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Abstract 
The research in this paper is intended as an attempt to motivate the work of 
Zhefei He and Mingjin Wang (An inequality for covariance with applications, 
2015). More precisely, In this research we first provide a generalized inequa-
lity for covariance. And then, we present its applications to solve some prob-
lems about probability distribution. Finally, we state the conclusion and men-
tion the relevant work in the future. 
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1. Introduction 

There are two inequalities which take important places in mathematics. One is 
the inequalities of the Cebysev type or the Ostrowski type, which is mainly ap-
plied in probability theory, mathematical statistics, information theory, numeri-
cal integration, and integral operator theory. Another one is the inequalities 
which involves the moments of the random variables. In this paper, we will 
present our study in the Cebysev type. Firstly we show the Cebysev functional 
which is defined as follows: 

( ) ( ) ( ) ( ) ( )1 1 1, d d d ,
b b b

a a a
T a b f x g x x f x x g x x

b a b a b a
= − ⋅

− − −∫ ∫ ∫    (1) 

where the two functions [ ], : ,f g a b R→  are measurable. 
In 1882, Cebysev [1] has proved that 

( ) ( )21, ,
12

T a b b a f g
∞ ∞
′ ′≤ −                    (2) 

where 
[ ]

( )
,

sup
x a b

f f x
∞

∈
′ ′= , 

[ ]
( )

,
sup

x a b
g g x

∞
∈

′ ′= . 
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Over the years, according Cebysev inequality, some new inequalities of Os-
trowski-Cruss type or Ostrowski-Cebysev type have been obtained, see e.g. 
[2]-[9]. Among these recent works, we especially mention the monograph of 
Zhefei He and Mingjin Wang [10]. Following their work, we denote that ξ  is a 
random variable having a certain cumulative distribution function  . Accord-
ing to the probability theory, it is easy to obtain the expectation and variance of 
ξ  such that 

( ) ( )2d ,
b

a
E x x D E Eξξ ξ ξ ξ= = −∫  .                (3) 

For two random variables ,ξ η , the covariance of ξ  and η  is defined by 

( ) ( ) ( ) ( ),ov E EC Eξ η ξη ξ η= − ⋅                 (4) 

Applying the Lagrange mean theorem (That is, for any differentiable function 
F in [ ],a b , there exists a number ( ),a bε ∈  satisfying  

( ) ( ) ( )( )F b F a F b aε′− = − ), 

we can get the following two inequalities 

( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )

2 2 22

2 22 .

f x Ef E f x f f x E D

D f E f x Ef f D

ξ ξ ξ ξ

ξ ξ ξ

∞

∞

 ′− = − ≤ − +    

′= − ≤  






    (5) 

Similarly we have 

( )( ) 22 .D g g Dξ ξ
∞
′≤                       (6) 

Therefore, 

( ) ( )( ) ( ) ( ), 2 .Cov f g Df Dg f g Dξ ξ ξ ξ ξ
∞ ∞
′ ′≤ ≤           (7) 

Moreover, as the application of the new inequality, the random variable ξ  
was given a certain distribution, the uniform distribution [ ],u a b . A new equal-
ity has been made as below, 

( ) ( )21, .
6

T a b b a f g
∞ ∞
′ ′≤ −                  (8) 

Obviously, in the process of proving this inequality (4), the proof of the in-
equality (5) was the key to accomplish the proof. The main result of this paper is 
the following theorem which generalizes the inequality (5), then we obtain a new 
inequality for covariance which involves three continuous functions with 
bounded ratios between the derivatives of two of them and the third one. 

2. Main Result 

In this section, we assume throughout this section and next section that ξ  is a 
random variable having the cumulative distributing function  , and give a 
proof of the following theorem. 

Theorem 2.1. Suppose that the three functions [ ], , : ,f g H a b R→  are con-
tinuous in [ ],a b  and differentiable in ( ),a b , the ratios of two derivatives  
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( ), : ,f g a b R
H H
′ ′

→
′ ′

 are bounded in ( ),a b . If ξ  is a random variable which  

has finite expected value Eξ , then we have 

( ) ( )( ) ( )( ), 2 f gCov f g D H
H H

ξ ξ ξ
∞ ∞

′ ′
≤

′ ′
            (9) 

Particularly, let ( )H x x= , the inequality is (7). 
Proof. By using the hypotheses, we have ( )f ξ  is bounded, so the expected 

value ( )( )E f ξ  exists. Applying the definition of the variance and the Cauchy 
mean theorem, we can get 

 

( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( )( ) ( )

2

2

2

2

2 2

d d

d d

d d

d d .

b b

a a

b b

a a

b b

a a

b b

a a

D f E f E

f x f t t x

f x f t t x

f x f t
H x H t t x

H x H t

f H x H t t x
H

ξ ξ

ξ ξ

ξ ξ

ξ ξ

ξ ξ ξ

∞

= −

= −

 = −  

 −
= − 

−  

′
≤ −

′

∫ ∫

∫ ∫

∫ ∫

∫ ∫

 

 

 

 

   (10) 

Applying the Cauchy inequality, one has 

( )( ) ( ) ( )( ) ( ) ( ) ( )( )
2 2

2
d d 2 .

b b

a a

f fD f H x H t t x D H
H Hξ ξξ ξ

∞ ∞

′ ′
≤ − =

′ ′∫ ∫   (11) 

Similarly we have 

( )( ) ( ) ( )( ) ( ) ( ) ( )( )
2 2

2
d d 2 .

b b

a a

g gD g H x H t t x D H
H Hξ ξξ ξ

∞ ∞

′ ′
≤ − =

′ ′∫ ∫   (12) 

Therefore, 

( ) ( )( ) ( ) ( ) ( )( ), 2 f gCov f g Df Dg D H
H H

ξ ξ ξ ξ ξ
∞ ∞

′ ′
≤ ≤

′ ′
,    (13) 

which completes the proof of Theorem 2.1. 

3. Some Applications 

In this section, we will generate some applications of the inequality (9) based on 
some probability distributions. First, assume that ξ  has the uniform distribu-
tion [ ],u a b , we list the following consequence. 

Theorem 3.1. Suppose that ( ) ,kH x x k += ∈ , and [ ], : ,f g a b R→  are 
continuous in [ , ]a b  and differentiable in ( ),a b , the ratios of two derivatives  

( ), : ,f g a b R
H H
′ ′

→
′ ′

 are bounded in ( ),a b . Then 

( )
( )

22
2

1 1 2
0 0

1 1, 2 .
2 1 1

k k
i k i i k i

k k
i i

f gT f g a b a b
kkx kx k

− −
− −

= =∞ ∞

 ′ ′  ≤ ⋅ −  + +    
∑ ∑  (14) 

Proof. Let ξ  is a random variable which possesses the uniform distribution 
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[ ],u a b , which implies that ξ  has the following probability density distribution: 

( )
1 .

0 otherwise.

a x b
x b aω

 ≤ ≤= −


                    (15) 

Therefore, 

( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

,

1 1 1d d d

, ,

b b b

a a a

Cov f g Ef g Ef Eg

f x g x x f x x g x x
b a b a b a
T f g

ξ ξ ξ ξ ξ ξ= − ⋅

= − ⋅
− − −

=

∫ ∫ ∫ (16) 

and 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( )

1 1

2
2 1 2 1 1 1

22
2

2
0 0

1 1 1d d ,
1

1 1 1 1
2 1 1

1 1 .
2 1 1

b bk kk k k
a a

k k k k k

k k
i k i i k i

i i

E x x x x x b a
b a b a k

D b a b a
b a k b a k

a b a b
k k

ξ ω

ξ

+ +

+ + + +

− −

= =

= ⋅ = ⋅ = ⋅ −
− − +

 = ⋅ − − ⋅ − − + − + 

 = −  + +  

∫ ∫

∑ ∑

 (17) 

By plugging (16) and (17) into (9), we obtain the conclusion of Theorem 3.1. 
Next, we can also prove the following theorem while ξ  has the uniform dis-

tribution the Gamma distribution ( ),α λΓ , 
Theorem 3.2. Suppose that ( ) ,kH x x k += ∈ , and [ ), : 0,f g R+∞ →  are 

continuous in [ )0,+∞  and differentiable in ( )0,+∞ , the ratios of two derivatives 

,f g
H H
′ ′
′ ′

 are bounded in ( )0,+∞ . Then for any , 0α λ > , 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2
1 1 1

20 0 0

22 1 1

2 1 1
0 0

e d e d e d

2 ,

x x x

k k

k k k
i i

f x g x x x f x x x g x x x

f g i i
kx kx

α α
α λ α λ α λλ λ

α α

α α
λ

+∞ +∞ +∞− − − − − −

− −

− −
= =∞ ∞

−
Γ Γ

 ′ ′  ≤ + − +  
   

∫ ∫ ∫

∏ ∏
(18) 

where ( ) 1
0

e dxx xαα
+∞ − −Γ = ∫  is the Gamma function. 

Proof. Since the random variable ξ  has the Gamma distribution, its proba-
bility density distribution is described as below,  

( ) ( )
1e 0,

0 0.

xx x
x

x

α
α λλ

ω α
− −

≥= Γ
 <

                  (19) 

Here, the parameters 0α > , 0λ > . By direct calculation, 

( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1
0

1
0

,

e d

e d

x

x

Cov f g Ef g Ef Eg

f x g x x x

f x x x

α
α λ

α
α λ

ξ ξ ξ ξ ξ ξ

λ
α

λ
α

+∞ − −

+∞ − −

= − ⋅

=
Γ

−
Γ

∫

∫
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( ) ( ) 1
0

e d ,xg x x x
α

α λλ
α

+∞ − −⋅
Γ ∫                  (20) 

and 

( ) ( ) ( )
( )

( ) ( )

( ) ( ) ( ) ( ) ( )( )
( )( )

( ) ( )

( )

( ) ( )

( )

1 1

0 0

2
22

22

22 1 1

0 0
2

e d e d let ,

2

.

k
k k x t

k k

k k k
k k

k k

i i
k k

kx tE x x t t x

kk
D E E

i i

α α α
λ αλ

ξ λ
α λ α λ α

αα
ξ ξ ξ

λ α λ α

α α α α

λ α λ α

− + −
+∞ +∞− −

− −

= =

 

Γ +
= = = =

Γ Γ Γ

Γ +Γ +
= − = −

Γ Γ

 Γ + Γ + 
 = −

Γ Γ 
 



 



∫ ∫

∏ ∏

 (21) 

By plugging (20) and (21) into (9), we get the conclusion (18). This completes 
the proof of Theorem 3.2. 

After that, we consider the issue that ξ  has the Beta distribution ( ),B a b  
and give the following theorem, 

Theorem 3.3. Suppose that ( ) ,kH x x k += ∈ , and [ ], : 0,1f g R→  are 
continuous in [ ]0,1  and differentiable in ( )0,1 , the ratios of two derivatives  

,f g
H H
′ ′
′ ′

 are bounded in ( )0,1 . Then for any , 0a b > , 

( )
( ) ( ) ( ) ( ) ( )

( )
( ) ( )

( ) ( ) ( ) ( )

1 11
0

2
1 11 11 1

22 0 0

22 1 1

1 1
0 0

1 d

1 d 1 d

2 .

ba

b ba a

k k

k k
i i

a b
f x g x x x x

a b

a b
f x x x x g x x x x

a b

f g a i a i
a b i a b ikx kx

−−

− −− −

− −

− −
= =∞ ∞

Γ +
−

Γ Γ

Γ +
− − −
Γ Γ

 ′ ′ + + ≤ −  + + + +   

∫

∫ ∫

∏ ∏

     (22) 

Proof. Since the random variable ξ  has the Beta distribution. To prove this 
theorem, we write out its probability density distribution function, 

( )
( )
( ) ( ) ( ) 11 1 0 1,

0 otherwise.

baa b
x x x

x a bω
−− Γ +

− ≤ ≤= Γ Γ



           (23) 

Then we can get 

( ) ( )( ) ( ) ( ) ( ) ( )
( )
( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

1 11
0

1 11
0

1 11
0

,

1 d

1 d

1 d

ba

ba

ba

Cov f g Ef g Ef Eg

a b
f x g x x x x

a b

a b
f x x x x

a b

a b
g x x x x

a b

ξ ξ ξ ξ ξ ξ

−−

−−

−−

= − ⋅

Γ +
= −
Γ Γ

Γ +
− −
Γ Γ

Γ +
⋅ −
Γ Γ

∫

∫

∫

    (24) 

and 
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( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( )
( )

( )
( ) ( )

( ) ( ) ( )

( ) ( )

1 11
0

1

1
0

1
0

0

1 d

,

bk k a

k

k
i

k
i

i

a b
E x x x x

a b

a b a b a k b
B a k b

a b a b a b k

a b a ia b a i
a b a b ia b a b i

ξ −−

−

−
=

−
=

=

Γ +
= −

Γ Γ

Γ + Γ + Γ + Γ
= + = ⋅
Γ Γ Γ Γ Γ + +

Γ Γ +Γ + +
= ⋅ =
Γ Γ + +Γ + + +

∫

∏
∏

∏

    (25) 

and 

( ) ( ) ( )
22 1 122

0 0

k k
k k k

i i

a i a iD E E
a b i a b i

ξ ξ ξ
− −

= =

+ + =  − = −  + + + + 
∏ ∏     (26) 

Putting (24), (25) and (26) into (9), we get (22). 
Finally, when ξ  satisfies the standard normal distribution ( )0,1N , we can 

also prove the following theorem by using the similar method, 
Theorem 3.4. Suppose that ( ) ,kH x x k += ∈ , and ( ), : ,f g R−∞ +∞ →  are 

continuous in ( ),−∞ +∞  and differentiable in ( ),−∞ +∞ , the ratios of two  

derivatives ,f g
H H
′ ′
′ ′

 are bounded in ( ),−∞ +∞ . Then for any n +∈ , 

( ) ( ) ( ) ( )

( )

( ) ( )( )

2 2 2

2 2 2

1 1

2

1 1

1 1e d e d e d
2π2π

2 2 1 !! , 2 1

2 2 1 !! 1 !! , 2

x x x

k k

k k

f g x f x g x

f gk k n
kx kx

f gk k k n
kx kx

ξ ξ ξ ξ
− − −+∞ +∞ +∞

−∞ −∞ −∞

− −
∞ ∞

− −
∞ ∞

−

′ ′
− = −

≤  ′ ′  − − − =   

∫ ∫ ∫

  (27) 

Proof. Since the random variable ξ  has the standard normal distribution 
( )0,1N , The probability density distribution function is  

( )
2

21 e d .
2π

x

x xω
−+∞

−∞
= ∫                    (28) 

According to the definition of covariance and expectation, we have 

( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

2

2 2

2

2 2

,

1 e d
2π

1 e d e d
2π

x

x x

Cov f g Ef g Ef Eg

f g x

f x g x

ξ ξ ξ ξ ξ ξ

ξ ξ

ξ ξ

−+∞

−∞

− −+∞ +∞

−∞ −∞

= −

=

−

∫

∫ ∫

     (29) 

and 

( )
2

21 e d ,
2π

x
k kE x xξ

−+∞

−∞
= ⋅∫                  (30) 

Evidently, ( ) 0kE ξ =  while k is odd. When k is an even number, by using the 
method of mathematical induction, we can conclude that ( ) ( )1 !!kE kξ = − . 
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More precisely, the procedure has been showed as follows, when 2k = ,  

( )

( )

2
22 2 22

0 0

1
2

0

2 2e d e d
π π

2 2 3e d 1 2 1 !!,
2π π

x
u

t

E x x u u

t t

ξ
−+∞ +∞ −

+∞ −

= =

 = = Γ = = − 
 

∫ ∫

∫
 

For an positive even number k, suppose that ( ) ( )1 !!kE kξ = − . By direct cal-
culation, we obtain 

( ) ( )

( ) ( )

2
2

2
0 0

1
2

0

2 22 e d e d
π π

2 2 1e d .
2π π

k
x

k k k u

k k
k

t

E x x u u

kt t

ξ
−+∞ +∞ −

−
+∞ −

= =

+ = = Γ 
 

∫ ∫

∫

 

Therefore, 

( ) ( ) ( )

( ) ( ) ( )

2

2 2 2
0

2 2 2 22 3 1 1e d
2 2 2π π π

1 2 1 !!,

k k
x

k k

k

k k kE x x

k E k

ξ

ξ

−+∞+ + + + +   = = Γ = ⋅ Γ   
   

= + = + −  

∫  

which by induction shows the fact that ( ) ( )1 !!kE kξ = − , when k is even. 
Similarly, by the same method, we can also prove that for any n +∈ , 

( )
( )
( ) ( ) 2

2 1 !! 2 1,

2 1 !! 1 !! 2 .
k

k k n
D

k k k n
ξ

 − = −= 
− − − =   

            (31) 

This equality, combines with (29), (30) and (9), implying the conclusion (27) 
in Theorem 3.4. 

4. Conclusion and Future Work 

Concerning the new generalized inequality, we have shown that the process of its 
proof and given some inequalities as applications, which were similar as the Ce-
bysev type inequalities. Based on He and Wang’s consequences, the inequality for 
covariance as well as the applications of the main result has been generalized. 
However, in the section of the application, considering the significance of the 
normal distribution in the whole area of probability theory, it was as applications 
that let the random variable ξ  possessed the standard normal distribution. 
That is all consequences what we have obtained. 

Nevertheless, before starting this task, a comparison of the inequality (8) with 
the inequality (2) had been made. Overwhelmingly, if we can prove the inequali-
ty ( ) ( )( ),Cov f g f g Dξ ξ ξ

∞ ∞
′ ′≤ , and give the random variable ξ  a cer-

tain distribution, such as the uniform distribution, we would give a new proof of 
the well-known Cebysev integral inequality. Therefore whether the coefficient 2 
could be 1 evoked our keen interest. We went to do a lot of efforts. Most impor-
tant, the consequence may be enlarged. Because we found that three enlarge-
ments have been applied in the process of the proof of the inequality (5). So we 
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calculated the covariance immediately with integration to reduce the times of 
using enlargement. Some results have been made. However, it is a higher level of 
capacity that we need in the course of studying this issue. It was so regrettable 
that we have not accomplished that task. About the future work of this task, there 
are two directions we can make great efforts. One is how we can generate the 
consequence from the one dimensional space R to the multidimensional space 
Rn, and another one is how to find the approach of accomplishing that antic-
ipated issue. 
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