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Abstract 
We have presented the evolution of angular momentum and orbital period 
changes between the component spins and the orbit in close double white 
dwarf binaries undergoing mass transfer through direct impact accretion over 
a broad range of orbital parameter space. This work improves upon similar 
earlier studies in a number of ways: First, we calculate self-consistently the 
angular momentum of the orbit at all times. This includes gravitational, tides 
and mass transfer effects in the orbital evolution of the component structure 
models, and allow the Roche lobe radius of the donor star and the rotational 
angular velocities of both components to vary, and account for the exchange 
of angular momentum between the spins of the white dwarfs and the orbit. 
Second, we investigate the mass transfer by modeling the ballistic motion of a 
point mass ejected from the center of the donor star through the inner La-
grangian point. Finally, we ensure that the angular momentum is conserved, 
which requires the donor star spin to vary self-consistently. With these im-
provements, we calculate the angular momentum and orbital period changes 
of the orbit and each binary component across the entire parameter space of 
direct impact double white dwarf binary systems. We find a significant de-
crease in the amount of angular momentum removed from the orbit during 
mass transfer, as well as cases where this process increases the angular mo-
mentum and orbital period of the orbit at the expense of the spin angular 
momentum of the donor and accretor. We find that our analysis yields an in-
crease in the predicted number of stable systems compared to that in the pre-
vious studies, survive the onset of mass transfer, even if this mass transfer is 
initially unstable. In addition, as a consequence of the tidal coupling, systems 
that come into contact near the mass transfer instability boundary undergo a 
phase of mass transfer with their orbital period. 
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1. Introduction 

Double white dwarf (DWD) binaries provide an interesting key to understand a 
variety of areas in astrophysics. Their birth properties provide insight into the 
evolution of their progenitors [1], as well as the dynamics of common envelope 
evolution [2]. From a population standpoint, the DWD binary systems may 
make up the largest fraction of the close binary stars in our Galaxy. 

Following common envelope evolution, DWD binaries may emerge with a 
sufficiently short orbital period and rotational angular velocities, allowing gravi-
tational radiation (GR), tides and mass transfer to drive the stars closer together 
on an astrophysically interesting time scale. Prior to the onset of mass transfer, 
their orbit will be shrink due to the effect of angular momentum via GR. Tidal 
forces are thought to synchronize the spin and orbital periods of the white 
dwarfs by the time that the white dwarfs are close enough together to begin 
transferring mass ([3] [4]). 

As the degenerate components of a DWD binary orbit continues to shrink via 
GR, the less massive component will inevitably fill its Roche lobe and begin 
transferring matter to its companion and the system will enter into a stable 
semi-detached state. In the case where the mass transfer is stable, such systems 
may be identifiable as AM CVn ([5] [6]), which have extremely short orbital pe-
riods, but we still lack a uniform theoretical understanding of the detail nature of 
those binaries for all possible mass ratios, orbital parameters and origins. How-
ever, one would like our theoretical understanding to be such that given a white 
dwarf binary of arbitrary masses and compositions at the time that the less mas-
sive component gets into contact, one could reconstruct the previous evolutio-
nary pathways and the subsequent evolution to merger, tidal disruption or stable 
mass transfer. 

Mass transfer in close DWD binaries has generally been taken to be stable if 
the mass ratio is smaller than 0.8. However, [6] identified the interesting possi-
bility of the mass transfer stream that directly impact the surface of the accretor 
during this phase. The nature of it may depend both on the structure of the do-
nor and the mass ratio of components. Thus, a stream of matter is pulled from 
the donor star through the inner Lagrangian point. If the matter stream does not 
impact the surface of the companion star, then the mass lost from the donor is 
expected to settle into a disc [7] and the division between the disc accretion and 
direct impact has been studied before ([8] [9] [10]). Torques exerted between the 
discs and the component white dwarfs allow angular momentum stored in the 
disc to be transferred back to the orbit ([7] [11]). However, the life time of these 
systems is defined not by feedback of angular momentum to orbit, but by angu-
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lar momentum loss from the systems due to GR. If direct impact drives the sys-
tem apart, both [9] and [10] showed that a stabilizing accretion disk is likely to 
be created. If direct impact mass transfer increases the mass ratio and decreases 
the orbital period, the mass transfer rate may eventually become dynamically 
unstable, which can result in a merger. 

As we have showed in [12] henceforth called paper I that mass transfer phase 
in binary stellar evolution can either decrease or increase the orbital period of 
the system, crucially depending on the exchange of angular momentum between 
the binary components, the orbit and the component spins. In order to calculate 
the angular momentum changes during mass transfer, both the studies of [9] 
and [10] utilize a numerical prescription based on [13] approximations to more 
accurately determine the flow of angular momentum between the component 
spins and the orbit. In that formulation, it is assumed that the angular momen-
tum transferred from the orbit to the spin of the accretor is exactly equal to the 
angular momentum of the ballistic particle in a circular orbit around the donor 
at its average radius during its motion from donor to accretor1. The present 
study will building upon these studies and crucially depending on the changes in 
the orbital angular momentum, the period and radius of the donor stars and that 
of its Roche lobe in response to the mass transfer, providing direct ballistic inte-
grations of the mass transfer stream using an approximation adopted from the 
[13]. This led us to extend the analytical and numerical solution of [14] for the 
time dependent behavior of the mass transfer by relaxing most of the assump-
tions made to provide the problem manipulable. Here, we retain the simplifying 
assumption of Roche lobe calculation, but allow all the binary parameters to vary 
self-consistently. 

The aim of this paper is to determine the evolution of angular momentum and 
orbital period changes between the component spins and the orbit in close 
DWD binaries throughout GR, tides and mass transfer effects by providing dif-
ferent range of orbital parameters and stellar models in a full self-consistent 
manner. In particular, we examine the comparison between numerical and ana-
lytical solutions to determine these systems whether, and under what circums-
tances, dissipative tidal coupling of the accretor to the orbit, through direct im-
pact, can stabilize the dynamical mass transfer. This paper is organized as fol-
lows: 

In Section (2) we develop the basic differential equations which governing the 
evolution of orbital parameters, assuming mass transfer through some 
well-specified model(s) and the basic assumptions with dynamical stability of 
mass transfer and discuss the difference between this method and the method 
utilized by the previous studies. In Section (3) we find and discuss the numerical 
solutions of the systems. In Section (4) we illustrate the results and discussion of 
this paper in comparison to the previous studies. Finally our main conclusion is 
summarized in Section (5).  

 

 

1[9] assume that the donor remains tidally locked, while [10] does allow for variation in the spin of 
the donor, but does not do so in a self-consistent manner. 
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2. Mass Transfer and Evolution of Orbital Parameters  
2.1. Basic Assumptions 

In this paper, we consider a close binary system of two white dwarfs with masses 
Md and Ma, volume-equivalent radii of Ra and Rd, and uniform rotational angu-
lar velocities of aΩ  and dΩ  with axes perpendicular to the orbital plane for 
the accretor and donor, respectively2. We assume that the mass of each star is 
distributed spherically symmetrically. The binary is assumed to be in an initially 
circular keplerian orbit with orbital period, Porb. The radius of each object is as-
signed following Eggleton’s zero-temperature mass radius relationship of [13]. 
We chose the Porb of the orbit such that the volume-equivalent radius of the mass 
of the donor (Rd) is equal to the volume-equivalent radius of its Roche lobe (RL) 
as fit by [15]. Both the Md and Ma initially rotate synchronously with the orbit3.  

2.2. Method  

In this paper, we perform a Monte Carlo integration to calculate the vo-
lume-equivalent Roche lobe radius [16] over a two dimensional grid in Porb and 
mass ratio, q parameter space. We also apply Runge-kutta methods for numeri-
cally estimating solutions to basic differential evolution equations of obit, which 
will be discussed in Section (3). Hence, we determine the set of orbital parame-
ters and their differential equations which governs the evolution of angular mo-
mentum and orbital period changes due to direct impact accretion in  
close DWD binaries, using the Eggleton function for the Roche lobe, , ggL ER  for  

calculating its size, the dynamical mass transfer rate, and the corresponding 
synchronization time scales for different cases, under certain restrictive ap-
proximations which determine the strength of tidal coupling. We now have all 
the steps in place to solve the evolution of these systems. 

Our basic calculations are performed using a Monte Carlo integration method 
in a stationary inertial reference frame located at the initial center of mass of the 
binary system, which solving ordinary differential equations of orbital parameters 
at equivalent points. Following the above assumptions, we can investigate the out-
comes for these systems with total mass, M and the orbital parameters such as Porb:  

1 22 34π ,orb
aP

GM
 

=  
 

                         (1) 

where G and a are the universal gravitational constant and semi-major axis, re-
spectively, and taking the donor to be the less massive star, the one that fills its 
Roche lobe.  

2.3. Evolution of Angular Momentum 

As we have investigated in [12], as the matter is being transferred between the 

 

 

2Throughout this paper, the subscripts “a” and “d” will correspond to the accretor and donor, re-
spectively. 
3If the donor rotates non-synchronously, the Roche lobe radii can be calculated as given in [16]. 
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components in the binary systems, not only the mass ratio, q, but also the Porb 
will be changed due to angular momentum redistribution between the components 
of two stars. Then the total angular momentum, totJ , of the binary system is 
given by:  

( ) ( )
2

,
1

;   ,tot orb spin i
i

J J J i a d
=

= + ∈∑                 (2) 

where orbJ  is the orbital angular momentum, which is given by:  
1 2

,orb a d
GaJ M M
M

 =  
 

                     (3) 

and the spin angular momenta of the accretor and donor are 
2

,spin a a a a aJ K M R= Ω  and 2
,spin d d d d dJ K M R ω= , respectively, where Ka and Kd are 

dimensionless constants depending upon the internal structure of the accretor 
and donor, respectively. 

Here, we express the total angular momenta in terms of the rotational rates of 
the accretor, af  and donor, df  relative to the orbital angular velocities of the 
stars. Thus the rotational angular velocities of the stars, iΩ  can be written in 
terms of the rotational rates and the angular velocity of the circular orbit, orbΩ  
is given by  

.i i orbfΩ = Ω                          (4) 

Then we can rewrite the total angular momentum of the binary system as:  

( )
2

2

1
.tot a d i i i i orb

i

GaJ M M K M R f
M =

= + Ω∑              (5) 

The form of the orbJ  term adopted above assumes the binary revolves at the 
Keplerian angular velocity of the circular orbit, 2 3

orb GM aΩ = , which is a good 
approximation if the stars are centrally condensed. 

Here, we introduce three effects that change the orbJ , orbP  and iΩ  over 
time: mass transfer (MT), tides, and GR. Assuming each effect is independent of 
the others, we can then write the change of the orbital angular momentum as the 
sum of the change due to each of the above effects:  

( )
2

, , , ,
1

,orb orb MT orb GR orb tides i
i

J J J J
=

= + +∑                   (6) 

which is known as the orbital angular momentum balance equation. To deter-
mine the total change in the angular momentum, then, we simply need to write 
the change due to each of the above effects. A system of two point masses orbit-
ing around each other, in circular orbits, radiates gravitationally ([17]). Then the 
change in orbital angular momentum due to GR for a circular orbit is given by:  

3

, 5 4

32 .
5

a d
orb GR orb

M M MGJ J
c a

 
= − 

 
                 (7) 

Prior to the onset of mass transfer, we assume that the spins and orbit to be 
synchronized, the binary orbit will shrink and the orbP  of the system will de-
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crease due to the effect of angular momentum via GR as seen in Equation (7). 
During this time, tidal coupling will act to circularize the binary as well as syn-
chronize the spins of the stars with the orbit. As mass transfer begins, angular 
momentum will be exchanged between the spin of the component stars and the 
orbit. This will ultimately affect the dynamical stability of the mass transfer 
process. As in [10], we express the exchange of orbital angular momentum due 
to tides as:  

( )
22

,
1

1 ) .i i i
orb tides i orb

i i

K M RJ f
τ=

 
= − Ω 

 
∑                 (8) 

The term in the bracket of Equation (8) represent the torque due to dissipative 
coupling upon the accretor and donor. Hence, torques are parameterized in 
terms of the synchronization time scales ([18]) of the accretor, aτ , donor, dτ  
and are linearly proportional to the difference between the component and the 
orbit spin, which determines the strength of tidal coupling relative to MT and 
GR. We assume that the tidal synchronization time scales change because the 
masses and stellar radii relative to the orbital period are changing. As [10], we 
explore two different values for the synchronization time scale at contact: 

1510 yearsτ =  (very weak tidal coupling) and 10 yearsτ =  (very strong tidal 
coupling), which may be a better approximation for systems with short orbital 
periods, as we consider in our analysis. 

In this work, we are only interested in direct impact mass transfer and orbital 
changes due to ballistic integrations where the particle impacts the surface of the 
accretor within one orbital period. In this case, the evolution of orbital parame-
ters is determined by the differential equations, which will be given in Section 
(2.4). If the particle accretes within one orbital period, we classify this as a direct 
impact. If the particle does not accrete within one orbital period, it is likely that 
the ejection stream from the donor will self-intersect, resulting in the eventual 
formation of an accretion disk. 

To determine ,orb MTJ , we use the ballistic mass transfer calculations of [19] to 
examine the instantaneous effect of mass transfer in close DWD binary systems. 
This method uses a fully self-consistent, conservative, ballistic model of the 
transferred mass to determine the orbital parameters of the system after a single 
mass transfer event. Then, the change in the orbital parameters per unit mass 
that results is directly proportional to the mass transfer rate of our evolving 
DWD, dM :  

,
, ,orb b

orb MT d
P

J
J M

M
∆ 

=  
 

                        (9) 

where ,orb bJ∆  is the change in the orbital angular momentum for a close DWD 
binaries as calculated by the above ballistic model for a single mass transfer 
event ejecting a particle of mass PM . In this method, changes in ,orb MTJ  are 
calculated at each time step by integrating the three-body system consisting of 
the two stars and the discrete particle representing the mass transfer stream. The 
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change in the ,orb MTJ  per unit mass transferred is independent of the mass of 
the ejected particle as long as ,P d aM M M .  

2.4. Differential Equations for the Evolution of Orbital  
Parameters 

As we investigated the rate of change of orbital angular momentum in Section 
(2.3), we develop the equations for the evolution of orbital period and the rota-
tional angular velocities of the stars. It follows from Equation (3) and [12] that  

( ) 11
3

orb d orb

orb d orb

J M Pq
J M P

 
= − + 

 

  

                   (10) 

for conservative mass transfer ( )0M = 4 and d

a

Mq
M

= . Since a dM M= −  .  

Hence for the conditions M = constant and Jorb = constant it then follows that:  

( )3 1 0.orb a

orb d

P M q
P M

 
= − − > 

 

 

                    (11) 

2.4.1. Evolution of the Orbital Period 
We examine the changes of the orbP  due to dynamical mass transfer, tides and 
GR. We assume that each effect is independent, and write the total change in the 

orbP  due to each of the above effects, respectively, as:  

( )
2

, , , ,
1

.orb orb MT orb GR orb tides i
i

P P P P
=

= + +∑                   (12) 

To calculate ,orb MTP , we utilize the model for mass transfer developed in [19]. 
Using this models, we calculate the time rate of change of orbP  due to mass 
transfer rate as:  

,
, .orb b

orb MT d
P

P
P M

M
∆ 

=  
 

                       (13) 

Here, ,orb bP∆  is the change in the orbital period for a close DWD binaries as 
calculated by the above ballistic model of [19] as described in Section (2.3) for 
the evolution of orbital angualar momentum. 

Next we calculate ,orb tidesP  and ,orb GRP . As noted by [9] and [10], we used a 
different metric for changing the spin angular momentum due to tides of Equa-
tion (8). Hence we develop ,orb tidesP  from that angular momentum change. 
Holding the donor mass constant ( 0M = ) for the final two terms of Equation 
(12) we can combine Equation (6) with Equation (11) to obtain:  

( ), , ,

1 ,
3orb tides orb GR orb orbtides GR

orb

J J P J
P

 
+ =  

 
               (14) 

where ( ) ,orb tides GR
P  is the total change of the orbital period due to the combined  

effects of tides and GR. Assuming as before that changes to the orbital period 
due to tides and changes due to GR are independent we can rewrite the above as:  

 

 

4Recall that we assume the orbit remains circular in this paper. 
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, ,
, , .

3 3
orb tides orb GR

orb tides orb GR orb
orb orb

P P
J J J

P P
 

+ = +  
 

 

               (15) 

Using Equation (3), Equation (7), and Equation (8), it follows that:  
22

,
1

3
,orb i i i

orb tides i
i i

P K M RP
GaM

ω
τµ =

 
=  

 
∑                (16) 

and  
3

, 5 3

96 .
5

a d
orb GR

M M MGP
c a

= −                    (17) 

From Equation (4) and Equation (8) we can re-write Equation (16) as  

( )
( ), 1 32

3 ,orb tides a d

orb

P A D
P Mµ

= +                 (18) 

where  
2

,a a a a orb
a

a orb

K M RA
τ

 Ω −Ω
=  

Ω 
 

and  
2

.d d d d orb
d

d orb

K M RD
τ

 Ω −Ω
=  

Ω 
                  (19) 

Finally, inserting Equation (13), Equation (17), & Equation (18) into Equation 
(12) leads to the equation for the dynamical evolution of the orbital period with 
time as:  

( )
( )

,
,1 32

3
.orb b a d

orb d orb GR
P orb

P A D
P M P

M P Mµ

∆ + 
= + − 
 

             (20) 

2.4.2. Evolution of the Rotational Angular Velocities of the Stars 
We derive the equations for the evolution of the components spins, aΩ  and 

dΩ . Thus the changes in both components can be defined as:  

, , , .i i MT i tides i GRΩ =Ω +Ω +Ω                     (21) 

Analogous to MTP  in Equation (13), the change in iΩ  due to mass transfer, 

,i MTΩ  can be expressed as:  

,
, .b i

i MT d
P

M
M
∆Ω 

Ω =  
 

                      (22) 

Here, ,b i∆Ω  is the change in the rotational angular velocities of the star i re-
sulting from a single mass transfer as described in Section (2.3). As in Equation 
(4), the spin angular momentum of each component can be written as:  

2
, ,spin i i i i iJ K M R= Ω                      (23) 

where i i orbfΩ = Ω . Hence, we consider that the tidal forces exist to redistribute 
angular momentum, working to keep the spins of the donor and accretor syn-

https://doi.org/10.4236/ijaa.2018.83020


S. H. Negu, S. B. Tessema 
 

 

DOI: 10.4236/ijaa.2018.83020 283 International Journal of Astronomy and Astrophysics 
 

chronous with the orbit ( 1if = ). Now we can determine ,i tidesΩ  and ,i GRΩ  by 
differentiating Equation (22) with respect to time assuming the mass held con-
stant: 

( )2
, , ,spin i i i i i tides i GRJ K M R= Ω +Ω    

( )22 .
3

i
i i i tides GR

orb

K M R P P
P
Ω

− +                    (24) 

The second term in Equation (24) depends only upon changes due to tides 
and GR. Since we do not include any GR effect on the spin angualar momentum 
of the components, conservation of angular momentum indicates that any 
changes in the spin angualar momentum of a component must be equal and 
opposite to the changes in the orbital angular momentum of the system due to 
tides acting on that component. Using Equation (4) and Equation (8), we have:  

( )
22

,
1

.i i i
spin i i orb

i i

K M RJ
τ=

= − Ω −Ω∑                  (25) 

By combining Equation (24) and Equation (25) we can derive the expression 
for , ,i tides i GRΩ +Ω   as:  

( )
( ), , 1 32

32 ,
3

a di i
i tides i GR GR

i orb orb

A D
P P M

β
τ µ

 +Ω Ω  Ω +Ω = − − +
 
 

          (26) 

where  
3

5 3

96
.

5
a d

GR
G M M M

c a
β =                      (27) 

Using Equation (21), Equation (22) and Equation (26) we obtain the equa-
tions for the evolution of aΩ  and dΩ  as: 

, 2
3

b a a a
a d

P a orb

M
M Pτ
∆Ω  Ω Ω

Ω = − + 
 

   

( )
( )1 32

3
,a d

GR

orb

A D

P M
β

µ

 + − +
 
 

                    (28) 

and  

, 2
3

b d d d
d d

P d orb

M
M Pτ
∆Ω  Ω Ω

Ω = − + 
 

   

( )
( )1 32

3
,a d

GR

orb

A D

P M
β

µ

 + − +
 
 

                    (29) 

2.5. Mass Transfer Rate  

The nature of mass transfer and its stability is very important in a close DWD 
binaries. It is rooted in a similar treatment of mass transfer under consequential 
angular momentum losses via GR [20]. Whether, once started, mass transfer will 
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proceed in a stable or dynamically unstable manner depending on the response 
of the mass losing donor star and its Roche lobe to the mass transfer. For all 
types of donor star, the mass transfer rate is a strong function of the depth of 
contact, defined here as the amount by which the donor overflows its Roche lobe 
as:  

,d LR R∆ = −                          (30) 

where dR  is the radius of the donor and LR  is the radius of its Roche lobe. 
The mass loss rate from the donor monotonically increases with ∆ . The way in 
which the mass transfer rate varies with ∆  has been investigated in many ana-
lyses (see, for example, [21] [22] [23]). The correct way to treat this is to com-
pute the stellar structure ([23]). In accordance with [9], we approximate the 
mass transfer as adiabatic ([24]). In the adiabatic response, which for a white 
dwarf donor gives a mass transfer rate of  

( ) 3, , , ,d a d dM f M M a R= − ∆                   (31) 

for 0∆ > , and zero for 0∆ < . Combining results from [24] [25] and [22], the 
function f is given by:  

( ) ( )5 23 23

2

58π, , , ,
9

e ne
a d d

orb

mGmf M M a R
Ph

µ′ = Λ 
 

         (32) 

where ( ) ( ) 1 23 23 5 1d L d d dM r R a aµ
−

 Λ = −  , em  is the mass of an electron, 

nm  is the mass of a nucleon, eµ′  is the mean number of nucleons per free elec-
tron in the outer layers of the donor (which we will assume to be two) and µ  
and da  are parameters associated with the Roche potential  

( )3 3
1 1

1   and   .
1

d
d

a d L L

M a
M M X X

µ µ
µ

−
= = +

+ −
          (33) 

where, 1LX  is the distance from the center of the donor to the inner Lagran-
gian point of the donor, in units of the semi-major axis, a.  

2.6. Roche Model 

In the case of [9], where the rotational angular velocity of the donor is fixed to 
the orbital velocity and the orbit is circular throughout, the shape and volume of 
the Roche lobe depends only upon the mass ratio and the semi-major axis of the 
system. For higher mass ratio, stars become more and more deformed. Thus 
mass transfer is dynamically unstable. In that case, we introduce the effective ra-
dius, Lr , of the Roche lobe, the most widely used approximation being from 
[15],  

( )
2 3

2 3 1 3

0.49 ,
0.69 log 1L

qr
q q

=
+ +

                  (34) 

effectively, it is a tidal radius where mean density in lobes are equal:  

,L LR r a=                           (35) 

for 0.1 1q≤ ≤  and so with the notation of [9], we have  
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2 ,
3L

d orbL
r

L d orb

M PR
R M P

ζ= +
 

                    (36) 

where 
Lr

ζ  takes values between 0.33 and 0.48 is the logarithmic derivative of 

Lr  with respect to dM  for both [26] and [15] small q approximation for the 
Roche lobe radius. In the same spirit we write the logarithmic time derivative of 
the donor radius, ( ),d d dR R M t≡  as:  

,d d
ad

d d

R MD
R M

ζ= +
 

                     (37) 

where ( ) ( )( )log log
d

d M
D R t= ∂ ∂ ∂ , represents the rate of change of the donor  

radius due to intrinsic processes such as thermal relaxation and nuclear evolu-
tion, whereas adζ  usually describes changes resulting from adiabatic variations 
of dM  [27]. If the donors are degenerate as in the white dwarf case, adζ  is 
simply obtained from the equilibrium mass radius relationship for the donor5. 
As adζ  and 

Lr
ζ  are both monotonic functions of mass loss, it is a sufficient 

condition that mass transfer be stable at the onset of Roche lobe overflow in or-
der to ensure dynamical stability of mass transfer, which depends on the tidal 
coupling between the accretor and the orbit undergoing direct impact accretion. 
The larger adζ , the more stable the mass transfer is. To consider stability in de-
tail, we will use the linear stability analysis following ([11] [28]).  

3. Numerical Solutions 

We integrate numerically the orbital evolution Equation (2), Equation (4), Equa-
tion (6), Equation (11), Equation (20), Equation (28), Equation (29), Equation 
(31), Equations (35)-(37) using 6th and 8th order Runge-Kutta ordinary differen-
tial equation solver [29], allowing the binary parameters to adjust 
self-consistently. We consider that the orbital angular momentum of the system 
are conserved throughout the integration over the entire parameter space. Spe-
cifically, we compute the angular momentum and orbital period changes be-
tween the component spins and orbit in close DWD binaries undergoing mass 
transfer through direct impact of the transfer stream, allow the binary separation 
to change and compute the values of adζ  as it evolve. Here, we use Eggleton’s 
approximation of the zero-temperature mass radius relationship cited by [13] 
and [9], which is a good approximation for systems containing white dwarfs. 
Also, a adζ  significantly different from −0.33 clearly affects the stability and 
evolution of the systems at the onset of mass transfer, and can lead to shrinking 
orbits even if the mass transfer is stable with 0dM = . In our subsequent analy-
sis, where we are concerned about the long term integrations of the orbital  
evolution equations, we set ( )log 0

dd M
R t∂ ∂ =  and use the zero-temperature 

mass-radius relationship. 

 

 

5The radius of each object is assigned following Eggleton’s zero temperature mass radius relation 
([13]). We assume that both the donor and accretor initially rotate synchronously with the orbit. 
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In our integrations, we need to either assume or determine from other as-
sumptions how the mass and angular momentum are redistributed in a close 
DWD binary system during mass transfer. This depends on the mode of accre-
tion appropriate for the binary considered: does the stream impact the accretor 
or is an accretion disk present; is the mass transfer sub-Eddington and conserva-
tive, or are mass and angular momentum being ejected from the system follow-
ing super-Eddington mass transfer. For most of the numerical integrations that 
follow, we use the appropriate rate of change of orbital angular momentum due 
to GR, MT and tides. However, if one is interested in the relatively rapid phases 
of dynamical mass transfer that follow contact and onset, then the qualitative 
properties of our integrated evolutions depend strongly on these assumptions. 

Figure 1 shows the evolution of the orbital period and angular momentum 
conservation with their spin angular momentum of the accretor and donor in 
close DWD binaries over the entire parameter space of interest for integrations 
that calculated using the Eggleton approximation for the Roche model. In this 
result, we are only interested in direct impact mass transfer where the particle 
impacts the surface of the accretor within the orbital periods. Compared to di-
rect impact accretion, disc accretion is provide a basic mechanism for redistri-
buting spin angular momentum in the accretor back into the orbit through tidal 
coupling in [7]. As a result, it is likely that once a system enters a phase of disc 
accretion it will remain in this phase or perhaps even become detached as the 
orbital period continues to grow and the mass ratio decreases due to continued 
mass transfer. Thus if a disk is formed at any point the integration stops and the 
system is assumed to be stable throughout its lifetime. 
 

 
Figure 1. The evolution of orbital period and angular momentum conservation with their 

,spin aJ  and ,spin dJ  over entire close DWD binary system, which obtained using the Eg-

gleton approximation from Equation (5) for the calculation of the Roche lobe overflow 
and rapid mass transfer stream. 
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As a system evolves, it is possible to pass back and forth through phases of 
mass transfer and phases of no mass transfer as the orbital period and the two 
masses change. If orbP  increases enough for mass transfer to stop altogether, the 
integration proceeds (with 0dM = ) until the action of GR shrinks the orbit suf-
ficiently for mass transfer to resume rather than the analytical one. We integrate 
over a period of 1.25 G yr. As in [9], if dM  less than 10.1 yrM −



 at any point 
during the integration, the integration continued and the system is desired as 
dynamically stable.  

In Figure 2 we show the approximate adiabatic mass radius exponent, adζ  
from Equation (37) using the Eggleton’s approximation of the zero-temperature 
mass radius relationship [13] for stars with initial masses from 0.12 0.78M M−

 

 
and the corresponding mass radius relations. These were calculated by assuming 
a constant mass loss rate of 5 110 yrM− −



. The large initial values for adζ  imply 
that the star has to lose very little mass to shrink significantly. This simply 
represents the fact that, in these systems, a large fraction of the envelope con-
tains very little mass.  

3.1. Angular Momentum and Orbital Period Changes Due to Direct  
Impact Accretion 

In this section, we investigate the numerical integrations for the change in the 
evolution of orbital angular momentum per unit transferred mass, which is in-
dependent of the mass of the ejected particle as long as P dM M  from Equa-
tion (9) following a single ballistic orbit as a function of the donor mass for white 
dwarfs undergoing direct impact mass transfer. Figure 3 shows the evolution of 
orbital angular momentum change per unit transferred mass, ,orb MTJ  and pe-
riod changes from Equation (9) and Equation (11), respectively, with the less 
massive donor and the massive accretor stars. Hence, we compared the results of 
 

 
Figure 2. Results of the approximate adiabatic mass radius exponents over the total mass 
of the system for evolved stars of initial masses 0.12M



, 0.14M


, 0.16M


, 0.24M


.  
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Figure 3. The ,orb MTJ  per unit transferred mass correspond to variations in the mass of 

accretor and mass ratios of the systems versus orbP . Here, in our calculation the region 

above the ,orb MTJ  shows the unstable mass transfer whereas the region below the dM  

shows the stable mass transfer. Hence, the dashed black line represents the analytical so-
lution between these stable and unstable systems. 
 
the ,orb MTJ  and dM  due to direct impact accretion with the orbP  and aM . As 
expected, our numerical results agree quite well to this analytic solution.  

In Figure 4 we investigate a single ballistic integration as a function of the 
masses of the donor and accretor. The solid blue and dashed black lines above a 
solid cyan line are a region corresponds to systems that undergo direct impact 
and reach stable configuration, while below this solid cyan line such as solid 
black and dashed red lines are a region corresponds to systems that undergo de-
formation. The solid cyan line between these two regions shows the analytical 
solution to this region, which was first derived and presented by [6] [9]. Thus, 
the change in the orbital angular momentum appears to become more positive 
with increasing donor mass. Following them, we calculate this line by taking the 
distance of closest approach for a ballistic integration given by [30]; as analyti-
cally fit by [6] and setting it equal to the radius of the accretor (as given by Eg-
gleton’s zero temperature mass radius relationship of [13]. In calculating this 
line, we assume the donor (also described by the same zero temperature mass 
radius relationship) completely fills its Roche lobe ([15]). 

Following the above consideration, we show the orbital angular momentum 
changes per unit transferred mass in the parameter space of close DWD binaries 
with a low donor mass are more likely to remain stable over long periods of time, 
while the majority of the parameter space is expected to be unstable. Thus, we 
further investigate these parameter space from deformation to direct impact 
where the orbital angular momentum decreases more rapidly than previous stu-
dies, which shown as in solid red line.  
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Figure 4. Result of a single ballistic integration as a function of the masses of the donor 
and accretor, which undergoing direct impact accretion from Equation (9).  

3.2. Evolution of Systems with Strong Tidal Coupling 

It is commonly assumed ([9]; but see also [10]) that the rotational angular veloc-
ity of the donor will remain synchronized with the angular velocity of the circu-
lar orbit. This is generally expected since Roche lobe overflow requires extreme 
tidal distortions in the donor star which act to synchronize its rotational angular 
velocity on short time scales. The accretor is generally not affected as strongly by 
tidal synchronization since, being more massive, it is not expected to be signifi-
cantly tidally distorted. Some tidal coupling between the donor and the orbit is 
generally assumed, though it is not expected to be strong enough to keep the ac-
cretor from becoming a rapid rotator. 

In Figure 5 we present the orbital parameters of the tides with initial tidal 
synchronization time scale of 10 yearsτ = : 1) the evolution of the rate of 
change of the spin angular momenta per unit transferred mass of the the donor 
( ,spin dJ , for 0.25dΩ = ) and accretor ( ,spin aJ , for 0.8aΩ = ) from Equation (25), 
2) the evolution of the rate of change of orbital angular momentum and period 
corresponds to the mass transfer rate from Equation (10) and Equation (31), re-
spectively, and 3) the effective Roche lobe radius of the donor stars, which shows 
the end evolution of Roche lobe overflow. In general, systems with a smaller 
mass conserve orbital angular momentum better than systems with a higher 
mass. Systems where the orbital angular momentum conservation is larger tend 
to be systems where the numerical integration runs for many orbits, allowing 
systematic errors in the numerical integration to accumulate. Even so, all sys-
tems presented in this paper conserve mass and orbital angular momentum to 
better than 1% throughout the entire evolution.  

4. Results and Discussion 

As we developed and discussed the basic equations for the evolution of orbital 
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Figure 5. Results of evolution for the orbital parameters of the tides generating body with 
initial tidal synchronization time scale of 10 yearsτ =  using the Eggleton approxima-
tion for the Roche lobe that can be calculated from Equation (8), Equation (10), Equation 
(25) and Equation (31). It shows the rate of change of orbital angular momentum be-
tween the donor and the orbit, i.e., the ,spin dJ , and ,spin aJ  correspond to the rotational 

angular velocities of the donor and accretor, respectively. Here, the rotational angular ve-
locity of the donor’s, 0.86dΩ =  remains synchronized to the rotational angular velocity 
of the circular orbit, 1.25orbΩ = . Hence, we assume the angular momentum that would 
be removed from the spin of the donor is immediately returned from the orbit.  
 
parameters in Sections (2) and (3), respectively, we compute the evolution over a 
grid in dM , aM  and orbP  parameter space for two different tidal synchroni-
zation time scales at contact: 1510  yearsτ =  and 10 yearsτ =  to determine the 
dynamical stability of various systems. We also elaborate the comparisons be-
tween numerical and analytical solutions for the evolution of angular momen-
tum and orbital period changes due to direct impact accretion in close DWD 
binaries by various stellar model approximations of mass transfer, with particu-
lar attention payed to the dynamical stability of these processes against runaway 
on synchronization time scales of the mass donating star.  

4.1. Evolution of Systems Using Eggleton Roche Lobe 

As we discussed in Section (3), Figure 5 shows the end result of systems with an 
initial synchronization time scale of 10 yearsτ =  using ,L EggR . Assuming that 
once a disc is reached, the system will remain stable for the remainder of its 
evolution, therefore we stop the integration once a disc is formed. However, with 
the exception of dynamically unstable systems, the evolution of all systems in 
this plot is stopped when the system reaches a phase of disc accretion. The time 
it takes to reach this phase of disc accretion varies from system to system. 

As noted by [10] that allowing the spin of the donor to vary and by including 
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the resulting effects of tidal coupling between the donor’s spin and the orbit, the 
number of stable systems increased compared to the analysis of [9]. Hence, the 
main difference between our analysis and that of [10] is in the treatment of the 
way we manage the evolution of angular momentum and orbital period changes 
during the direct impact accretion process. In observing the increase in the 
number of stable systems compared to the analysis of [10], we conclude that by 
utilizing a mass transfer treatment that allows the rotation rates corresponds to 
rotational angular velocities of both components to vary and self-consistently 
accounts for the exchange of angular momentum between the spins of the com-
ponents and the orbit, we are able to increase the number of stable systems. 

Stronger tidal coupling will allow more spin angular momentum from the ac-
cretor to be transferred back into the orbit, which correspondingly slower in-
crease in orbital period, causing the mass transfer rate and the rate of change of 
orbital angular momentum to decrease. This is to be expected and in agreement 
with the analyses of [10] and [9]. This results in an increase the stability of the 
systems in general. 

In Figure 5 we have presented the dynamically stable mass transfer with in-
creasing orbital period, but decreasing the mass ratio of the systems. However, 
in Figure 6 we have presented the dynamically unstable mass transfer with rapid 
increase in the orbital period for 1510  yearsτ =  is a direct result of the conser-
vation of angular momentum: the angular momentum lost during the spin down 
and mass loss of the donor is greater than the angular momentum gained by the 
accretor. The net decrease in spin angular momentum corresponds to an in-
crease in the orbital angular momentum, increasing the orbital period. The mass 
transfer rate increases rapidly as the mass loss from the donor causes the radius  
 

 
Figure 6. Same as in Figure 5, but with 1510  yearsτ =  using ,L EggR  for the Roche lobe 

calculation. In this result, we observe that the orbP  increases due to the effect of tides. As 

a result dM  increases rapidly and the accretor spin increases significantly.  
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to increase, even as the Roche lobe grows due to the increasing orbital period 
(see, e.g., Equation (30) and Equation (31)). Thus, we present the results of evo-
lution for the orbital parameters of the tides generating body with tidal synchro-
nization time scale of 1510  yearsτ = . Here, we acknowledge the main limitation 
of our result to assume that systems are stable once they reach a phase of disc 
accretion. Systems with the less masses of the donor stars parameter space of in-
terest here begin the integration in a disc phase, and are therefore labeled as sta-
ble. However, it is feasible that if these high donor mass systems were allowed to 
evolve through the initial disc phase, they would eventually become su-
per-Eddington and potentially dynamically unstable.  

4.2. Comparison of System Evolution with analytical Solutions 

We have computed different orbital parameters of close DWD binaries and their 
evolution with synchronization time scales using ,L EggR . Hence, for  

1510  yearsτ = , the system is dynamically unstable and for 10 yearsτ =  the sys-
tem is stable, but passes through a phase of super-Eddington accretion. In this 
section, we compare the analytical solutions of the various orbital parameters of 
these systems with the numerical solution that we investigated in Sections (3) 
and (4). 

The rotational angular velocities of the component white dwarfs remain closer 
to synchronize. In our work, when we apply the ,L EggR , the mass transfer rate 
will continue to increase until tides have transferred sufficient angular momen-
tum from the spin of the components to the orbit to expanded the orbit and de-
crease the mass transfer rate. Thus, the mass transfer rate is decreased and tides 
continue to redistribute angular momentum between the component spins and 
the orbit (see, Figure 5). In Figure 7 we show the evolution of the mass radius 
relationship using the Eggleton approximation for the Roche lobe calculation. 
We also determine the evolution of the orbital period changes on a much longer 
time scale for the ,L EggR  numerical solution than the analytical solution. This is 
due to the fact that, as mass transferred from the donor to the accretor, the mass 
ratio q and the mass of the donor decreases relative to the orbit and the radius 
and mass of the accretor increases. These were calculated by assuming the con-
stant mass loss rate of 5 11.25 10 yrM− −×



. 
In Figure 8 we show the evolution of orbital parameters (i.e., the mass of the 

donor as a function of mass ratio) due to direct impact accretion. Hence, the 
solid blue line also indicates the deformed donor star at different moments in 
time. The solid green line show the evolution of orbital parameters for both 
synchronization time scales over which the mass transfer rate changes in Equa-
tion (31) for the non-deformed donor star whereas the dotted gray line is the 
deformed donor star and it is analytical solution, wich shows the evolution of the 
Roche lobe overflow. In general, the peak of solid gray, red, green, and blue lines 
indicate the evolution of the Roche lobe overflow in close DWD binaries 
through direct impact.  
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Figure 7. Result of the comparison between the numerical integrations and analytical so-
lution for the evolution of the Roche lobe radius as a function of the mass of the donor 
stars for 10 yearsτ =  with initial masses of 0.12dM M=



 and 0.8aM M=


 in a 
close DWD binary system. Hence 103 years of evolution with solution obtained using 

,L EggR  for the calculation of the Roche lobe.  

 

 
Figure 8. Results of the comparison between the numerical integrations and analytic so-
lutions for the evolution of orbital parameters, i.e., ( )dM M



 versus the mass ratio, q 

with the rotational angular velocities of the donor, dΩ  and accretor, aΩ  on the Roche 
lobe radius in Equation (28) and Equation (29) for the second rotational angular velocity 
of the WD when the effect of the tides and rotation on the donors structure are ignored 
(solid red line) or included (green, blue and dotted gray lines). 
 

Figure 9 shows the evolution of orbital parameters due to tidal coupling for 
10 yearsτ =  from Equation (28) and Equation (29). Thus, we numerically and  
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Figure 9. The comparison between the numerical and analytical solutions of orbital pa-
rameters for 10 yearsτ = . These results obtained using the ,L EggR  calculation of the 

Roche lobe. In these systems the donor decreases its mass until it finally detached from 
the Roche lobe and forms a 0.28M



 He WD and decrease the ,spin dJ .  

 
analytically investigate the evolution of the rotational angular velocities of both 
donor and accretor stars in close DWD systems with initial masses of the donor, 

0.86dM M=


 and accretor, 1.2aM M=


. In these systems, we provide a 
comparison between the numerical and analytical solution for the rate of change 
of the spin angular momentum for the accretor and the rate of change of the 
mass transfer rate corresponds to the dΩ  and aΩ , which shows our calcula-
tion stops when the donor reached 1.45M



 (disc accretion).  

4.3. Comparison to Previous Results 

As it was studied by [8] [9] [10] that systems with a low donor mass are more 
likely to remain stable over long periods of time, while the majority of the para-
meter space (depending on the strength of the tidal coupling) is expected to be 
dynamically unstable. Here, by including the additional mass transfer effects 
presented here in a self-consistent way, DWD direct impact mass transfer may 
induce a stabilizing effect over a larger area of the parameter space. 

As seen in Figures 1-5, we discussed the evolution of angular momentum and 
orbital changes due to direct impact and evolution of systems with strong tidal 
coupling. Also, in Figures 7-9, we investigated the comparison between the nu-
merical and analytical solution of the systems for the evolution of parameters for 

10 yearsτ = . However, as seen in Figure 6, the mass transfer rate increases in-
itially, which causes the accretor to spin up and the donor to spin down. Hence, 
when we using ,L EggR , the mass transfer rate will continue to increase until tides 
have transferred sufficient angular momentum from the spin of the components 
to the orbit to widen the orbit and decrease the mass transfer rate. Once this 
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happens, the tides continue to redistribute angular momentum between the 
component spins and the orbit (see, Figure 5). When the system is dynamically 
unstable, the time scale for changes in the mass transfer rate becomes greater 
than the time scale at which the orbital period increases due to the effect of tides. 
As a result, the mass transfer rate increases rapidly and the spin of the accretor 
increases significantly.  

5. Conclusions 

We have presented the evolution of angular momentum and orbital period 
changes between the component spins and the orbit in close DWD binaries un-
dergoing mass transfer through direct impact accretion, including the effects due 
to mass transfer, gravitational radiation, and tidal forces between the donor, ac-
cretor, and the orbit. The theoretical framework that we have outlined in this 
paper can be used to generate the models for the rotational angular velocities 
and the orbital periods of close DWD binaries in general. Thus, we implemented 
the ballistic mass transfer treatment developed in [19] to calculate the changes to 
the evolution of orbital parameters during direct impact mass transfer from the 
donor to the accretor, which can be described by numerical solutions. Here, the 
numerical solutions that we have presented are more specific than the analytical 
solutions of the previous studies in the sense that we allow for conservative mass 
transfer. By implementing this method, we found that the number of stable close 
DWD binaries increased for both weak and strong tidal coupling compared with 
the results of [9] and [10], which shown as in Figures 1-10. 

A direct comparison of the results obtained from the numerical solutions in 
Section (3) with those of analytical solutions in Section (4) shows that both the 
numerical solution and the Eggleton approximation for the Roche lobe calcula-
tions are quite accurate. 

In many cases the orbital angular momentum lost from the orbit can be sig-
nificantly less than the standard assumption, making this process less destabiliz-
ing than expected. This may allow for more DWD to survive the dynamical in-
stability of mass transfer rate and evolve into systems like AM CVn, instead of 
merging to create Type Ia supernovae evolving to higher separations and dimi-
nishing mass transfer rates. This result, which was not predicted by the analyti-
cal solution in [28] has important consequences for population synthesis models 
of these objects. Furthermore, we have seen that the near constancy of the mass 
transfer rate over most of the mass transfer phase seen in the results by previous 
studies is not a generic feature of this type of evolution but rather a consequence 
of a particular choice of orbital parameters. 

In a few cases, we have shown that mass transfer may increase the orbital an-
gular momentum of the orbit, thereby providing a stabilizing effect on the orbit. 
Hence, any stabilizing effect increases the chances of a long-lived close DWD 
binaries, lending acceptance to the creation of AM CVn through the DWD 
models. 
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Figure 10. Evolution of the orbital period, orbP , compared to its initial orbital period, 

,0orbP , for three different mass ratios with synchronization time scale, 1510τ = . Here we 

observe that the orbP  increases due to the effect of the tides. As a result, dM  increases 

rapidly and the accretor spin, ,spin aJ  increases, whereas the donor spin, ,spin dJ  decreas-

es.  
 

We also account for the modification of the Roche lobe size due to the orbital 
period and adζ  of the donor stars. As a result, we found that the number of 
stable systems increases, particularly for the case of strong tidal coupling, as 
shown in Figure 1, Figure 4, Figure 5 and Figure 7. Note that all the systems 
that undergo direct impact systems, at least for the system orbital parameters 
and synchronization time scales that we have considered. Thus, when the system 
is dynamically unstable, the time scale for changes in the mass transfer rate be-
comes greater than the time scale at which the orbP  increases due to the effect of 
tides. As a result, the dM  increases rapidly the spin angular momentum of the 
accretor increases significantly. We conclude that the stable systems occurred 
when using the Eggleton approximation for the Roche lobe calculation create ar-
tificially high mass transfer rates which leads to an artificially high number of 
dynamically unstable systems. Hence, our finding yields a higher number of sta-
ble systems. 

Finally, the large scale numerical computations presented in this paper have 
provided the realistic models that describing the evolution of angular momen-
tum and orbital period changes and its stability of mass transfer in close DWD 
binary systems.   
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