board systems 
as well as potential live off board execution time. 

The bench marked times are an approximation of the 
execution of one completion of the algorithm for a single 
occupancy grid as mentioned above. There is an inherent 
setup9 and shutdown time involved in executing the pro- 
gram, which should not be included in the timing of the 
completion of the algorithm. Therefore, the following 
formula was used to estimate the single completion of the 
algorithm. 

setup 512completions shutdown

512
T

 
       (6) 

6Calculating the individual differences can run in a theoretical O(1) 
time, followed by a Ping-Pong type reduction running in O(log4n) time 
for the sum or maximum methods. 
7Given an environment with global values ranging roughly from 0 to 
1000, the maximum method will only need to keep track of numbers in 
the range 0 to 1000, whereas the sum method could potentially be 
handling much larger numbers than can be stored on a specific piece of 
graphics hardware [27]. 

8Path planning was not included in the experiment. 
9Setup time includes acquiring a render context, compiling and linking 
the kernel program and requesting handles to the textures and texture 
buffers. On the on board laptop mentioned in this section, this equated 
to approximately 0:21 seconds. 
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Each two-dimensional occupancy grid is generated from a 
three-dimensional laser range scan, fused with pose data 
derived from other sensor devices. Details of this config- 
uration can be found in [2]. Figure 6 shows the three- 
dimensional point cloud data overlaid on the subsequen- 
tly real-time generated black and white occupancy grid. 
A video of this process running in real time can be found 
in [28]. The following sections outline a sample of the ex- 
periments run. 

5.1. UNSW Middle Campus 

This experiment was initially run under a CPU based si- 
mulator, where exhaustive evaluation was achieved in 
370 wavefront progressions. Figure 7 shows the original 
occupancy grid generated from point cloud data. Figure  

 

 

Figure 6. Real-time point cloud data overlaid on a real-time 
generated occupancy grid. Colours red through green are 
used to represent the spherical range of a point from the 
scanner itself. The occupancy grid uses darker colours to 
represent unexplored and traversable areas and lighter 
colours to represent obstacles. 
 

 

Figure 7. Subsection of the original occupancy grid gener-
ated from point cloud data. White represents obstacles. 
Black represents unknown/unexplored areas. Grey repre-
sents areas that are known to be traversable. 

8 shows the mature cost-to-go function. Table 4 shows 
the bench marked times of the algorithm calculating a sin- 
gle exhaustive mature cost-to-go function on both the lap- 
top and desktop machines. A video of the algorithm run- 
ning in the CPU based simulator can be found with [28]. 

5.2. L205 Office 

Under the CPU based simulator this occupancy grid achi- 
eved exhaustive evaluation in 1118 iterations. Figure 9 
shows the mature cost-to-go function from the simulator 
output. Table 5 shows the bench marked times of the 
algorithm calculating a mature cost-to-go function. The 
grid labelled normal sized denotes the original level of 
detail available from sensor processing to generate an oc- 
cupancy grid. However, this would provide grid cells be- 
tween 2.5 cm and 3.0 cm, which is more than enough for 
our UGVs. A quarter sized resolution occupancy grid was 
produced for benchmarking as it better matches the occu- 
pancy grid granularity required by our robots for success- 
ful navigation.10 The algorithm can be seen applied to the 
normal sized grid in [28]. 

 

 

Figure 8. Cost-to-go function applied to an occupancy grid 
generated from an Unmanned Ground Vehicle (UGV) being 
tele-operated around middle campus of UNSW. The grid 
represents an area of approximately 300 m × 300 m and 
uses 1024 × 1024 grid cells, resulting in an approximate grid 
size of 30 cm. Black pixels represent obstacles, indigo to red 
pixels represent increasing global cost and the red dot 
represents the destination location. 

10The normal sized grid was used in the CPU simulation. 
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Figure 9. Cost-to-go function applied to a hybrid technical 
drawing and post-processed occupancy grid of the layout of 
walls and large in obstacles the ME-L205 office at UNSW. 
The grid represents an area of approximately 33 m × 22 m 
and uses 1099 × 731 grid cells, resulting in an approximate 
grid size of 2.5 cm to 3 cm. As before, black pixels represent 
obstacles, indigo to red pixels represent increasing global 
cost and the red dot represents the destination location. 
Grey regions represent areas that are unreachable from the 
destination location and have hence remained unclassified. 
 
Table 4. Comparison of the execution time of the parallel 
algorithm on different machines. 

On Board Laptop Desktop 

s4.498  s0.0478  

 
Table 5. Comparison of the execution time of the parallel 
algorithm on different machines for normal and quarter 
sized occupancy grids. 

Size On Board Laptop Desktop 

Normal Size s11.113  s0.0580  

Quarter Size s0.714  s0.0362  

6. Future Work 

The next step of this research will be to see if the stencil 
or depth buffer can be used to cull already classified cells 
within the bounds of the expanding texture at the current 
iteration. This would then enable the kernel to only be 
evaluated on cells in the wave front rather than those 
simply within the expanding texture. The stencil buffer is 
traditionally used to render pixels to screen that pass a 
stencil test. The test is based on a per-pixel value in the 
stencil buffer and is optimised to run outside the kernel 
execution in hardware. 

Another direction this work is heading in is to expand 
the algorithm to a third dimension so that non-holonomic 
path planning can be done with, for example, (x, y, θ) 
like co-ordinates. It is also under investigation whether 
higher dimensional problems can be mapped to a two- 
dimensional equivalent for use in the proposed algorithm. 

For this to happen, an efficient algorithm is to be invest- 
tigated that can map an undirected weighted graph to the 
grid structure for efficient cost generation. As a preview 
of the work Figure 10 shows how a given graph can be 
mapped to “channels” in a grid structure for evaluation as 
a traditional occupancy grid. The channel approach en- 
forces one path between nodes that are connected in the 
original graph, but limits the number of paths from each 
node to four. If a node is more than degree four it can be 
split into two or more virtual nodes connected by zero 
cost channels. 

A CUDA [24] implementation will also be investiga- 
ted from an implementation point of view, however the 
core algorithm will remain the same. 

7. Conclusions 

This paper presented a parallel implementation of a com- 
mon sequential algorithm in the field of path planning us- 
ing dynamic programming techniques. It provides an order 
of magnitude improvement on computation time for parti- 
cularly bad cases and many orders of magnitude for low 
obstacle density environments. In practice the implemen- 
tation has provided an option that remains real-time re- 
sponsive while allowing for the additional option of ei- 
ther larger traversability grids, more responsive calcula- 
tion or more fine grained grid structures tending towards 
approximating continuous space. 
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Figure 10. Sample mapping of an undirected weighted gra- 
ph to a non-uniform cost occupancy grid. The values in each 
cell represent the local cost of traversing that cell. Grey cells 
represent non-traversable cells. 
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