

On Semi π -Regular Local Ring

Zubayda M. Ibraheem, Raghad A. Mustafa, Maha F. Khalf

Department of Mathematics, College of Computer and Mathematical Sciences, University of Mosul, Mosul, Iraq Email: zubaida_almulla@yahoo.com, raama.1981@yahoo.com, mahafarman@yahoo.com

How to cite this paper: Ibraheem, Z.M., Mustafa, R.A. and Khalf, M.F. (2018) On Semi π -Regular Local Ring. *Open Access Library Journal*, **5**: e4788. https://doi.org/10.4236/oalib.1104788

Received: July 21, 2018 Accepted: October 9, 2018 Published: October 12, 2018

Copyright © 2018 by authors and Open Access Library Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/

© Open Access

Abstract

A ring *R* is said to be a right (left) semi π -regular local ring if and only if for all *a* in *R*, either *a* or (1-a) is a right (left) semi π -regular element. The purpose of this paper is to give some characterization and properties of semi π -regular local rings, and to study the relation between semi π -regular local rings and local rings. From the main results of this work: 1) Let *R* be a semi π -regular reduced ring. Then the idempotent associated element is unique. 2) Let *R* be a ring. Then *R* is a right semi π -regular local ring if and only if either $r(a^n)$ or $r((1-a)^n)$ is direct summand for all $a \in R$ and $n \in Z^+$. If *R* is a local ring with $r(a^n) \subseteq r(a)$ for all $a \in R$ and $n \in Z^+$, then *R* is a right semi π -regular local ring.

Subject Areas

Algebra

Keywords

Local, Ring, Semi π -Regular

1. Introduction

Throughout this paper, R will be an associative ring with identity. For $a \in R$, r(a), (l(a)) denote the right (left) annihilator of a. A ring R is reduced if R contains, no non-zero nilpotent element.

A ring *R* is said to be Von Neumann regular (or just regular) if and only if for each *a* in *R*, there exists *b* in *R* such that a = aba [1]. Following [2], a ring *R* is said to be right semi-regular if and only if for each *a* in *R*, there exists *b* in *R* such that a = ab and r(a) = r(b).

By extending the notion of a right semi π -regular ring to a right semi-regular ring is defined as follows:

A ring *R* is said to be right semi π -regular if and only if for each *a* in *R*, there exist positive integers *n* and *b* in *R* such that $a^n = a^n b$ and $r(a^n) = r(b)$ [3].

Following [4], a ring *R* is said to be π -regular if and only if for each *a* in *R*, there exist positive integers *n* and *b* in *R* such that $a^n = a^n b a^n$. A ring *R* is called a local ring, if it has exactly one maximal ideal [5].

A ring R is said to be a local semi-regular ring, if for all a in R, either a or (1-a) is a semi-regular element [6].

We extend the notion of the local semi-regular ring to the semi π -regular local ring defined as follows:

A ring *R* is said to be a semi π -regular local ring, if for all *a* in *R*, either *a* or (1-a) is a semi π -regular element.

Clearly that every π -regular ring is a semi π -regular local ring.

2. A Study of Some Characterization of Semi π -Regular Local Ring

In this section we give the definition of a semi π -regular local ring with some of its characterization and basic properties.

2.1. Definition

A ring *R* is said to be right (left) semi π -regular local ring if and only if for all *a* in *R*, either *a* or (1-a) is right (left) semi π -regular element for every *a* in *R*.

Examples:

Let $(Z_2, +, \cdot)$ be a ring and let $G = \{g : g^2 = 1\}$ is cyclic group, then $Z_2G = \{0, 1, g, 1+g\}$ is π -regular ring. Thus *R* is semi π -regular local ring.

Let *R* be the set of all matrix in Z_2 which is defined as:

$$R = \left\{ \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} : a, b, d \in Z_2 \right\}.$$

It easy to show that *R* is semi π -regular local ring.

2.2. Proposition

Let *R* be a right semi π -regular local ring. Then the associated elements are idempotents.

Proof:

Let $a \in R$, since R is right semi π -regular local ring. Then either a or (1-a) is right semi π -regular element, that there exists b in R such that $a^n = a^n b$ and $r(a^n) = r(b)$, so $a^n(1-b) = 0$, gives $(1-b) \in r(a^n) = r(b)$. Thus b(1-b) = 0, which implies $b = b^2$. Now, if (1-a) is right semi π -regular element, then there exists c in R such that $(1-a)^n = (1-a)^n c^c$ and $r((1-a)^n) = r(c)$. So $(1-a)^n (1-c) = 0$, thus $(1-c) \in r((1-a)^n) = r(c)$. Hence c(1-c) = 0 and therefore $c = c^2$.

In general the associated element is not unique. But the following proposition give the necessary condition to prove the associated element is unique.

2.3. Proposition

Let *R* be a right semi π -regular local reduced ring. Then the idempotent associated element is unique.

Proof:

Let $a \in R$, since R is right semi π -regular local ring. Then either a or (1-a) is right semi π -regular element in R. If a is right semi π -regular element, then there exists $b \in R$ such that $a^n = a^n b$ and $r(a^n) = r(b)$. Assume that, there is an element \overline{b} in R such that $a^n = a^n \overline{b}$ and $r(a^n) = r(\overline{b})$, which implies that $a^n (b-\overline{b}) = 0$, hence $(b-\overline{b}) \in r(a^n) = r(b) = r(\overline{b})$ and $\overline{b}(b-\overline{b}) = 0$, that is $b(b-\overline{b}) = 0$ and then $\overline{b}b = \overline{b}^2$, $b^2 = b\overline{b}$, which implies $\overline{b}b = \overline{b}$, $b = b\overline{b}$.

Since *R* is reduced ring, then $r(b) = l(\overline{b}) = l(\overline{b})$. Hence $(b-\overline{b}) \in l(b) = l(\overline{b})$ and then $(b-\overline{b})b = 0$ and $(b-\overline{b})\overline{b} = 0$ which implies $b^2 = b\overline{b}$ and $b\overline{b} = \overline{b}^2$. Hence $b = \overline{b}b$ and $b\overline{b} = \overline{b}$, and therefore $b = \overline{b}b = b\overline{b} = \overline{b}$. Now, if (1-a) is right semi π -regular element, then there exists an element $c \in R$ such that $(1-a)^n = (1-a)^n c$ and $r((1-a)^n) = r(c)$. Now, we assume that the associated element *c* is not unique.

Then, there exists $\overline{c} \in R$ such that $r((1-a)^n) = r(\overline{c}), (1-a)^n = (1-a)^n \overline{c}$, then $(1-a)^n c = (1-a)^n \overline{c}$ which implies that $(1-a)^n (c-\overline{c}) = 0$, that is $(c-\overline{c}) \in r((1-a)^n) = r(c) = r(\overline{c})$. Hence $c(c-\overline{c}) = 0$ and $\overline{c}(c-\overline{c}) = 0$, implies that $c^2 = c\overline{c}$ and $\overline{c}c = \overline{c}^2$, that is $c = c\overline{c}$ and $\overline{c}c = \overline{c}$. Since *R* is reduced ring, then $l(\overline{c}) = r(c) = l(c)$ and then $(c-\overline{c})c = 0, (c-\overline{c})\overline{c} = 0$, that is $c^2 = \overline{c}c$ and $c\overline{c} = \overline{c}^2$. Thus $c = \overline{c}c$ and $c\overline{c} = \overline{c}$. Therefore $c = \overline{c}c = c\overline{c} = \overline{c}$.

The following theorem give the condition to a semi π -regular local ring to be π -regular ring.

2.4. Theorem

Let *R* be a right semi π -regular local ring. Then any element $a \in R$ is π -regular if $Ra^n = Rb$ for any associated element *b* in *R*.

Proof:

Let $a \in R$ and R be a right semi π -regular local ring. Then either a or (1-a) is right semi π -regular element in R. If a is right semi π -regular element in R, then there exists $b \in R$ such that $a^n = a^n b$ and $r(a^n) = r(b)$.

Now, assume that $Ra^n = Rb$. Then $ra^n = b$ and $ra^n \in Ra^n$, $b \in Rb$. Since b is idempotent element, then b + (1-b) = 1 and $ra^n + (1-b) = 1$, it follows that $a^n r^n a^n + a^n (1-b) = a^n$.

Thus $a^n r a^n = a^n$. Therefore *a* is π -regular element in *R*.

Now, if (1-a) is right semi π -regular element, then there exists an element $c \in R$ such that: $(1-a)^n = (1-a)^n c$ and $r((1-a)^n) = r(c)$.

If $R(1-a)^n = Rc$, assume that $s(1-a^n) = c$, where $s(1-a) \in R(1-a)$, $c \in R$. Since c is idempotent element, then c+(1-c)=1 and $S(1-a)^n + (1-c) = 1$, it follows that $(1-a)^n S(1-a)^n + (1-a)^n (1-c) = (1-a)^n$, that is $(1-a)^n S(1-a)^n + (1-a)^n (1-c) = (1-a)^n$.

Thus $(1-a)^n S(1-a)^n = (1-a)^n$. Therefore (1-a) is π -regular element in *R*.

2.5. Proposition

The epimorphism image of right semi π -regular local ring is right semi π -regular local ring.

Proof:

Let $f: R \to \overline{R}$ be epimorphism homomorphism function from the ring π in to the ring \overline{R} , where R is right semi π -regular local ring and let $\overline{e}, v, \overline{1}$ be element s in \overline{R} . Then there exists elements e, x, 1 in R such that

$$f(e) = \overline{e}, f(x) = y, f(1) = \overline{1}$$
.

Now, since R is right semi π -regular local ring, then either x or (1-x) is right semi π -regular element, that is $x^n = x^n e$ and $r(x^n) = r(e)$. Then

$$y^{n} = (f(x))^{n} = f(x^{n}) = f(x^{n}e) = f(x^{n})f(e) = y^{n}\overline{e}.$$

Now, to prove $r(y^n) = r(\overline{e})$. If $a \in r(y^n)$, then $y^n a = 0$, that is $(f(x))^n a = 0$, then $f(x^n)a = 0$, and $f^{-1}f(x^n)f^{-1}(a) = 0$, hence $x^{n} f^{-1}(a) = 0$.

Thus $f^{-1}(a) \in r(x^n) = r(e)$, that is $ef^{-1}(a) = 0$. Then f(e)a = 0, thus $\overline{e}a = 0$. Hence $a \in r(\overline{e})$. Therefore,

$$r(y^n) \subseteq r(\overline{e}) \tag{1}$$

Now, let $b \in r(\overline{e})$. Then $\overline{e}b = 0$, it follows that $y\overline{e}b = 0$ and then $y^{n}\overline{e}b = 0$. Thus $y^n b = 0$ and hence $b \in r(y^n)$. Therefore

$$r(\overline{e}) \subseteq r(y^n) \tag{2}$$

from (1) and (2), we obtain $r(\overline{e}) = r(y^n)$.

Now, if (1-x) is right semi π -regular element in R, then $(1-x)^n = (1-x)^n e$ and $r(1-x)^{n} = r(e)$.

Now,
$$f(1-x)^n = (f(1-x))^n = (f(1) + f(-x))^n = (f(1) - f(x))^n = (\overline{1} - y)^n$$
.
Thus $(\overline{1} - y)^n = f(1-x)^n = f((1-x)^n e) = f(1-x)^n f(e) = (\overline{1} - y)^n \overline{e}$.
Now, to prove $r(\overline{1} - y)^n = r(\overline{e})$.

Let $c \in r(\overline{1}-y)^n$. Then $(\overline{1}-y)^n c = 0$. That is $(f(1)-f(x))^n c = 0$, then $(f(1-x))^n c = 0$ and $f(1-x)^n c = 0$. Then $(1-x)^n f^{-1}(c) = 0$ and hence $f^{-1}(c) \in r(1-x)^n = r(e)$, that is $ef^{-1}(c) = 0$, it follows that f(e)c = 0.

Hence $\overline{ec} = 0$, thus $c \in r(\overline{e})$. Therefore

$$r\left(\overline{1}-y\right)^{n} \subseteq r\left(\overline{e}\right) \tag{3}$$

Now, let $d \in r(\overline{e})$, implies to $\overline{ed} = 0$, hence $(\overline{1} - y)^n \overline{ed} = 0$, thus $(\overline{1}-y)^n d = 0$. Hence $d \in r(\overline{1}-y)^n$. Therefore

$$r(\overline{e}) \subseteq r(\overline{1} - y)^n \tag{4}$$

from (3) and (4) we obtain $r(\overline{e}) = r(\overline{1} - y)^n$, that is either y or $(\overline{1} - y)$ is right

semi π -regular element in \overline{R} . Therefore \overline{R} is right semi π -regular local ring.

2.6. Theorem

Let *R* be a ring. Then *R* is right semi π -regular local ring if and only if either $r(a^n)$ or $r((1-a)^n)$ is direct summand for all $a \in R$ and $n \in z^+$. **Proof:**

Let $a \in R$ and $r(a^n)$ is direct summand. Then there exists an ideal $I \subset R$, such that $R = r(a^n) \oplus I$. Thus, there is $d \in r(a^n)$ and $b \in I$, such that d+b=1 and hence $a^nd+a^nb=a^n$ and therefore $a^nb=a^n$. Now, to prove $r(a^n)=r(b)$, let $x \in r(a^n)$. Then $a^nx=0$, that is $a^nbx=0$ and $bx \in r(a^n)$. But $bx \in I$ and $r(a^n) \cap I = 0$. Then bx=0 and $x \in r(b)$, hence

$$\dot{}(a^n) \subseteq r(b) \tag{5}$$

and by the same way we can prove

$$r(b) \subseteq r(a^n) \tag{6}$$

from (5) and (6) we obtain $r(a^n) = r(b)$. Therefore *a* is right semi π -regular element. Now, if $((1-a)^n) \in R$ and $r((1-a)^n)$ is direct summand.

Then, there exists an ideal $I \subset R$ such that, $R = r((1-a)^n) \oplus J$ and there exists $c \in J$ and $f \in r((1-a)^n)$, such that 1 = f + c. Thus

$$(1-a)^n = (1-a)^n f + (1-a)^n c$$
.

Therefore $(1-a)^n = (1-a)^n c$. Now, to prove $r((1-a)^n) = r(c)$.

Let $w \in r((1-a)^n)$. Then $(1-a)^n w = 0$ and hence $(1-a)^n cw = 0$

Thus, $cw \in r((1-a)^n)$. But $cw \in J$ and $I \cap r((1-a)^n) = 0$, then cw = 0and therefore $w \in r(c)$, hence

$$r\left(\left(1-a\right)^{n}\right) \subseteq r(c) \tag{7}$$

Now, let $z \in r(c)$. Then cz = 0 and hence $(1-a)^n cz = 0$, Thus $(1-a)^n z = 0$, therefore $z \in r((1-a)^n)$ and we have

$$r(c) \subseteq r\left(\left(1-a\right)^n\right) \tag{8}$$

form (7) and (8) we obtain $r(c) = r((1-a)^n)$. Therefore $(1-a)^n$ is right semi π -regular element. That is R is right semi π -regular local ring.

Now, let *R* be aright semi π -regular local ring. Then either *a* or (1-a) is right semi π -regular element in *R*. If *a* is right semi π -regular element, then there exists $b \in R$ and $n \in Z^+$ such that $a^n = a^n b$ and $r(a^n) = r(b)$.

Hence, $a^n(1-b)=0$, that is $(1-b) \in r(a^n)$, then 1=b+(1-b) and thus R=bR+(1-b)R. Therefore $R=bR+r(a^n)$.

Now, to prove $bR \cap r(a^n) = 0$, suppose that $x \in bR \cap r(a^n)$, then $x \in bR$ and $x \in r(a^n)$. Hence x = br for some $r \in R$ and ax = 0, since $x \in r(a^n) = r(b)$, then bx = 0 and $b \cdot br = 0$, that is br = 0 [proposition 2.2]. Thus x = 0 and therefore $bR \cap r(a^n) = 0$, that is $r(a^n)$ is direct summand of R. Now, if $(1-a)^n$ is right semi π -regular element, then there exists $c \in R$ such that $(1-a)^n = (1-a)^n c$ and $r((1-a)^n) = r(c)$. Since $(1-a)^n (1-c) = 0$, we have $(1-c) \in r((1-a)^n)$, and since 1 = c + (1-c).

Hence, R = cR + (1-c)R'. Thus, $R = cR + r((1-a)^n)$.

Now, to prove $r((1-a)^n) \cap cR = 0$. Let $y \in r((1-a)^n) \cap cR$.

Then $y \in r((1-a)^n)$ and $y \in cR$, hence $(1-a)^n y = 0$ and y = cr for some $r \in R$. Since $y \in r((1-a)^n) = r(c)$ then cy = 0 and $c \cdot cr = 0$.

Hence cr = 0 [proposition 2.2] and thus y = cr and then y = 0.

That is $r(1-a)^n \cap cR = 0$. Therefore $r((1-a)^n)$ is direct summand of *R*. Now, to give the relation between semi π -regular local ring and local ring.

2.7. Theorem

If *R* is local ring with $r(a^n) \subseteq r(a)$ for all $a \in R$ and $n \in z^+$, then *R* is right semi π -regular local ring.

Proof:

Let *R* be local ring. Then either *a* or (1-a) is invertible element in *R*[6].

If *a* is invertible, then there exists an element *b* in *R* such that ab = 1, hence aba = a and then $a^nba = a^n$. Let e = ba. Then $a^ne = a^n$. To prove $(a^n) = r(e)$. Let $x \in r(a^n) \subseteq r(a)$. Then x = 0, it follows that bax = 0 and then ex = 0, that is $x \in r(e)$. Hence

$$r(a^n) \subseteq r(e) \tag{9}$$

Now, let $y \in r(e)$. Then ey = 0 and hence $a^n ey = 0$ that is $a^n y = 0$, thus $y \in r(a^n)$. Therefore

$$r(e) \subset r(a^n) \tag{10}$$

from (9) and (10) we obtain $r(a^n) = r(e)$. Hence *a* is right semi π -regular element in *R*. Now, if (1-a) is invertible element in *R*, then there exists an element *c* in *R* such that (1-a)c=1. That is (1-a)c(1-a)=(1-a), it follows that $(1-a)^n c(1-a)=(1-a)^n$. let d=c(1-a). Then $(1-a)^n d=(1-a)^n$. To prove $r((1-a)^n)=r(d)$, let $x \in r((1-a)^n \subseteq r(1-a))$, then (1-a)x=0 that is c(1-a)x=0 and hence x=0, and then $x \in r(a)$. Thus

$$r\left(\left(1-a\right)^{n}\right) \subseteq r\left(a\right) \tag{11}$$

Now, let $y \in r(d)$, that is dy = 0 and hence $(1-a)^n dy = 0$, it follows that $(1-a)^n y = 0$, that is $y \in r(1-a)^n$. Hence

$$r(a) \subseteq r(1-a)^n \tag{12}$$

form (11) and (12) we have $r(1-a)^n = r(d)$. Thus (1-a) is right semi π -regular element. Therefore R is right semi π -regular ring.

3. The Conclusion

From the study on characterization and properties of semi π -regular local rings, we obtain the following results:

1) Let *R* be a right semi π -regular local ring. Then the associated elements are idempotents.

2) Let *R* be a right semi π -regular local ring. Then the idempotent associated element is unique.

3) Let *R* be a right semi π -regular local ring. Then any element $a \in R$ is π -regular if $Ra^n = Rb$ for any associated element *b* in *R*.

4) The epimorphism image of right semi π -regular local ring is right semi π -regular local ring.

5) Let *R* be a ring. Then *R* is a right semi π -regular local ring if and only if either $r(a^n)$ or $r((1-a)^n)$ is direct summand for all $a \in R$ and $n \in Z^+$.

If *R* is a local ring with $r(a^n) \subseteq r(a)$ for all $a \in R$ and $n \in Z^+$, then *R* is a right semi π -regular local ring.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

- [1] Von Neumann, J. (1936) On Regular Rings. *Proceedings of the National Academy of Sciences of the United States of America*, 22, 707-713. https://doi.org/10.1073/pnas.22.12.707
- [2] Shuker, N.H. (1994) On Semi-Regular Ring. *Journal of Education and Science*, 21, 183-187.
- [3] Al-Kouri, M.R.M. (1996) On π -Regular Rings. M.Sc. Thesis, Mosul University, Mosul.
- [4] Kim, N.K. and Lee, Y. (2011) On Strongly π-Regularity and π-Regularity. *Communications in Algebra*, **39**, 4470-4485. <u>https://doi.org/10.1080/00927872.2010.524184</u>
- [5] Burton, D.M. (1970) A First Course in Rings and Ideals. Addison Wesley Publishing Company, Boston.
- [6] Abdullah, F.A. (2013) On Local and Local Semi Regular Rings. M.Sc. Thesis, Mosul University, Mosul.