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Abstract 
Theoretical hydrodynamics may lead one into serious delusions. This article 
is focused on three of them. First, using flowing around a sphere as an exam-
ple it is shown that the known potential solutions of the flow-around prob-
lems are not unique and there exist nonpotential solutions. A nonpotential 
solution has been obtained for flowing around a sphere. A general solution of 
the problem of flowing around an arbitrary surface has been obtained in the 
quadrature form. To single out a physically realisable solution among a great 
number of others, it is necessary to add supplementary conditions to the 
known boundary ones, in particular, to find a solution with the minimum to-
tal energy. The hypothesis explaining the reason for stalled flows by viscosity 
is erroneous. When considering a flow-around problem one should use 
stalled and broken solutions of the continuity equation along with the conti-
nuous ones. If the minimum total energy is achieved by the continuous solu-
tion, it is a continuous flow that will be implemented. If it is achieved by the 
broken solution, a stalled flow will be realised. Second, the hydrodynamics of 
a flow is considered exclusively at each point of it. Differential equations are 
used to describe the flows that are written for a randomly small volume of a 
flow, i.e., for a point. The integral characteristics of a flow and its inertial 
properties are neglected in the consideration, which results in the misunders-
tanding of the mechanism of the formation of a vortex. The reason for the 
formation of vortices is related to viscosity, which is a mistake. The formation 
of vortices is the result of the inhomogeneity of the acceleration field and the 
inertial properties of a flow. Third, the fictitious values of viscous stresses are 
used in hydrodynamics. As a matter of fact, viscosity is the momentum diffu-
sion and it should be described by the diffusion equation included into the 
Euler system of equations for a viscous fluid. The momentum diffusion leads 
to the necessity of including the volume momentum sources produced by 
diffusion into the continuity equation and excluding the viscosity forces from 
the equation of motion. The problem of a viscous fluid flowing around a thin 
plate has been solved analytically, the velocity profiles satisfying the experi-
ment have been obtained. The superfluidity of helium is not its property. It is 
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the interaction of helium with a streamlined surface that is responsible for the 
mechanism of superfluidity. At low temperatures when the quantum proper-
ties are most pronounced the momentum transfer from the helium atoms to 
the streamlined wall becomes impossible, since the value of the energy trans-
ferred in the collision of a helium atom with that of the wall is smaller than 
the permitted quantum of energy. This mechanism takes place in the case of a 
flow in capillaries. Under a hydrodynamic flow-around superfluidity does not 
manifest due to the occurrence of stalled flows. The hypothesis of the disap-
pearance of the viscous stresses at low temperatures is erroneous. The viscous 
stresses cannot disappear since they do not exist in nature. The theory of 
representing superfluidity as a phase transition accompanied by the forma-
tion of the combined viscous and nonviscous phases is a mistake. 
 

Keywords 
Nonpotential Flow Around, Nonuniqueness of Flow around a Sphere, Flow 
around Arbitrary Bodies, Eddy Formation, Viscous Flow, Diffusion and Viscosity, 
Viscous Flow along a Plate 

 

1. Introduction 

In theoretical hydrodynamics there exist serious delusions, both mathematical 
and physical ones, which lead to erroneous conclusions and misunderstanding 
in the physics of the flow. 

The Euler system of the differential equations of the mechanics of fluid 
consists of the continuity equation, the momentum-conservation equation or the 
so-called equation of motion, the energy equation and that of thermodynamic 
relations [1]. At present the continuity equation is the starting one for 
steady-state flows. When solving it one derives the field of velocities to define 
the pressure from the equation of motion. 

It is considered that if the potential solution of the continuity equation is 
found, which is thought to be unique without proof, then the problem has been 
solved. This is a delusion. In addition to the potential solution, the continuity 
equation has some nonpotential solutions, which leads to a revision of the 
knowledge about the physics of the flow of fluids. To obtain a physically 
realizable solution, it is necessary to add supplementary conditions, e.g. the 
minimum energy condition, to the boundary and initial ones that are used at 
present. Other variants are also possible. 

The second delusion is that only differential characteristics of a flow are taken 
into account, the conservation laws are written for a point, whereas the integral 
characteristics, such as the moment of inertia, are ignored. As a result, the 
mechanism of the formation of vortices is ignored in the consideration. 

The third delusion is the mechanism of viscosity. It is believed that under a 
viscous flow there appear shear stresses. This theory, in spite of its rather long 
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history of development, encounters insuperable difficulties in the solution of 
simple problems, e.g. calculation of a flow near the tip of a flat plate. The reason 
for this is the wrong, in the physical sense, statement of the problem. From the 
point of view of molecular physics, there are no viscous shear stresses. It is 
especially evident in the case of a gas. 

The non-uniqueness of the solution of the problem of flow about of a contour 
is considered in Section 2 and obtain its general solution in quadrature form. 
Section 3 deals with the formation of vortices in stalled flow. In Section 4, 
viscosity is considered from the position of momentum diffusion. 

2. Flowing around a Sphere 

The convolution of two functions [2] ( )1 , ,f x y z  and ( )2 , ,f x y z  is denoted by 
∗  and determined in this way 

( ) ( )
1 1 1

1 2 1 1 1 1 2 1 1 1 1 1 1
, ,

, , , , d d d
S

x y z S

f f f x y z f x x y y z z x y z
∈

∗ = − − −∫∫
       

(1) 

The symbol S above the sign of convolution ∗  stands for a set with respect to 
which integration is performed. Let ( ),z Z x y=  be the equation of the surface 
S, then (1) looks like 

( )( ) ( )( )
1 1

1 2 1 1 1 1 1 2 1 1 1 1 1 1
,

, , , , , , d d
S

x y S

f f f x y Z x y f x x y y z Z x y x y
∈

∗ = − − −∫∫
   

(2) 

Continuity equation. The continuity equation for a steady-state flow is 
written as [1] 

( )I rq∇ =                            (3) 

Here I is the vector of the momentum density at a point in the flow, 

I Vρ=                             (4) 

V is the velocity at this point, ρ  is the fluid density, ( )rq  is the power of the 
momentum density sources, { }r , ,x y z=  is the radius-vector, 2 2 2r x y z= + +  
is its length. The nabla 

, ,
x y z

 ∂ ∂ ∂
∇ =  

∂ ∂ ∂                          
(5) 

is the differential gradient operator. The vector is denoted by the bold type, its 
modulus by the usual one. 

If the medium is noncompressible, constρ = , then the continuity Equation 
(3) is written as [1] 

( )rV
q
ρ

∇ =
                          

(6) 

The Equations ((3) and (6)), in fact, coincide, with only the right side differing 
by the presence of the constant coefficient, which for linear equations is not 
essential. 

For a compressible gas it is necessary to use thermodynamic relations. The 
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dependence between the density ρ  and the pressure p for the adiabatic process 
is as follows [3] 

0 0

k
p
p

ρ
ρ

 
=  
                            

(7) 

The enthalpy for the adiabatic process is written as 
1

0

0 0

1
1

k
kpk pH

k pρ

− 
  = −  −                         

(8) 

Here ,p vc c  art the thermal capacities at a constant pressure and a constant 
volume, p vk c c= . 

The Bernoulli potential is 
1 1

2 2
0 0

0 0 0

1
2 1 2

k
k kp pI k p IB H

k p pρ ρ ρ

− 
    = + = − +    −                 

(9) 

Having derived the momentum by (3) it is possible to define the velocity field 
from (9). 

Equation of motion. The equation of motion of a fluid when no volume 
forces or viscosity exist is the following [1] 

1ji i

j i

II I p
t x xρ ρ

∂ ∂ ∂
+ = −

∂ ∂ ∂                      
(10) 

Summation is made with respect to the recurrent indices from 1 to 3. 
Otherwise (10) is written as 

( )
2 2 1V V V

2 2
V V p

ρ
   

∇ + ∇× × = ∇ + × = − ∇   
   

Ω
          

(11) 

Here the symbol ∇×  stands for the differential rotor operation, 

V= ∇×Ω                          (12) 

is the angular velocity. The value of 

Vρ ×Ω                            (13) 

is the density of the Coriolis force. It is worth noting that the Coriolis force is 
a force rather than the moment of force, it cannot induce the rotation of a fluid. 
In the general case, according to (11), the velocity is a nonpotential vector. The 
pressure is a potential, since the force produced by it is the gradient of the 
pressure. 

For an incompressible fluid (11) is written as 
2

V 0
2

V p
ρ

 
∇ + + × = 
 

Ω
                    

(14) 

For the potential field V = ∇Ψ , where Ψ  is the velocity potential, then 

V 0= ∇× = ∇×∇Ψ ≡Ω                     (15) 
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and from (14) it is possible to derive the Bernoulli relation 

( )
22

0
02 2

VV p pρρ
− = − −

                    
(16) 

The lower index 0 denotes the parameters whose value is known at some point 
of the flow. It should be noted that (16) is true only for the potential fields of the 
momentum and an incompressible fluid. 

There are two ways of mathematical description of the motion of a fluid. In 
the Langrange method an elementary particle of the mass is taken and the 
equation of motion is written for it. Its coordinates are varied in time. 

In the Euler method, it is not a material particle that is taken but a fixed 
volume with a fluid flowing through its surface, and the balance of the forces is 
considered in this volume. Using the Langrange method it is very simple to show 
the difference between the potential and nonpotential flow. For the arbitrary 
element of the mass, according to (12), the angular velocity (15) of its motion in 
the potential flow is zero, it does not rotate and keeps its orientation even when 
following a curved trajectory as shown in Figure 1. In the nonpotential flow the 
angular velocity (12) is not zero and the element of the mass changes its 
orientation during motion as shown in Figure 2. 

 

 
Figure 1. Potential flow. The material particles keep their orientation at points A, B, C in 
spite of the fact that the direction of the motion shown by the red arrows changes by 180˚. 

 

 
Figure 2. Nonpotential flow. The material particles turn changing their orientation in the 
flow at points A, B, C. The red arrows show the direction of the motion of the particles. 
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2.1. A Point Source 

The point source is assigned as 

( ) ( )r rq µδ=                         (17) 

Here µ  is the power of the momentum source. The Equation (3) is written 
as 

( )I rµδ∇ ⋅ =                         (18) 

As shown in [4] this equation has two solutions. The first is the well-known 
potential one 

3 2

r 1I ,0,0
4π 4πr r
µ µ

= ∇Φ = =
                 

(19) 

In the present article the Cartesian components are written in the braces. The 
broken brackets denote that the vector is written in the spherical coordinates 
with the following sequence of the components: the radial r, the zenith ϑ , the 
azimuth ϕ . Substituting ∇Φ  from (19) into (18) one derives the Poisson 
differential equation for the potential Φ : 

( )
4π

rµ
δ∆Φ =

                        
(20) 

The solution (20) called a potential is 

( )
2 2 24π 4π

r
r x y z

µ µ
Φ = − = −

+ +                
(21) 

It is the fundamental solution of the Poisson equation. 
The vector (19) is the fundamental solution of the Equation (18). The 

potential vector field produced by the sources ( )q r  will be the convolution of 
(19) 

( ) ( ) 3

rr I r
4πi iq q

r
µ

∗ = ∗
                    

(22) 

The convolution of (22) is performed component by component. 
The flow of the vector I through a closed sphere with the center at the origin 

of coordinates is 
2 π

2

0 0

d sin drI r
ϕ

ϕ ϑ ϕ µ=∫ ∫
                     

(23) 

It does not depend on the radius of the integration sphere. 
As shown in [4], the solution (19) is not unique. There is a vector called 

neutron 
2 2 2

2 3 2

2 rN 1 3cos 2 ,0,0
2

z x y
r r r

ξ
ξ ϑ

− −
= = +

           
(24) 

such that the vector 
2 2 2

3 2 3 2 2

r 2 rI N 1,0,0 1 3cos 2 ,0,0
4π 4π 2

z x y
r r r r r

µ µ ξ
ξ ϑ

− −
+ = + = + +

  
(25) 
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is the solution of (18), which is checked by the substitution of (25) into (18). 
Here ξ  is an arbitrary number, by the terminology [4]—a neutron charge. The 
vector (25) is nonpotential. The flow N through the sphere with the centre at the 
origin of the coordinates is 

2 π
2

0 0

d sin d 0rN r
ϕ

ϕ ϑ ϕ =∫ ∫
                    

(26) 

The addition of N to I does not affect the flow value. At r →∞  both 
solutions (19), (24) decrease as 21 r . 

The vector (25) is the fundamental solution of nonpotential flows. For the 
sources ( )q r  the field of velocities produced by them will be the convolution 

( ) ( )r I Niq ∗ +                         (27) 

similar to (22). 
Delta-function. The general form of the δ-function is [2] 

( )

0

n

n
δ δ

∞

=

= ∑
                         

(28) 

Here ( )nδ  is the derivative of order n of the δ-function, it is presented as 

( )

, ,

x y z

x y z yx z
x y z

m m m n n
n

m m m mm m
m m m x y z

δδ λ
+ + = ∂

=
∂ ∂ ∂

∑
               

(29) 

Here 
x y zm m mλ  are the arbitrary constants, the nth derivative of the δ-function 

is the linear combination of all its mixed derivatives of the order n. 
The presentation of the δ-function in the form (28) should be taken into 

account in the solution of the Equation (18). A complete solution is obtained by 
the addition of the linear combination of all derivatives of (25) to the solution 
(25). The vector (25) tends to zero as 21 r  at r →∞ , its first derivative as 

31 r  and so on. 
The derivative δ-function of order n is a multipole of order n. Inclusion into 

the consideration of the nth derivatives in (28) means the addition of the 
multipoles of the nth order to the solution (25). 

The potential source dipole. The homogeneous flow with a constant 
momentum density oriented parallel to the z-axis and directed from +∞  to 
−∞  is written as 

 { }w 0,0, cos , sin ,0w w wϑ ϑ= − = −                (30) 

The field of the dipole source with the z-axis as the axis of symmetry is 
obtained by differentiating (19) with respect to z and the replacement of µ  by 
the dipole moment µ  

{ }2 2 2
5 3

II 3 ,3 , 2 2cos ,sin ,0
4π 4π

xz yz z x y
z r r

µ µ
ϑ ϑ

∂
= = − − =
∂

 



     
(31) 

The dipoles and their moments are designated by one upper point and the 
quadrupoles by two points. 

Adding (30) and (31) and equating the radial component of the sum to zero at 
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r R=  one derives the known relation [1] 
32πwRµ =                          (32) 

As a result one obtains the potential velocity field in flowing around a sphere 

3 3

3 3w I 1 cos , 1 sin , 0
2

R Rw
r r

ϑ ϑ
   

+ = − +   
   



            
(33) 

The neutron vector dipole. The neutron vector dipole (24) with the z-axis as 
the axis of symmetry is written in the spherical coordinates as 

( )3

NN 8cos 3cos 2 1 , sin 3sin 3 , 0
z r

ξ
ϑ ϑ ϑ ϑ

∂
= = − − −
∂





        
(34) 

The quadrupole potential source. Differentiating with respect to z (31) one 
derives the potential component quadrupole in the form 

( ) ( ) ( ){ }2 2 2 2 2 2 2
2 27

4

3I 4 , 4 , 3 3 2
4π

1 3cos 2 , 2sin 2 , 0

x x y z y x y z z x y z
r

r

µ

µ
ϑ ϑ

= − + − + − + −

= +







   

(35) 

Here µ  is the source quadrupole moment. The vector flow (35) through a 
sphere is 

2 π
2

0 0

d sin d 0rI r
ϕ

ϕ ϑ ϕ =∫ ∫
                     

(36) 

The sum of the radial components (24) and (35) on the sphere is 

2 2

2 1 3cos 2 0
2r rN I

R R
µ ϑ

ξ
+ + = + = 

 





                
(37) 

at 

2

2
R
µ ξ= −


                          
(38) 

which taking into account (26) and (36) means that the vector 

( )1w I N Iλ+ + + 

                       
(39) 

is the solution of the continuity Equation (18) at the arbitrary parameter 1λ , i.e. 
the known solution of the problem of flowing around a sphere (33) is not unique. 
The field (39) decreases at infinity as 21 r  due to the neutron component (24), 
whereas the potential field (31) decreases as 31 r . 

The energetics of the flow around a sphere. The value of 

( )1I N Iλ+ + 

                         
(40) 

is the inherent field of a streamlined sphere. The kinetic energy of the field 
momentum (40) K is 

1 2 3K K K K= + +                       (41) 

Here 
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( )
2

2
1

πI I d
4V

K V Rw= ⋅ =∫∫∫  
                   

(42) 

( ) ( )( )
2

2
2 1 7

148πN I N I d
105V

K V
R
µ

λ= + ⋅ + =∫∫∫


 

            
(43) 

Integration is performed with respect to the external part of the surface of the 
sphere. The values of 1K  and 2K  are the self-energies of the potential and the 
neutron components, respectively. The value of µ  is arbitrary. 

( )( )3 12 I N I d 0
V

K Vλ= ⋅ + =∫∫∫  

                 
(44) 

is the interaction energy of the potential and the neutron components. 
The potential energy should be added to the kinetic energy (41) to get the total 

energy. The pressure p acts as the potential energy density for an incompressible 
fluid, whereas enthalpy for a compressible one. The pressure p can be derived 
from the equation of motion (14), substituting there the velocity (40) one 
obtains a complex differential equation. There is no point in solving it, since it is 
impossible to produce continuous flowing around a sphere. 

2.2. Solution of the Problem of Flowing through the Sources on 
the Surface 

Let us illustrate the solution of the problem of flowing using the example of 
flowing around a sphere with the radius R with the centre at the origin of the 
coordinates 

2 2 2z R x y= − −                       (45) 

The modulus of the normal of the external flow to its surface, according to 
(30), is 

cosnw w ϑ=                          (46) 

Let a sphere be the source of the density of the momentum having only the 
radial component which at 0r R→ −  is equal to nw , and at 0r R→ +  is 
equal to nw− . In passing through the surface of the sphere the momentum 
density undergoes an abrupt change equal to 2 nw− . It means that the surface of 
the sphere S is the carrier of the delta-function of the simple layer [2], and in (3) 
the function of the source in the spherical coordinates is 

( )r n Sq w δ= −                         (47) 

In the spherical coordinates only the radial component has the source on the 
sphere, the direction of the normal to the surface coincides with the coordinate 
line, therefore, the source (47) is a scalar. In the general case of an arbitrary 
surface it will be a vector. The flow of the vector nw  through the area element 
dS will be cos dw Sϑ , its contribution to the potential at the point r will be 

2
1 1 1 1 1

1 1 1 12 2 2
1

cos cos sin cos sind d d d d
r r 2 1 2

wR wRw S
r rR R

ϑ ϑ ϑ ϑ ϑ
ϑ ϕ ϑ ϕ

γ γ
= =

− − + − +



      
(48) 
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The lower index 1 means that the given value refers to the sphere S, the radial 
component of the area element is 2

1 1 1d sin d dS R ϑ ϑ ϕ= . The problem is axially 
symmetric relative to the z-axis, therefore, it is possible to assume 0ϕ =  
without a loss of generality. The velocity potential is 

( )

2π π
1 1

1 12
0 0

2π π

1 1 1 1
00 0

2

2

sin cosd d
4π 1 2

d sin cos d
4π

cos
3

n
n

n

wR

wR P

w R
r

ϑ ϑ
ν ϕ ϑ

γ

ν ϕ ϑ ϑ γ ϑ

ν ϑ

∞

=

Φ = −
− +

= −

= −

∫ ∫

∑∫ ∫



 




           

(49) 

Here it is designated 

R r=                           (50) 

1 1 1cos cos cos sin sinγ ϑ ϑ ϕ ϑ ϑ= +                 (51) 

ν  is an arbitrary parameter. The expansion in terms of the Legendre 
polynomials is used 

( )
2 0

1

1 2
n

n
n

P γ
γ

∞

=

=
− +

∑ 
                    

(52) 

One can show that 

( )
π 2π

1 1 1 1
0 0

cos , 14πd sin cos d
0, 13n

n
P

n
ϑ

ϑ γ ϑ ϑ ϕ
=

=  ≠
∫ ∫

          
(53) 

The Legendre polynomial is expressed in this way [5]: 

( ) ( ) ( )
( ) ( )

0
2

0

1 2 2 !1
! ! 2 !2

mn
n m

n n
m

n m
P

m n m n m
γ γ −

=

− −
=

− −∑
             

(54) 

Here 0n  is equal to n/2 with even n and to ( )1 2n −  in the case of odd n. 
Differentiating (49) with respect to r and assuming r R=  one derives the 

value of the normal component on the surface of a sphere 

2 cos
3n

ww
R
ν

ϑ=
                       

(55) 

At 3 2Rν =  the value of the normal component of the flow velocity on the 
surface of a sphere is equal to (46), i.e. the solution of the problem of flowing 
around a sphere. 

The potential field of velocities is the convolution (19) with a function of a 
source (47): 

3

rS

n Sw
r

ν δ− ∗
                         

(56) 

The field 

3

r w
S

n Sw
r

ν δ − ∗ + 
                        

(57) 

has the normal component of the velocity of the flow on the surface of the 
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streamlined body equal to zero. 
A complete solution of the problem of the continuous flow around a sphere is 

written in the form 

( )( )1I I N w
S

n Sw δ λ∗ + + + 

                   
(58) 

where the vectors I, I, N   are given by the relations (31), (35), (24). The vector 

( )N I
S

n Sw δ ∗ + 
                        

(59) 

on the surface of a sphere will have a zero radial component of the velocity. 
If one takes the arbitrary closed surface S as the S in (58), then the function of 

the source will be a vector value in the form 

( )q r wn Sδ=                          (60) 

and (58) will be written as 

( )( )1w I I N w
S

n Sδ λ∗ + + + 

                   
(61) 

The function (61) is the solution of the Equation (3) and it is a general 
solution of the problem of flowing by a steady flow around an arbitrary surface S 
in the quadrature form and not only around a sphere. According to (28), for a 
complete solution one should add the multipoles to (61). 

To single out a solution that could be physically realisable, it is necessary to 
add some additional conditions to the boundary ones, e.g. the requirement for 
the minimum of the total energy of the system. There can be also other 
conditions. 

There is an opinion that the continuous solution of the continuity equation in 
the problems of flowing when there are no viscous stresses will be a solution that 
is physically realisable. Broken and stalled flows are ignored in the consideration 
without explanation. However, stalled flows can have a total energy less than 
continuous ones, and they are physically realisable. It takes place under flowing 
round a sphere, and the noncontinuous solution with the formation of vortices 
is implemented. Nowadays the occurrence of stalled flows is explained by the 
effect of viscous stresses, which is impossible. Below in section 4 it is shown that 
viscous stresses do not exist in nature. 

3. Inertial Effects 

Vortices in a flow occur under stalled flow when a low-density zone is formed 
behind a streamlined body, which is clearly seen in flowing around an 
orthogonal plate (Figure 3). 

The contribution of viscosity into the flow energetics is small because viscosity 
is essential only at the sides of the plate A and B with a small length. This 
contribution is much less than the kinetic energy of the vortices formed behind a 
streamlined plate. The vortex diameter is comparable with its length rather than 
with its thickness which is much less than the vortex diameter. Therefore, it is  
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Figure 3. Shown is a thin plate located perpendicular to the running flow. The thickness 
of its slides at points A and B is much less than the diameter of the vortices occurring 
behind the plate. 

 
impossible to correlate the formation of vortices with viscosity. 

The appearance of the angular velocity (12) is related to the nonpotential 
character of the flow. However, it changes in the flow from point to point, it is 
impossible to single out regions rotating as a whole like a solid with the angular 
velocity similar for all of its points [6]. By the term “vortex” we will understand a 
fluid domain rotating in such a way that at each point of the domain the angular 
velocity is approximately the same. 

The principal question is which moments of force produce vortices. Pressure 
cannot produce them in principle, since its force is the pressure gradient, which 
is a potential value and its work along a closed contour is always zero. If there 
are no external forces, only the forces produced by the pressure act in a fluid. 

Let us consider a fluid ring in a flow with the radius r and the thickness dr. 
The element of the ring mass in the cylindrical coordinates is 

d dr rρ ϕ                           (62) 

Its moment of inertia is 
2π

2 2

0

d d 2π dr r r rρ ϕ ρ=∫
                     

(63) 

Let the volume force that in the cylindrical coordinates has only one azimuth 
component with the density rβ  ( β  is the proportionality coefficient) act on a 
fluid (Figure 4). Due to this force, the element of mass (62) is affected by the 
moment 

2 d dr rβρ ϕ                          (64) 

Integrating this expression with respect to ϕ  from 0 to π , one derives the 
moment of force acting on the ring 

22π dr rβρ                          (65) 

Dividing the moment of force (65) by the moment of inertia (63) one gets that 
the angular acceleration of the ring is β , a constant value. The constants of the 
angular acceleration is needed for the fluid domain to spin like a solid with the 
same value of the angular acceleration of all the domain points. 
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Figure 4. Shown is the fluid ring, with the volume force of the density βr having only one 
azimuth component applied to each point on the ring. 

 
Let a flow be formed, due to the differences of the pressure, with the acceleration 

field 

{ } 2a ,0 cos sin , siny rγ γ ϕ ϕ ϕ= = −
               

(66) 

here γ  is some coefficient of proportionality. In the broken brackets the value 
of the vector in the polar coordinates is shown. The acceleration in (66) has a 
linear dependence on the coordinate. This dependence can be obtained with an 
arbitrary field of acceleration by means of expansion into the Tailor series near 
the centre of the domain mass centre 

( ) ( ) ( ), 0,0 0,0 di
i i j

j

aa x y a x
x
∂

= +
∂                 

(67) 

The origin of the coordinates is in the centre of the domain mass. 
The moment of the force acting on the ring with the inner radius r and the 

external radius dr r+  will be derived by the multiplication of the azimuth 
component in (66) by dr rρ  and the integration with respect to ϕ  from 0 to 
2π . As a result, one obtains 

2π dr rρ−                           (68) 

Comparing (65) and (68) one can see that the acceleration field (66) has the 
moment of force acting on the ring that ensures spinning of the fluid domain 
like a solid having the same acceleration at each point. 

The rotor a∇×  is the angular acceleration. If in a fluid the angular 
acceleration is a constant value for all the domain points, this domain produces a 
vortex. 

The moment of force can be applied only to an object possessing the moment 
of inertia, which means that the object has to possess finite dimensions. A 
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material point has no moment of inertia. The moment of inertia is a 
characteristic taking into account the inertial properties of a system. The 
modern theory of hydrodynamics gives them little attention. As a result, the 
mechanism of the formation of vortices is disregarded. The mathematical 
description of a flow is made using the system of differential equations, i.e. a 
flow is considered at each point without integral characteristics. For instance, 
flowing around a sphere is one of the problems where the stalled character of a 
flow with the formation of vortices is manifested. All attempts to describe it 
taking into account viscous stresses are a failure. 

4. Momentum Diffusion 

At present it is considered that in the flow of a gas or a fluid there exist tangent 
or the so-called viscous stresses, their value, according to the Newton law is 

i
ij

Vp
j

ν
∂

=
∂                          

(69) 

Here ν  is the viscosity coefficient, ijp  is the stress tensor and the 
nondiagonal components in it are the viscous stresses [1]. The equation of 
motion (10) has the form 

1 iji i
j

j j

pV VV
t x xρ

∂∂ ∂
+ =

∂ ∂ ∂                      
(70) 

The physical reasons for the pressure in a gas and a condensed media are 
principally different. In the case of a gas, the pressure on the surface is produced 
only due to the collision of the molecules moving chaotically with the surface. So 
the source of the pressure in a gas is the kinetic energy of the molecules. The 
potential energy of the intermolecular interaction does not make contribution to 
the pressure, since the average distance between the molecules is much larger 
than the radius of the action of the interatomic forces. This property of a gas is 
the reason for the implementation of the thermodynamic relations, in particular, 
the Clapeyron-Mendelyeev law. For the tangential stresses to exist, it is necessary 
that the molecules be located near the equilibrium position and if they move 
there would be a force making them return to the previous position. 

In condensed media the situation is different. The molecules are at distances 
at which the potential energy of the interatomic interaction is great, it has to be 
overcome in compression or tension and due to it the pressure is produced. 
Therefore, the dependencies of the density on the pressure for condensed media 
and gases are different. The interatomic interaction is responsible for the 
existence of the tangential stresses in the solids in which the average kinetic 
energy of the thermal atomic vibrations is lower than the potential barrier height 
for a shear. In fluids these energies are of the same order, the energy barrier for a 
shear is escaped by the thermal vibrations, which causes the flow of a fluid and 
its inability to resist a shear. Neither a fluid nor a gas can have tangential stresses, 
which is especially evident in the case of a gas. The point of mechanics on the 
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existence of viscous tangential stresses is erroneous, their inclusion in the 
equation of motion leads to an incorrect mathematical description of a flow. 

In a gas the momentum of a molecule relative to the solid surface can be 
resolved into the normal and tangential components. In the collision against the 
wall both components of the molecule can change, since the surface is formed by 
the atomic sequences. A change of the normal component always leads to a 
transfer of the surface momentum in one direction—along the normal inside the 
wall. When the tangential component changes, the molecule has a force effect on 
the wall in the tangential direction. However, due to the stochastic character of 
motion, if the average tangential component of the momentum is zero, the gas is 
immobile, then the average tangential effect on the wall is also zero. When the 
average tangential momentum projection is not zero and is equal to w, the gas 
moves along the wall at the velocity w, the reflected molecules transfer to the 
wall part of the average potential momentum, the wall retards the gas and offers 
a viscous resistance. 

The same happens under a motion inside a gas. If the derivative of the gas 
velocity in the direction perpendicular to the streamlines is not zero, in the 
adjacent layers the average velocities of the gas molecules are not the same: the 
molecules of the layer moving faster penetrate into the slower one and colliding 
against its molecules transfer an excess momentum. And vice versa, the 
molecules from the slower layer pass into the faster one retarding it. Thus, the 
momentum diffusion results in the occurrence of the momentum sources and 
discharges in the gas volume. 

The boundary layer should be considered a diffusion layer, which is described 
by the equation of diffusion. 

A change of the momentum of the elementary volume dQ is caused by two 
reasons. First, by the effect of the external forces on the volume dQ such as the 
difference of the pressure. Second, by the addition of the momentum to the 
volume dQ by diffusion. The total value of the change in the momentum is their 
sum. The momentum is a vector, one should consider the diffusion blow-in of 
each of its component through the surface of the elementary volume. Its entry 
for the time dt is 

( )d di iJ I tη= ∇ ⋅ ∇                       (71) 

Here η  is the coefficient of the momentum diffusion. 
The momentum increment dI is the sum 1dI dI dJ= + , 1dI , we shall call it a 

force increment, it is produced by the difference of the pressure p and the 
external forces. The diffusion momentum dJ  changes the momentum of the 
elementary volume even if there is no difference of the pressure and the external 
forces. Unlike 1dI , it does not enter the Bernoulli Equation (16). This division is 
somewhat arbitrary, it serves to illustrate the role of each phenomenon. 

If due to the diffusion the momentum (71) is added to the material particles, 
then its velocity should increase by the value ( )d d du J Q ρ=  and the 
surrounding particles will continue to move at the previous velocity, which 
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contradicts the continuity Equation (3). Therefore, the momentum transferred 
by the diffusion is divided into two parts 

ˆdJ dJ dJ= +                          (72) 

here ˆdJ  is the part of the momentum that passes into the velocity of the 
particle and part of the dJ , due to the retardation by the environment, passes 
into the additional pressure 

( )2
d

d
2

J
p

ρ
=

                         
(73) 

and this excess pressure affects the motion of the surrounding particles in 
accordance with the equation of motion (11). Note that here, unlike the force 
momentum I1, an increase in the velocity can result in an increase in the 
pressure. For a number of problems the value of ˆdJ  is much higher than dJ  
and it can be neglected in the first approximation dJ . 

The diffusion momentum J is derived from the diffusion equation 
23

, 1

i i

j k j k

J I
t x x

η
=

∂ ∂
=

∂ ∂ ∂∑
                      

(74) 

The double summation in this formula is related to the fact that each 
component of the momentum contributes to the diffusion through all sides of 
the elementary cube. Besides, in the right side there is the total momentum, 
whereas in the left one there is the diffusion momentum. This is because the 
diffusion is produced by the difference in the total momentum, and only the 
diffusion part of the momentum appears as a result of the diffusion. 

For some problems it is possible to separate the force and the diffusion parts, 
for instance, for the diffusion in a stationary fluid when 1I 0= , with only the 
diffusion part of the momentum remaining. The Equation (74) for this case is 
written as 

23

, 1

i i

j k j k

J J
t x x

η
=

∂ ∂
=

∂ ∂ ∂∑
                      

(75) 

The diffusion momentum corresponds to the appearance of the volume 
sources of the momentum with a power equal to the right side (74). These 
should be added to the continuity Equation (3) and, as a result, one obtains 

( )
23

, 1
I r i

j k j k

Iq
x x

η
=

∂
∇ = +

∂ ∂∑
                    

(76) 

From the point of view of mathematics one should solve simultaneously the 
equation of the momentum diffusion (74), the continuity Equation (76), the 
equation of motion (10), which is a complicated task. It is simpler to solve them 
one after another: to solve the diffusion equation as the first approximation, for 
the second approximation to derive the momentum taking into account the 
diffusion sources from the continuity Equation (76) and from the equation of 
motion to specify the field of velocities. In the present work the focus is on the 
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first approximation, i.e. the solution of the diffusion equation. 
Momentum diffusion near a flat plate. Let us consider a problem in the 

two-dimensional statement when there is no dependence on the coordinate z 
and the vectors have only two components along the abscissa and the ordinate. 
Let some infinite space be occupied by a stationary fluid, therefore, one can use 
the diffusion Equation (75). At the origin of the coordinates at the moment 

0t =  there occurs an instaneous point source of momentum directed along the 
axis of abscissa 

{ } ( ) ( ) ( ){ }0J ,0 ,0J J x y tδ δ δ= =
                

(77) 

and it diffuses into the surrounding space. Here 0J  is the power of the 
momentum source. Physically the above momentum could be produced in the 
following way. 

Let in a stationary gas parallel to the axis of abscissa at the origin of the 
coordinates there be a thin strip of the width dl, which at the moment of time 

0t =  moves jumpwise at the distance dx along the abscissa (Figure 5). The gas 
interacts with the surface of the strip due to the molecule collision. While the 
strip is immobile, it does not affect the distribution of the molecular velocities. If 
the strip moves, then due to the collisions of the gas molecules with it, the latter 
are imparted the momentum, so around the strip there appears a macroscopic 
motion of the gas diffusing into the surrounding space. 

The equation of the momentum diffusion is written as 

( ) ( ) ( )
2 2

02 2

J J J J x y t
t x y

η δ δ δ
 ∂ ∂ ∂

− + = ∂ ∂ ∂                
(78) 

If a fluid moves along the abscissa at the velocity w− , then the derivative 
with respect to time in (78) should be considered total and then (78) is written as 

( ) ( ) ( )
2 2

02 2

J J J Jw J x y t
t x x y

η δ δ δ
 ∂ ∂ ∂ ∂

− − + = ∂ ∂ ∂ ∂            
(79) 

For the stationary case 0J t∂ ∂ =  and the point source constant in time, 
( )tδ  is replaced by unity and (79) changes to 

 

 
Figure 5. Shown is the thin strip located along the z-axis moving jumpwise along the abscissa. 
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( ) ( )
2 2

02 2

J J Jw J x y
x x y

η δ δ
 ∂ ∂ ∂

+ + = − ∂ ∂ ∂                
(80) 

If a fluid is immobile 0w = , then (79) is written as 

( ) ( ) ( )
2 2

02 2

J J J J x y t
t x y

η δ δ δ
 ∂ ∂ ∂

− + = ∂ ∂ ∂                
(81) 

Let us introduce the scales of the distance L, the time mt , the momentum 
2

0mJ J L=  then the variables are brought to the dimensionless form using the 
formulas , , ,m mx L y L t t J Jχ ζ τ= = = = ϒ . Due to the arbitrariness of the scales 
of L and mt , the following equalities should be fulfilled 

2
mL tη =                           (82) 

mw L t=                           (83) 

then the scales are written as 

2mt w
η

=
                          

(84) 

L
w
η

=
                           

(85) 

2

0 2m
wJ J
η

=
                         

(86) 

The Equation (79) is written as 

( ) ( ) ( )
2 2

2 2 δ χ δ ζ δ τ
τ χ χ ζ
∂ϒ ∂ϒ ∂ ϒ ∂ ϒ

− − − =
∂ ∂ ∂ ∂              

(87) 

Here the property of the δ-function ( ) ( )L Lδ χ δ χ=  is used. No 
parameters enter this equation. The Equation (87) describes the evolution of the 
dimensionless momentum in the dimensionless coordinates and time. 

For estimation let us take the following values of the parameters in (115): 
5 210 m s, 1 m swη −= = . The viscosity coefficient of the air is 5 21.5 10 m s−× , 

then 5 510 m, 10 smL t− −= = . 
The Equation (87) for a stationary fluid is written as 

( ) ( ) ( )
2 2

2 2 δ χ δ ζ δ τ
τ χ ζ
∂ϒ ∂ ϒ ∂ ϒ

− − =
∂ ∂ ∂                

(88) 

For the equation in a stationary fluid (81) the velocity 0w = , therefore, (83) 
disappears and the scales L and mt  are chosen quite arbitrary. Since further I 
am planning to turn from a stationary fluid to that moving at the velocity w, the 
choice of the scales (84) - (86) is the same for the Equation (88). 

The stationary Equation (80) for a fluid moving at the velocity equal to unity 
is presented in the dimensionless variables like 

( ) ( )
2 2

2 2 δ χ δ ζ
χ χ ζ
∂ϒ ∂ ϒ ∂ ϒ

+ + = −
∂ ∂ ∂                  

(89) 

Here (84) - (86) are used as the scales. 
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The value J0. The average distance between the molecules λ  from the 
Clapeyron-Mendelyeev law is written as 

1 3 1 3

A

RT kT
pN p

λ
   

= =   
                       

(90) 

Here AR N k=  is the gas constant, k is the Boltzmann constant, AN  is the 
Avogadro number, T is the absolute temperature, p is the gas pressure. For the 
air λ  is by an order of magnitude larger than the interatomic distance in 
condensed substances. 

The average velocity of the progressive motion of a molecule along the normal 
to the strip is 

kTv
µ

=
                          

(91) 

Here µ  is the molecule mass. This relation is valid for monoatomic gases. 
For polyatomic gases the dependence (91) between the temperature and the 
progressive velocity at high temperatures is more complicated due to the 
contribution of the molecule rotations and the intramolecular vibrations. Here 
the gases are considered for which the relation (91) is fulfilled. The time during 
which a molecule will cover the length λ  will be equal to 

1 33

2t
v p kT
λ µ 

= =  
                        

(92) 

The average length of the free path of the molecules in a gas is much larger 
than λ , it is possible to neglect the colliding ones and consider that half the 
molecules located at the distance λ  from the strip reach its surface since the 
other half of them move back from it. From the Clapeyron-Mendelyeed equation 
one derives the number of the moles contained in the volume d dV lλ=  per 
unit of length along the coordinate z 

d dp V p l
RT RT

λ
=

                        
(93) 

Then the number of the molecules reaching the strip is such 
2
3d 1 d

2 2A
p l pN l

RT kT
λ  =  

                      
(94) 

After the collision with the moving strip each molecule will receive from the 
plate the average momentum wαµ  directed along the abscissa. The value of 
α  determines the average value of the transferred tangential momentum in the 
collision of a gas molecule with the atoms of the wall, w is the velocity of the 
motion of the strip in a jump. Multiplying this value by (94) one derives the 
momentum transferred from the plate to the gas due to the molecular 
interaction during the time of the elementary jump t  in the form 

2 3

0 d
2

w pJ l
kT

αµ  =  
                       

(95) 
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0J  is the momentum per unit of the length of the plate along the z-axis. 
Moving source. The continuous motion of the point source of the 

momentum at the velocity w can be presented in the following way. Let us take 
the plate length equal to d dl w t= . Then (95) will be written as 

2
0 d dJ w tω ηω τ= =                       (96) 

Here the Equations (84)-(86) are used, 
2
3

2
p

kT
µω α  =  
                         

(97) 

Let the plate be located at the moment of time dNt N t= −  on the negative 
part of the axis of abscissa at the point d dNx N l Nw t= − = −  and then caused to 
move at the distance dl during the time dt. Here N is the natural number. As a 
result, it will arrive at the point of the axis of abscissa ( )1 1 dNx N w t− = − − . 
From this point at the moment of time ( )1 1 dNt N t− = − −  it repeats a jump and 
gets to the point 2Nx −  and so on. In the time dnt n t=  it will make n jumps and 
find itself at the point of the axis of abscissa ( )dnx N nw t= − . At the moment of 
the time 0t = , when n N= , the plate will be at the origin of the coordinates. 
With each jump the plate produces the diffusion field described by the Equation 
(78) whose solution is [2]: 

( ) ( )
( )

( )
( )

2 2

0, , exp
4π 4

n n
n n

n n

t t x wt y
J x wt y t J

t t t t
θ
η η

 − − +
 − = −

− −          
(98) 

Summing (98) with respect to n from 0 to N one obtains the solution of the 
problem on the evolution of the field of the diffusion momentum produced by 
the moving point source of the momentum in the stationary fluid from time 

0Nt t= <  to time 0t = : 

( ) ( )

( )
( )

0

2 22

0

ˆ , , , ,

1d exp
4π 4

n N

N n N n
n

n N
N n

n N n N n

J x y t J x wt y t t

x wt yw
t t t t

ω
τ

η η

=

− −
=

=
−

= − −

= − −

 − +
 = −

− −  

∑

∑
       

(99) 

With the elementary jump d 0l → , this sum changes to the integral 

( ) ( )
( )

2 202
1

1
1 1

1ˆ , , exp d
4π 4

Nt

x wt yuJ x y t t
t t t t

ω
η η

 − +
= − 

− −  
∫

         
(100) 

( )ˆ , ,J x y t  is the solution of (80) for Nt t> , since for Nt t<  the momentum 
( )ˆ , , 0J x y t =  due to ( ) 0Nt tθ − = . If 0Nt t< < , then in the sum in (99) 

summing should be interrupted when N nt t− >  and the upper limit in the 
integral will be t rather than 0. Thus, (100) is the solution of the problem when 
at the moment Nt t=  at the point Nx wt=  of the axis of abscissa there appears 
the momentum source and moves in the positive direction, while at the moment 
of time 0t =  it disappears. In this case, the upper limit in the integral in (100) 
is zero. If after the moment 0t =  the momentum source continues to move, its 
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upper limit in (100) should be t, and the solution will be written as 

( )
( )

2 22
1

1
1 1

1 exp d
4π 4

N

t

t

x wt yuJ t
t t t t

ω
η η

 − +
= − 

− −  
∫

            
(101) 

Note that as a result of the summation, the momentary character in time of 
the point source disappears, it becomes constant in time during its movement 
due to the summation. However, the momentum character of the spatial 
coordinates remains but changes to the form ( ) ( )x wt yδ δ− . 

At Nt →−∞  (101) changes to 

( )
( )

2 22
1

1
1 1

1ˆ exp d
4π 4

t x wt ywJ t
t t t t

ω
η η−∞

 − +
= − 

− −  
∫

            
(102) 

Substituting 2 1t t t= −  in (102) and turning to the moving system of the 
coordinates ,x y  the substitution of x x wt= −  one derives 

( )2 22
2

2
0 2 2

1 exp d
4π 4

x wt ywJ t
t t

ω
η η

∞  + +
= − 

  
∫





             
(103) 

In this system of the coordinates the stationary point momentum source is 
located at the origin of the coordinates, and the fluid moves along the axis of 
abscissa at the velocity w− . The function (103) is the solution of the stationary 
equation of diffusion in the moving fluid with the point momentum source at 
the origin of the coordinates (80). 

Using the values (84)-(86) as the scales the solution (103) in the dimensionless 
form will be presented as 

( )2 2

0

1 1 exp d
4π 4

χ τ ζ
τ

τ τ

∞  − +
ϒ = − 

  
∫

              
(104) 

Here 2, ,mx L t t y Lχ τ ζ= = = . 
From (104) it follows that the solution does not depend on the time, and the 

integral is the function of only two dimensionless spatial coordinates ,χ ζ . Let 
us show that (104) is the solution of the stationary equation of diffusion in the 
moving fluid (89). Substituting the function (104) into (89) one obtains 

( )2 2

3
0

exp d 0
4

χ τ ζ
τ

ττ

∞  − +Λ
− ≡ 
  

∫
                

(105) 

Here it is designated 
2 2 24χ ζ τ τΛ = + − −                     (106) 

For the Equation (104) to be the solution of the equation (89), it is necessary 
that (105) be zero at any values of ,χ ζ . I have failed to analytically prove it, 
however, the numerical calculation (105) supports it. 

The sign Λ  determines the sign of the integrand in (105). The equation 
0Λ =  has only one positive root 

2 2
* 4 2τ χ ζ= + + −                     (107) 
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At *0 , 0τ τ< < Λ > , and at *, 0τ τ> Λ < . The integrand in (105) exponentially 
tends to zero both at 0τ →  and τ → +∞ . Really, 2~ τΛ  at τ → +∞ , and 
the exponent in (105) tends to zero, since its index →−∞  at τ →∞ . 

At any values of ,χ ζ  the following equality takes place 

( ) ( )1 2, ,I Iχ ζ χ ζ= −                     (108) 

Here it is designated 

( ) ( )* 2 2

1 3
0

, exp d
4

I
τ χ τ ζ

χ ζ τ
ττ

 − +Λ
= − 

  
∫

            
(109) 

( ) ( )
*

2 2

2 3, exp d
4

I
τ

χ τ ζ
χ ζ τ

ττ

∞  − +Λ
= − 

  
∫

            
(110) 

As an example, Figure 6 shows the results of the calculation of the integrals 
( )1 ,I χ ζ  and ( )2 ,I χ ζ  for the abscissa 1χ =  and the ordinate ζ  within 

the interval ( )0,6 . The curves in the plot are symmetric relative to the axis ζ , 
hence it follows that the equality (108) is fulfilled. 

Note that the identity (105) is valid even for a more general form of the 
functions at the arbitrary ς  

( )2 2

3
0

exp d 0
4

χ ςτ ζ
τ

ττ

∞  − +Λ
− ≡ 
  

∫
               

(111) 

The plate of a finite length. To consider flowing around the plate with a 
finite length  , it is necessary to use the momentum function δ , its carrier is 
the segment  , i.e. to use the notion of a simple layer. It is determined as [2] 

( ) ( ) ( )( ), , d
t

f x y f x t y t t
∈

∗ = ∫





                

(112) 

The plate length in the dimensionless form is 
 

 

Figure 6. Plot of the functions ( )1 ,I χ ζ —(the upper curve) ?? ( )2 ,I χ ζ —(the lower 

curve) for 1χ =  ( )0, 6ζ ∈ . 
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L
λ =


                          
(113) 

The equation (89) is written as 
2 2

2 2 λδχ χ ζ
∂ϒ ∂ ϒ ∂ ϒ

+ + = −
∂ ∂ ∂                     

(114) 

Here λδ  is the δ-function with the carrier the segment λ  in the 
dimensionless variables. Using (104), one derives the solution of the Equation 
(114) [2] 

( ) ( ) ( )2 2

0 0 0

2

0

1 1ˆ, , d d exp d
4π

1 1 exp erf erf d
8 π

s
s s s

λ λ χ τ ζ
χ ζ χ ζ τ

τ τ

ζ χ τ χ τ λ
τ

ττ τ τ

∞

∞

 − + +
ϒ = ϒ − = − 

  
   + + −   

= − −      
     

∫ ∫ ∫

∫
  

(115) 

Figures 7-9 show the diffusion momentum ϒ  versus the coordinate ζ  for 
the assigned values of χ . The values of χ  are shown on the left of the plot, 
which gives the values of the momentum on the straight lines orthogonal to the 
plate constχ = . In Figure 7 these lines go through the plate, in Figure 8 they 
cross the axis of abscissa χ  behind the plate. In Figure 9 they pass in front of 
the plate. 

The plots are symmetric to the axis of abscissa χ  as it follows from (115), 
therefore, it would be enough to show the plots only for 0ζ ≥ . However, their 
behavior on the axis of abscissa at 0ζ =  is of interest, therefore, the left half of 
the profile is shown in the truncated form. 

 

 
Figure 7. Plot of the diffusion momentum ϒ  near the plate when it is streamlined by a 
viscous fluid. The dimensionless length of the plate is 10 and it is located on the axis of 

abscissa χ  at the interval ( )0,10 . The values of the coordinate χ  are indicated on 

the left of the corresponding plot. The lower plot gives the values of the momentum at the 
beginning of the plate, the upper one at the end. 
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Figure 8. Plots of the momentum ϒ  behind the streamlined plate. 

 

 
Figure 9. Profiles of the dimensionless momentum ϒ  in front of the plate. 

 
In Figure 7 one can see that the plot of the momentum on the plate forms an 

acute angle, i.e. the derivative d dζϒ  on the plate undergoes a break, which 
should be expected, since the plate is the momentum source. Outside the plate 
the momentum profile has an extremum with the continuous derivative 
d d 0ζϒ = . 

In front of the plate there also exists a diffusion momentum shown in Figure 
9. However, it disappears quickly with increasing distance from the plate up the 
flow. 

The obtained results agree with the experimental data. The problem in the 
present theory of the boundary layer is the profile of the velocity near the front 
edge of the plate. The calculated profiles are much different from the measured 
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ones. The theory suggested here solves the above problem. 
Flow in the cylindrical tube. As it has been shown here, the viscosity 

coefficient ν  in (69) is a fictitous value, since there are no shear stresses in 
gases and fluids. There arises a question how the viscosity coefficient ν  is 
related to the coefficient of the momentum diffusion η . One of the main 
methods of measurement of the viscosity coefficient is the flow in a cylindrical 
tube [1]. 

The rate of the flow through a cylindrical tube of the radius R under a laminar 
flow is [1] 

4 4π π
8 8
R p R P

lν ν
∆

=
                      

(116) 

Here P p l= ∆  is the difference of pressure per unit of the tube length. 
For the stationary flow of a viscous fluid through a round tube of the radius R 

due to the viscosity there is a radial dependence of the velocity ( )u u r=  that is 
smaller near the tube wall than on the axis. As the boundary condition let us take 
the adherence condition 

( ) 0,u r r R= =                       (117) 

The equation of the momentum diffusion for an incompressible fluid in the 
cylindrical coordinates is written as 

u uu r P
z r r r

η
ρ

∂ ∂ ∂ − = ∂ ∂ ∂                     
(118) 

The velocity u does not depend on z, then 0u z∂ ∂ =  and this equation is 
brought to the form 

ur P
r r r
η ∂ ∂ − = ∂ ∂                       

(119) 

The solution of this equation is 

2
4 5ln

4
Pu r c r c
η

= + +
                    

(120) 

Here 4c  and 5c  are the arbitrary constants, from the limiting condition of 
the velocity it follows that 4 0c = . 

The value of the arbitrary constant 5c  is determined from the boundary 
condition (117). 

In a general case, it is necessary to assign the momentum diffusion into the 
tube wall 

r Ru ατ
=
=                         (121) 

Here τ  is the shear stress on the tube wall caused by the momentum 
diffusion into the tube wall, α  is the proportionality coefficient otherwise 
called the friction coefficient. This variant of the boundary condition is fulfilled 
when “slipping” of the fluid along the tube wall takes place. From (117) one 
obtains 
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2

5 4
PRc
η

= −
                        

(122) 

Finally, (120) is presented as 

( ) ( )2 2

4
Pu r R r
η

= −
                     

(123) 

which completely coincides with the classical distribution of the velocities 
across the section of the tube [1]. The flow rate along the tube is determined by 
integrating (123) with respect to the tube section 

( )
2π 4

0 0

πd d
8

R Ru r r Pϕ
η

=∫ ∫
                    

(124) 

The relations (116) and (124) coincide, which means that in the experiments 
on the measurement of the viscosity coefficient it is the coefficient of the 
momentum diffusion which is determined rather than that of viscosity. 

Coefficients of the momentum diffusion and thermal conductivity. The 
relation of the viscosity coefficient to that of thermal conductivity is called the 
Prandtl number [1]. The mechanism of the momentum diffusion and the heat 
transfer is ensured in the same way—by the chaotic motion of the gas molecules 
and their collision. On the average for a monoatomic gas a kinetic energy of 
kT/2 falls at one degree of freedom and 3kT/2 at three degrees of freedom, with 
the energy, i.e. the heat transferred by all three degrees of freedom. Unlike the 
heat transfer, the momentum has a definite direction, which is that of the flow of 
a fluid. The chaotic motion in this direction does not affect the transfer of the 
momentum that is transferred in the deterministic process. So only two 
directions remain for the diffusion. Therefore, the Prandtl number for 
monoatomic gases should be 2/3, which is really observed [7]. 

Superfluidity of helium. Fluid helium at a temperature below 2.6 K possesses 
superfluidity [8], i.e. the ability to flow at a large velocity through capillars, 
which means that the viscosity coefficient is either by orders of magnitude less 
than the known values or zero. 

The diffusion mechanism of viscosity is responsible for superfluidity. At low 
temperatures the thermal energy of 3kT/2 falling at a helium atom is small and 
by the laws of quantum mechanics the energy transfer is possible only by quanta. 
If the energy transferred is less than a quantum, then the momentum cannot be 
transferred from a streamlined body to helium atoms, which rules out its 
diffusion, which in turn means that the coefficient of cohesion in (95) 0α = . 
Superfluidity is not the property of helium nor a phase transition leading to the 
disappearance of viscous stresses that do not exist in nature. It is the feature of 
the interaction of helium atoms with the atomic lattice of the surface at low 
temperatures. 

One would suggest an alternative variant, e.g. at low temperatures the 
momentum cannot be transferred among the helium atoms and a streamlined 
surface, in this case, makes no difference, i.e. one deals here with a phase 
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transition. However, this variant does not work because at the above 
temperatures helium possesses thermal conductivity and the momentum is 
really transferred among the atoms. 

In hydrodynamics d'Alembert's paradox is well-known: from the potential 
solution of the problem of the flow around a sphere by an incompressible ideal 
fluid it follows that the resistance of the flow is zero. However, helium does not 
manifest superfluidity in flowing around and the hydrodynamic resistance does 
exist. Superfluidity does not rule out the formation of stalled flows of helium, 
which produces resistance, according to the laws of hydrodynamics. 

To explain superfluidity, a hypothesis [8] was suggested according to which at 
a temperature of 2.6 K in fluid helium there occurs a phase transition separating 
into two phases: a superfluid one with zero viscosity and a usual one, viscous. As 
it follows from the present article this is a mistake because there is no need to 
involve phase transitions to consider superfluidity. 

5. Discussion 

In theoretical hydrodynamics there exist serious delusions preventing one from 
theoretical understanding of flows. 

1) Mathematical nonuniqueness of the solution of hydrodynamic problems. 
The classical potential solution of the problem of flowing around a sphere is not 
unique, there exist a nonpotential solution different from the classical one. 

The nonuniqueness poses a problem of formulating additional conditions for 
choosing a physically realisable solution. Here the principle of the minimum 
total energy of a system, i.e. the sum of the kinetic and potential energies, is 
suggested as the above condition. The kinetic energy is determined by the 
momentum of a flow, and the potential one by the pressure for an incompressible 
fluid and the enthalpy for a compressible one. For the potential flow of an 
incompressible fluid the total energy density is the Bernoulli potential. 

From the viewpoint of computational mathematics, nonuniqueness can result 
in the divergence of computational algorithms. Here the additional conditions 
that will depress the divergence and ensure a physically realisable solution are 
also important. 

2) The neglect of the integral characteristics of the flow and the attention fixed 
only on the differential ones. As a result, the inertial properties of the flow are 
ignored in the consideration, and for this reason the mechanism of the 
formation of vortices by stalled flows is not clear. The formation of vortices is 
erroneously explained by the nonexisting viscous stresses. As a result, there is no 
mathematical theory of stalled flows even for the simplest problems, such as 
flowing around an orthogonal plate or a sphere. The consequence is also the 
absence of a consistent theory of turbulent flows. 

3) The use of the viscous stresses that are fictious forces. They enter the 
equation of motion but do not exist in reality. 

The momentum diffusion leads to the necessity of including into the continuity 

https://doi.org/10.4236/wjm.2018.89029


A. Ivanchin 
 

 

DOI: 10.4236/wjm.2018.89029 414 World Journal of Mechanics 
 

equation the momentum sources caused by diffusion. The fictitious viscous stresses 
in the equation of motion result in the failure of the solution of hydrodynamic 
problems. For instance, it is impossible to obtain an adequate value of the profile 
of the velocities of a viscous fluid flowing around a flat plate. 

The fictitious viscous stresses lead to the erroneous theory of the superfluidity 
of helium. Superfluidity is considered a phase transition under which the viscous 
stresses disappear. However, since they do not exist in nature, there is no phase 
transition. At low temperatures due to the small energy falling at a helium atom, 
the transfer of the momentum from the streamlined wall to helium atoms 
becomes impossible due to quantum effects. Superfluidity is manifested only 
during soaking of helium through capillars. In flowing around profiles there 
exists the hydrodynamic resistance as in usual fluids caused by the stalled 
character of the flow. Viscosity does not work here. 

Then the fact that the Prandtl number for monoatomic gases is 2/3 finds the 
explanation. 

The mathematical description of the flow of a viscous medium should include 
• the equation of the momentum diffusion; 
• the continuity equation that includes the diffusion momentum as the volume 

momentum source; 
• the equation of motion without viscous stresses; 
• the energy equation. 

One should also take into account the integral characteristics of the flow and 
find the regions forming vortices. One should take into account nonuniqueness 
of the solution of a hydrodynamic problem and the existence of nonpotential 
solutions. It is necessary to include some additional conditions along with the 
initial and boundary ones to find a physically realisable solution, e.g. the 
condition of the minimum total energy of a system. 

From the point of view of mathematics, there always exists a continuous 
solution of the continuity equation. However, there also exist broken solutions 
in which the region of the flow is divided into subregions inside which the flow 
is continuous, and on their borders there is a break of the tangent to the 
boundary of the velocity component. A broken solution can have the total 
system energy lower than the continuous one and, as a result, the latter solution 
is realised. 

The above points should be taken into account in the theoretical solution of 
hydrodynamic problems and the development of the computational algorithms 
of their solution. 

6. Conclusion 

The analysis made here shows that at present in hydromechanics there exist 
serious gaps and erroneous notions both in the physical and mathematical 
aspects. These drawbacks block the application of theoretical hydrodynamics for 
the solution of practical problems and understanding of the processes related to 
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the flow. To avoid them, one should approach more strictly to the theoretical 
comprehension of the phenomena both from the viewpoint of physics and 
mathematics. For instance, if there is no proof of the uniqueness of the obtained 
solution of a physical problem, one should try to find another solution or a proof 
of the uniqueness. In physics it is necessary to keep watch on the correctness of 
the applied concepts. One should not use fictitious values as is the case of 
viscous stresses for a gas. 
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