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Abstract 
Network is considered naturally as a wide range of different contexts, such as 
biological systems, social relationships as well as various technological scena-
rios. Investigation of the dynamic phenomena taking place in the network, 
determination of the structure of the network and community and descrip-
tion of the interactions between various elements of the network are the key 
issues in network analysis. One of the huge network structure challenges is 
the identification of the node(s) with an outstanding structural position 
within the network. The popular method for doing this is to calculate a 
measure of centrality. We examine node centrality measures such as degree, 
closeness, eigenvector, Katz and subgraph centrality for undirected networks. 
We show how the Katz centrality can be turned into degree and eigenvector 
centrality by considering limiting cases. Some existing centrality measures are 
linked to matrix functions. We extend this idea and examine the centrality 
measures based on general matrix functions and in particular, the logarith-
mic, cosine, sine, and hyperbolic functions. We also explore the concept of 
generalised Katz centrality. Various experiments are conducted for different 
networks generated by using random graph models. The results show that the 
logarithmic function in particular has potential as a centrality measure. Simi-
lar results were obtained for real-world networks. 
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1. Introduction 

Since its introduction by Euler in eighteen century, graph theory has proven its 
important applications in many different scientific fields. Graphs and linear al-
gebra have been used to model social interactions. Recently network models are 
now commonplace not only in the hard sciences but also in various technologi-

How to cite this paper: Njotto, L.L. (2018) 
Centrality Measures Based on Matrix Func-
tions. Open Journal of Discrete Mathemat-
ics, 8, 79-115. 
https://doi.org/10.4236/ojdm.2018.84008  
 
Received: July 12, 2018 
Accepted: September 23, 2018 
Published: September 26, 2018 
 
Copyright © 2018 by author and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/ojdm
https://doi.org/10.4236/ojdm.2018.84008
http://www.scirp.org
https://doi.org/10.4236/ojdm.2018.84008
http://creativecommons.org/licenses/by/4.0/


L. L. Njotto 
 

 

DOI: 10.4236/ojdm.2018.84008 80 Open Journal of Discrete Mathematics 
 

cal, social and biological scenarios. Networks are used to model a variety of 
highly interconnected systems, both in nature and man-made world of technol-
ogy. These networks include protein-protein interaction networks, social net-
works, food webs, scientific collaboration networks, metabolic networks, lexical 
or semantic networks, neural networks, the World Wide Web and others. The 
use of network analysis is in various situations: from determining network 
structure and communities, describing the interactions between various ele-
ments of the network and investigating the dynamics phenomena taking place in 
the network [1]. 

One of the ground laying questions analysis of network is how to determine 
the “most important” nodes in a given network. Many centrality measures have 
been proposed, starting with the simplest of all, node degree centrality. This 
measure has being considered too “local”, as it does not take into account the 
connectivity of the immediate neighbours of the node under consideration. A 
number of centrality measures have been introduced that take into account the 
global connectivity properties of the network. These include various types of ei-
genvector centrality for both directed and undirected networks, Katz centrality, 
subgraph centrality and PageRank centrality [1]. The use of centrality scores 
provides rankings of the nodes in the networks. The higher the ranking of a 
node, the more important the node is believed to be within the network. There 
are many different ranking methods in use, and many algorithms have been de-
veloped to compute these rankings. 

The purpose of this paper is to discuss some of the centrality measures and 
analyse the relationship between degree centrality, eigenvector centrality, and 
Katz centrality and to discuss the measures of centrality based on matrix func-
tions including the logarithmic, sine, cosine, exponential and hyperbolic func-
tion. The main aim is to determine which of the matrix functions is highly cor-
related to “standard” centrality measures. We will use the Kendall correlation 
coefficient [2] in the experimental work to determine the correlations. 

2. Literature Review 

Bavelas [3] introduces the application of centrality of networks in human com-
munication by measuring the communication within a small group in terms of 
the relationship between the structural centrality and influence in a group 
process. Afterwards, an application of centrality was made under the direction of 
Bavelas at the Group Networks Laboratory, M.I.T in the late 1940s. Leavitt in 
1949 and Smith in 1950 conducted a study on centrality measure on which Ba-
velas in 1950 and Bavelas and Barrett in 1951 reported. These experiments all 
concluded that centrality was related to group efficiency in problem-solving and 
agreed with the subjective perception of leadership [4]. 

Various centrality measures in various contexts were then explored in the fol-
lowing decade. Cohn and Marriott in 1958 attempted to use the centrality to 
understand political integration in Indian social life [5]. Pitts examined the con-
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sequences of centrality in communication paths for urban development [6]. Lat-
er, Czepiel used the concept of centrality to explain the pattern of diffusion of a 
technological innovation in the steel industry [7]. 

Recently, Bolland analysed the stability of the degree (DC), closeness (CC), 
betweenness (BC), and eigenvector (EC) centrality in random and systematic 
variations of network structure, and found that betweenness centrality changes 
significantly with the variation of the network structure, while degree and close-
ness centrality are usually stable. He also found that eigenvector centrality is the 
most stable of all the indices analysed [8]. Borgatti and Frantz extended the stu-
dies on the stability of centrality indices by considering the addition and deletion 
of nodes and links [9] as well as by differentiating several types of network to-
pology such as uniformly random, small-world, core-periphery, scale-free, and 
cellular. Landherr reviewed critically the role of centrality measure in social 
networks [10]. Estrada analysed examples of how a particular centrality measure 
is applied in social networks [11]. 

Benzi and Klymko analysed centrality measures, such as degree, eigenvector, 
Katz and subgraph for both undirected and directed networks. They used the 
local and global influence of a given node in the network as measured by walks 
of different lengths through that node. They analysed the relationship between 
centrality measures based on the diagonal entries and row sums of the matrix 
exponential and resolvent of the adjacency matrix involving the degree and ei-
genvector centrality. They showed experimentally that the rankings produced by 
exponential subgraph centrality, total communicability and resolvent subgraph 
centrality converge to those produced by degree centrality [1]. 

Most of the centrality measures notations considered are combinatorial in 
nature and based on the discrete structure of the underlying networks. We can 
extend our studies by defining the centrality measure by using the spectral 
techniques from linear algebra. Benzi and Klymko considered the diagonal 
entries of the matrix exponential ( ) ef = AA  and the Katz function 
( ) ( ) 1f α −= −A I A  where 0α >  and A  is the adjacency matrix of the 

network [1]. Though, none of the previous studies considered other matrix 
functions such as the logarithmic, cosine, sine, hyperbolic functions and the 
generalized Katz centrality as centrality measures. In this work we will develop 
the notions of centrality based on matrix functions, and we will use the Kendall 
correlation coefficient [2] to determine the agreement between the node 
rankings produced by these matrix functions and those produced by the 
standard centrality measures. 

3. Elements of Graph 

Graphs are discrete structures which consist of vertices connected by edges. A 
graph can be written as ( ),G V E= , where ( )V G  is a non-empty set of 
vertices (also called nodes) and ( )E G  is a set of edges. An edge of the graph 
consists of two vertices associated with it, these two vertices are called endpoints. 
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An edge starting and ending at the same vertex is called a loop.   
• Graphs can be represented by using points as nodes (vertices) and joining 

them using line segments for edges. We write uv to denote an edge between 
nodes u and v.  

• We can assign numerical values to the edges of a graph in which case the 
graph is referred to as weighted. In an unweighted graph we assign to every 
edge the value 1.  

• If the edges of the graph are directed (Figure 1), then the graph is called a 
directed graph or digraph otherwise it is called an undirected graph. An 
undirected unweighted (Figure 2) graph without loops is simple if no two 
edges connect the same pair of vertices. 

• For undirected graphs, if there are multiple edges between a pair of nodes 
then the graph is called a multi-graph or pseudo-graph. In digraphs we can 
have two edges connecting two vertices. 

3.1. Basic Graph-Theoretic Terminology 

If uv E∈  is an edge in an undirected graph G, then nodes u and v are incident 
to the edge uv and we say that u and v are adjacent (neighbours) in G. It follows 
that u and v are the endpoints of an edge uv. If G is the directed graph and 
uv E∈ , then u is said to be adjacent to v and v is said to be adjacent from u. We 
call u the initial node of uv and v the terminal or end node of uv. For an 
undirected graph G, the degree ( )ideg v  of a node iv  is the total number of 
edges which are incident to the corresponding node iv . 

The degree ( )ideg v  is the number of “immediate neighbours” of a node iv  
in G. In a regular graph all nodes have the same degree. Nodes in directed 
graphs have an in-degree and an out-degree. The in-degree of a node iv , 

( )ideg v− , is the total number of edges with iv  as their terminal node. Similarly,  
 

 
Figure 1. Digraph. 

 

 
Figure 2. Undirected. 
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the out-degree of iv , ( )ideg v+ , is the total number of edges with iv  as their 
initial node. Loops contribute 1 to both the in-degree and out-degree. 

A graph ( ),H W F=  is a subgraph of ( ),G V E=  if W V⊆  and F E⊆ . 
We write H G⊆ , meaning that H is contained in G (or G contains H). If H 
contains all edges of G that join two vertices in W, then we say that H is a 
subgraph induced or spanned by W. 

The subgraphs of ( ),G V E=  can be obtained by deleting edges and vertices 
of G. We denote by \G W V W− ≡  with W V⊂ , the subgraph of G obtained 
by deleting the vertices in W and all the edges incident with those vertices. In a 
similar manner, we denote by ( ), \G F V E F− ≡  where F E⊂ , the subgraph 
of G obtained by deleting all the edges in F. 

3.2. Walk, Trail and Path 

A walk kW  of length k from node 0v  to node kv  is a finite sequence 
( ),kW V E=  of the form  

{ }0 1, , , ,kV v v v=   

( ) ( ) ( ){ }0 1 1 2 1, , , , , ,k kE v v v v v v−=   

where iv  and 1iv +  are adjacent. 
A trail in G is a walk in which no edges of G appear more than once (a walk 

with all different edges). A trail which begins and ends at the same node is 
known as a closed trail or circuit. 

A path in G is a walk in which no nodes appear more than once with the 
exception that kv  can be equal to 0v . A cycle or a closed path is a path which 
begins and ends at the same node. 

Two nodes iv  and jv  in G are connected if there is a path between them. 
We say that graph G is connected if for every pair of nodes iv  and jv  there 
exists a path that starts at iv  and ends at jv . An edge i jv v E∈  in a 
connected graph ( ),G V E=  is a bridge if G becomes disconnected if i jv v  is 
deleted. If iv  and jv  are nodes of the directed graph G, then G is said to be 
strongly connected if for any two nodes iv  and jv  we can find a path from iv  
to jv  and from jv  to iv . It is weakly connected if there is a path between 
every two nodes in the underlying undirected graph. The undirected graph is 
obtained by ignoring the directions of the edges in the directed graph. All 
strongly connected directed graphs are also weakly connected. 

The digraph in Figure 3 is strongly connected because there is a path between 
any two ordered vertices in the directed graph. The digraph in Figure 4 is not 
strongly connected, since, for example, there is no directed path from S to T, nor 
from V to T, but it is weakly connected. 

4. Matrices in Graphs 

This section discuses the way of representing graphs using matrices. There are 
multiple ways to do this and any graph ( ),G V E  can be represented by using 
either adjacency, incidence or Laplacian matrices. 
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Figure 3. Strongly connected. 

 

 
Figure 4. Weakly connected. 

4.1. Matrices for Undirected Graph 
Given an undirected graph G with n vertices and m edges. The adjacency matrix 
of ( ),G V E  is given by { }ij n n

a
×

=A , where  

1 if node  is adjacent to node 
0 otherwise

i j
ij

v v
a 

= 


 

The incidence matrix is given by { },i j n m
m

×
=M , where  

1 when edge  is incident with node 
0 otherwise

j i
ij

e v
m 

= 


 

The Laplacian matrix can be found by using the relation  
,= −L D A  

where D  is a diagonal matrix whose ith diagonal entry is the degree of the ith 
node and A  is the adjacency matrix. 

In other words, { }ij n n
l

×
=L , where  

( )
1 if node  is adjacent to node 

if 
0 otherwise

i j

ij i

v v
l deg v i j

−
= =

  

Figure 5 is undirected graph with five nodes and six edges where there is a 
path from one node to the other nodes. The adjacency matrix A , the incidence 
matrix M  and the diagonal matrix D  will be  

0 0 0 1 1 1 1 0 0 0 0
0 0 1 1 1 0 0 1 1 0 1

, ,0 1 0 1 0 0 0 0 0 1 1
1 1 1 0 0 0 1 0 1 1 0
1 1 0 0 0 1 0 1 0 0 0

   
   
   
   = =
   
   
   
   

A M  
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Figure 5. Undirected Graph. 

 

2 0 0 0 0
0 3 0 0 0

.0 0 2 0 0
0 0 0 3 0
0 0 0 0 2

 
 
 
 =
 
 
 
 

D  

The Laplacian matrix will be  

2 0 0 1 1
0 3 1 1 1

.0 1 2 1 0
1 1 1 3 0
1 1 0 0 2

− − 
 − − − 
 = − = − −
 
− − − 
 − − 

L D A  

4.2. Matrices for Directed Graph 
Given a directed graph G with n nodes and m edges. The adjacency matrix of 

( ),G V E  is given by { }ij n n
a

×
=A , where 

1 if node  is connected to node  and directed from  to 
1 if node  is connected to node  and directed from  to 

0 otherwise

i j i j

ij i j j i

v v v v
a v v v v


= −



 

The incidence matrix is given by { },i j n m
m

×
=M , where  

1 if node  is the starting node of an edge 
1 if node  is the end node of an edge 

0 otherwise

i j

ij i j

v e
m v e


= −



 

Figure 6 is a digraph which shows that there is path from node A to any other 
node of the graph, nevertheless there is no path from node C to any other node 
of the network. The adjacency matrix A  and the incidence matrix M  will be 

0 1 0 1 0
1 0 1 1 1

,0 1 0 0 1
1 1 0 0 0

0 1 1 0 0

 
 − − 
 = − −
 
− 
 − 

A  
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Figure 6. Directed Graph. 

 

1 0 1 0 0 0
1 1 0 1 1 0

.0 1 0 0 0 1
0 0 1 1 0 0
0 0 0 0 1 1

 
 − − 
 = − −
 

− 
 − 

M  

4.3. Distance in Graphs 

Geodesic distance denoted as ( ),i jd v v  between two nodes iv  and jv  in the 
graph G is defined as the length of the shortest path between nodes iv  and jv . 
The diameter of the graph ( ),G V E=  is given as  

( ) ( )max , .
i j

i jv v V
diam G d v v

∈
=  

Geodesic distances in digraph Q in Figure 3:  

( ) ( ) ( ), 4, , 3 and , 0.d D C d A E d D D= = =  

The distance matrix of a graph, denoted as D , is the square matrix ( ){ }n n
d ij

×
,  

where ( )d ij  is equal to the length of the shortest path from node iv  to node 

jv . 
Consider the undirected unweighted graph in Figure 7 as example; 
The distance matrix for the graph in Figure 7, is given as;  

0 1 2 2 2 1
1 0 1 1 1 1
2 1 0 1 2 2

.
2 1 1 0 1 2
2 1 2 1 0 1
1 1 2 2 1 0

 
 
 
 

=  
 
 
  
 

D  

4.4. Perron—Frobenius Theorem 

We will state (without giving the proof) the Perron-Frobenius theorem which 
will be used later on in our work. 

Theorem 1 (Perron-Frobenius theorem). Let n n×∈A   be an irreducible 
matrix. Then the Perron-Frobenius theorem states that [12]:   
• A  has a principal eigenvalue 1λ  such that all other eigenvalues iλ , for 

2,3, ,i n=  , satisfy  

• 
1 .iλ λ≥
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Figure 7. Unweighted-Undirected Graph. 

 
• The principal eigenvalue 1λ  has algebraic and geometry multiplicity of 1, and 

has a right eigenvector x  with all positive elements, i.e. 0, 1,2, ,ix i n> ∀ =   
and a left eigenvector v  with all positive elements, i.e. 0, 1,2, ,iv i n= ∀ =  .  

• Any non-negative right eigenvector is a multiple of x , any non-negative left 
eigenvector is a multiple of v .  

Furthermore, if A  is the adjacency matrix of a directed network with a 
strongly connected component, then  
• A  has a principal eigenvalue 1λ  such that all other eigenvalues iλ , for 

2,3, ,i n=  , satisfy  

1 .iλ λ≥  

• The principal eigenvalue 1λ  has algebraic and geometric multiplicity equal 
to 1, and has a left eigenvector x  with non-negative elements, i.e. 0ix >  if 
node i belongs to the strongly connected component of the network or the 
out-components of the network, and 0ix =  if node i belongs to the 
in-component of the strongly connected component of the network.  

5. Centrality Measures  

Centrality of a given node is a measure of the importance and influence of that 
node in the corresponding network. The identification of which nodes are more 
important or central than the others is a key issue in network analysis. We can 
ask the following questions:  
• Which are the most central nodes in a network?  
• Which are the most important nodes in a network?  
• Which are the most influential nodes in a network?  

These types of questions can have different interpretations in different 
networks. For instance;  
• when dealing with a social network, the most central node can be the most 

popular person,  
• when dealing with a web portal network, the most central node can be a web 

page with the best quality of content in a specific field,  
• in terms of the internet network, the most central node might be a network 

gateway (router) with the highest bandwidth.  
These ideas can be used to characterize types of centrality measure to find the 

most important nodes in a network in a given context. That is, there are many 
different centrality measures. When measuring the centrality of the node, we 
should be sure that:  
• we know what each centrality measure means;   
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• what they measure well; and  
• why a particular centrality measure is the most appropriate for the kind of set 

we are investigating.  
The most common centrality measures include degree centrality, betweenness 

centrality, eigenvector centrality, Katz centrality, PageRank centrality, closeness 
centrality and subgraph centrality [11] [13]. 

5.1. Degree Centrality 

Degree centrality of a node iv  in a given network is given by the total degree 

id  of iv . The degree centrality measures the ability of a node to communicate 
directly with other nodes. 

In an undirected network, the degree id  of a node is given as  

T

1
,

n

i ij i
j

d a
=

= =∑ e Ae                         (1) 

where A  is the adjacency matrix, ie  is the ith standard basis vector (ith 
column of the identity matrix) and e  is the vector of all entries one. 

In a directed network, we can consider the in-degree of a node, given as  

T

1
,

n
in
i ij i

j
d a

=

= =∑ e Ae                        (2) 

or the out-degree of the node, given as  

T

1
.

n
out
i ij i

j
d a

=

= =∑ e Ae                       (3) 

In a directed graph, a source is a node with zero in-degree and a sink is a node 
with zero out-degree. 

As an example, consider the undirected graph in Figure 8. We are interested 
in finding the central node using degree centrality.  

The adjacency matrix A  for Network-1 in Figure 8 is given as   

0 1 0 0 0 0 0 1 1 1 1 1
1 0 1 0 0 0 1 0 0 0 0 0
0 1 0 1 0 0 1 0 0 0 0 0
0 0 1 0 1 1 1 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 1 1 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 1 0 1 1 0
1 0 0 0 0 0 0 0 1 0 0 1
1 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 1 0 0

 
 
 
 
 
 
 
 
 =  
 
 
 
 
 
 
 
 
 

A  

The degree centralities are contained in the vector =d Ae ;  

[ ]T6 3 3 4 2 3 4 2 4 3 2 2d =  
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Figure 8. Network-1. 

 
Using the degree centrality measure, node 1 is the most central node due to 

the fact that it has the highest degree. 

5.2. Closeness Centrality 

Closeness centrality measures the average shortest path length from a node to all 
other nodes. It uses neighbours and the neighbours of neighbours of a node iv  
to determine its centrality. Thus, nodes that are not directly connected to iv  are 
taken into consideration as opposed to the degree centrality case. 

Letting ( )d ij  be the length of the shortest path from node i to node j, the 
mean distance from node i to the other nodes in a network is given by;  

( ) T1 1 ,
1 1i i

i j V
l d ij

N N≠ ∈

= =
− −∑ e De                  (4) 

where N is the total number of nodes and D  denotes the distance matrix. 
In general, we want to associate high centrality score with important nodes. So 

we will use the reciprocal of il  as the value of the centrality. Thus, the closeness 
centrality ic  for a node iv  is given by:  

1
T

1
i i

i

Nc l− −
= =

e De
                         (5) 

For example, consider Network-1 in Figure 8. 
The distance matrix is given by ( )( ),d i j=D    

0 1 2 3 4 3 2 1 1 1 1 1
1 0 1 2 3 2 1 2 2 2 2 2
2 1 0 1 2 2 1 3 3 3 3 3
3 2 1 0 1 1 1 4 4 4 4 4
4 3 2 1 0 1 2 5 5 5 5 5
3 2 2 1 1 0 1 4 4 4 4 4

.
2 1 1 1 2 1 0 3 3 3 3 3
1 2 3 4 5 4 3 0 1 2 2 2
1 2 3 4 5 4 3 1 0 1 1 2
1 2 3 4 5 4 3 2 1 0 2 1
1 2 3 4 5 4 3 2 1 2 0 2
1 2 3 4 5 4 3 2 2 1 2 0

 
 
 
 
 
 
 
 
 =  
 
 
 
 
 
 
 
 
 

D  

Then,  
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T T

,
1 1

i i
i

dl
N N

= =
− −

e De e  

where d=De   

[ ]20 20 24 29 38 30 23 29 27 28 29 29=EVC  

Thus, 
1

i
i

c
l

= , gives 

1 2 3
11 11 110.55, 0.55, 0.458
20 20 24

c c c= = = = = =  

4 5 6
11 11 110.379, 0.289, 0.367
29 38 30

c c c= = = = = =  

7 8 9
11 11 110.478, 0.379, 0.407
23 29 27

c c c= = = = = =  

10 11 12
11 11 110.393, 0.379, 0.379.
28 29 29

c c c= = = = = =  

Now, nodes 1 and 2 are identified as the most important nodes in the network. 

5.3. Eigenvector Centrality 

In an undirected network which is connected we can write the measure of 
centrality by using the eigenvector centrality. Eigenvector centrality takes into 
consideration the importance of neighbours of a node. In degree centrality a 
node is awarded one centrality point for each neighbour. Eigenvector centrality 
gives each node a score which is proportional to the sum of the score of its 
neighbours. In eigenvector centrality, a node is important if it is linked to other 
important nodes. The larger an entry on the node, the more important the node 
is considered to be. 

From the Perron-Frobenius theorem, the eigenvector associated to the 
principal eigenvalue of the adjacency matrix A  is unique if the network is 
strongly connected. We define the centrality of a node iteratively by using the 
sum of its neighbours’ centralities. We initially assume that a node j has 
centrality ( )0 1jx = . Then we calculate a new iteration ( )1

ix  as the sum of the 
centralities of i’s neighbours. 

That is,  
( ) ( )1 0 ,i ij j

j
x a x=∑                          (6) 

where ija  are the entries of the adjacency matrix. 
In matrix form we write this as:  

( ) ( )1 0 .=x Ax                           (7) 

After k-steps, we have  
( ) ( ) ( )0 .k k=x A x                          (8) 

Note that the eigenvector centrality is defined as ( )lim k
k→∞ x . 

We can write ( )0x  as a linear combination of eigenvectors iv  of the 
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adjacency matrix A , that is,  
( )0 ,i i

i
c v=∑x                          (9) 

where the ic  are constants. 
Then, from Equation (8), we have  

( ) ( ) ( )
1 1

1 1

.
k k

k k k k k ki i
i i i i i i i i i i i

i i i i i
c v c v c v c v c vλ λ

λ λ λ
λ λ

   
= = = = =   

   
∑ ∑ ∑ ∑ ∑x A A (10) 

Therefore,  

( )

11

,
kk

i
i ik

i
c vλ

λλ
 

=  
 

∑x                      (11) 

where iλ  is the eigenvalue associated with the eigenvector iv  and 1λ  is the 
principal eigenvalue. 

Since 
1

1iλ
λ

< , for 2,3, ,i n=  , we have;  

1 1
1 11

lim lim lim
k kk

i i
i i i ikk k ki i

c v c v c vλ λ
λ λλ→∞ →∞ →∞

   
= = =   

   
∑ ∑x  

as 
1

lim 0, 1.
k

i

k
iλ

λ→∞

 
→ ∀ > 

 
 

This implies that the limiting centralities are proportional to the principal 
eigenvector 1v  of the adjacency matrix. 

Therefore, in matrix form, the eigenvector centrality x  satisfies  

1
1

1
λ

λ
= ⇒ =Ax x x Ax                     (12) 

1

1 .i ij j
j

x a x
λ

= ∑                         (13) 

Note that in eigenvector centrality, the higher the centrality of the neighbours 
of the node, the more important the node is. 

For example, consider the network in Figure 9. 
The adjacency matrix for Network-2 in Figure 9, is given by  

0 1 1 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0
1 0 0 1 0 0 1 0 0 0
1 0 1 0 1 0 0 0 0 0
0 1 0 1 0 1 1 1 0 0

.
0 0 0 0 1 0 0 1 0 0
0 0 1 0 1 0 0 1 1 1
0 0 0 0 1 1 1 0 1 0
0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 1 0 1 0

 
 
 
 
 
 
 
 =
 
 
 
 
 
 
 
 

A  
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Figure 9. Network-2. 

 
The eigenvalues of the adjacency matrix are 

( ) (
)

2.464, 1.931, 1.543, 0.666, 0.477,

0.332,0.370,1.398,2.116,3.531

Aρ = − − − − −

−
 

The principal eigenvector corresponding to the principal eigenvalue 

1 3.531λ =  is  

[
]

0.198 0.181 0.261 0.255 0.443

0.243 0.468 0.416 0.313 0.221

v =
 

Since the eigenvector centralities ( EVC ) correspond to the principal 
eigenvector, the eigenvector centralities for Network-2 will be 

[
]

0.198 0.181 0.261 0.255 0.443

0.243 0.468 0.416 0.313 0.221

=EVC
 

Using the eigenvector centrality, we conclude that node 7 is the most 
important node. 

5.4. Katz Centrality 

Katz centrality takes into consideration both the number of direct neighbours 
and the further connections of a node in the network. That is, a node is 
important in Katz centrality if it has universal connections to other nodes in the 
network. Katz centrality takes into account all paths of arbitrary length from a 
node i to other nodes in the network. 

The Katz centrality k  is given by  

( )
0 0

,kk k

k k
α α

∞ ∞

= =

 = = 
 
∑ ∑k A e A e                    (14) 

where e  is the column vector of ones, α  is called the attenuation factor and 
A  is the adjacency matrix of the network. We can expand Equation (14) as  
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( ) ( )( )2

0
,k

k
α α α

∞

=

= = + + +∑k A e I A A e                (15) 

and, if the sum converges, then  

( ) 1 ,α −= −k I A e                         (16) 

where I is n n×  identity matrix and e  is the column vector of ones. 
To ensure the convergence of ( ) 1α −−I A  and an accurate definition of Katz 

centrality, we must consider the attenuation factor α  to be within the range  

1

10,α
λ

 
∈ 
 

. 

For example, we compute the Katz centrality of Network-2 in Figure 9. Since  

the principal eigenvalue is 1 3.531λ = , then 10,
3.531

α  ∈ 
 

. To calculate the  

Katz centrality, we choose 0.25α = , then the Katz centrality will be  

( ) 10.25 ,−= −k I A e  

[
]T

5.826 5.223 7.086 6.992 11.065

6.316 11.526 10.201 7.895 5.855

⇒ =k
 

Therefore, node 7 is the most important node. 

5.5. Subgraph Centrality 

Subgraph centrality attempts to measures the centrality of a node by taking into 
consideration the participation of each node in all subgraphs of the network. It 
does this indirectly by counting the number of closed walks in the network 
which start and end at a given node in the network: a relationship can be shown 
between subgraphs and these walks. 

If A  is the adjacency matrix of an unweighted network, we know that   
• ( )k

ii
A  corresponds to the number of closed walks of length k starting at 

node iv .  

• ( )k

ij
A  corresponds to the number of walks of length k that start at node iv  

and end at node jv .  

We define  

( ) ( ) as the local spectral moment of node k
k ii

i iµ = A  

In a similar way to Katz centrality, subgraph centrality of a node i is a 
weighted sum of closed walks of different lengths which start and end at node i. 
The shorter the closed walk, the more the centrality of the node is influenced. 

The subgraph centrality of node i in the network is given by  

( ) ( ) ( ) 2 3

0 0! ! 1! 2! 3!

k
k ii

k k ii

i
SC i

k k
µ∞ ∞

= =

 
= = = + + + + 

 
∑ ∑

A A A AI        (17) 

( ) ( )e
ii

SC i⇒ = A                       (18) 
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Considering the exponential of the adjacency matrix,  
2 3

e
2! 3! !

k

k
= + + + + + +A A A AI A  

 

we observe that the numbers of closed walks associated with 2A  of length 2 are 
counted twice for every link in the network. On the other hand, the closed walk 
associated with 3A  of length 3 is counted 2 3 3!× =  for every triangle. To 
avoid double counting, we penalize the closed walks of length 2 by 2!  and 
closed walks of length 3 are penalized by 3! . In general, any circuit of length k 
can be traversed in 2 directions and there are k points where you can start, so 
that this circuit is counted 2 k×  times. From the exponential of the adjacency 
matrix, when 4k ≥ , the penalization included is not the same as the 
penalization of counting the number of repeated closed walks. 

For instance, let us consider Network-2 in Figure 9. We want to find the 
subgraph centrality. We have;  

3.962 2.475 3.393 3.532 2.914 0.991 2.345 1.569 0.944 0.687
2.475 2.79 1.858 2.227 3.306 1.423 2.188 1.997 1.055 0.682
3.393 1.858 4.283 3.696 3.498 1.369 4.021 2.631 2.037 1.562
3.532 2.227 3.696 4.345 4.107 1.691 3.297 2.564 1.508 1.0

e =A

44
2.914 3.306 3.498 4.107 7.713 4.312 6.554 6.404 3.924 2.556
0.991 1.423 1.369 1.691 4.312 3.423 3.448 4.131 2.24 1.294
2.345 2.188 4.021 3.297 6.554 3.448 8.37 6.791 5.762 4.327
1.569 1.997 2.631 2.564 6.404 4.131 6.791 7.02 4.948 3.131
0

.

.944 1.055 2.037 1.508 3.924 2.24 5.762 4.948 5.016 3.563
0.687 0.682 1.562 1.044 2.556 1.294 4.327 3.131 3.563 3.32

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Then the subgraph centrality will consist of the diagonal entries of eA , which 
is  

( ) [
]T

3.962 2.79 4.283 4.345 7.713

3.423 8.37 7.02 5.016 3.32

SC i =
 

We observe that node 7 has the highest subgraph centrality, thus, node 7 is the 
most central node. 

6. Relationship between Centrality Measures 

Among the challenges that arise in determining the importance of a node in a 
network using centrality is that it is not always clear which of the centrality 
measures should be used. It is not obvious whether two centrality measures will 
give the same ranking of the nodes in the given network. Also, there is the 
necessity of choosing the attenuation factor α  in Katz centrality which adds 
another challenge. Different choices of α  may lead to different rankings. 
Experimentally, it has been seen that different centrality measures provide highly 
correlated rankings [1]. Ranking becomes more stable when α  approaches its 
limits, i.e. as  
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1

10 and .α α
λ

→ →  

We will prove these correlations and stability of ranking. This will relate the 
degree and eigenvector centrality to Katz centrality.  

Theorem 2. Let ( ),G V E=  be undirected connected network with 
adjacency matrix A . The Katz centrality k  is given as  

( ) 1 .α −= −k I A e  

Then,  
• as 0α → , the ranking produced by k  converges to that produced by 

degree centrality, and  

• as 
1

1
α

λ
→ , the ranking produced by k  converges to that produced by 

eigenvector centrality.  
Proof. The Katz centrality k  is given as  

( ) 1 ,α −= −k I A e                       (19) 

which can be written as  

( )
( ) ( )( )
( ) ( )

1

2 3

2 3

α

α α α

α α α

−= −

= + + + +

= + + + +

k I A e

I A A A e

e Ae A e A e





             (20) 

( ) ( )2 3α α α= + + + +k e d A e A e                (21) 

where d  is the vector of the degree centralities of the nodes. 
Consider the relation  

( )1 .ψ
α

= −k e                         (22) 

It is clear that the ranking produced by ψ  will be exactly the same as that 
produced by k , due to the fact that the score of each node has been scaled and 
shifted in the same way. Thus,  

( ) ( ) ( )( )2 31 1ψ α α α
α α

= − = + + + +k e e d A e A e   

2 2 3 .ψ α α= + + +d A e A e                   (23) 

Then,  

0
lim
α

ψ
→

= d                           (24) 

where d  is the vector of the degree centralities of the nodes. 
Therefore, the ranking produced by the Katz centrality reduces to that 

produced by degree centrality. 
To show the second relation, we write the column vector e , as  

1
,

n

i i
i
β

=

= ∑e v                           (25) 
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where siβ ′  are constants and si′v  are eigenvectors of matrix A . 
Then, we can write the Katz centrality as  

( ) ( )

( )

1

0

0 1 0 1

0 1 1

1
1

k

k
n nk k k

i i i i
k i k i

n n
k k

i i i i i
k i i i

α α

α β α β

α β λ β
αλ

∞
−

=

∞ ∞

= = = =

∞

= = =

= − =

= =

= =
−

∑

∑ ∑ ∑ ∑

∑ ∑ ∑

k I A e A e

A v A v

v v

               (26) 

1 1
=21

1
1 1

21

1 1
1 1

11
1 1

n

i i
i i

n

i i
i i

β β
αλ αλ

αλ
β β

αλ αλ=

⇒ = +
− −

 −
= + 

− − 

∑

∑

k v v

v v
               (27) 

Consider the relation  

( )11φ αλ= − k                           (28) 

That is, the ranking produced by φ  is exactly the same as that produced by 
k , due to the fact that the score of each node has been scaled and shifted in the 
same way. This implies that  

1
1 1

2

1=
1

n

i i
i i

αλ
φ β β

αλ=

−
+

−∑v v                       (29) 

Then,  

1

1 11
lim
α

λ

φ β
→

= v                            (30) 

This implies that the limiting centralities are proportional to the principal 
eigenvector 1v  of the adjacency matrix. Thus, the ranking produced by the Katz 
centrality reduces to those produced by eigenvector centrality.  

7. Matrix Functions  

This section discusses some of the matrix functions developed using Taylor 
series. 

Matrix functions have applications throughout applied mathematics and 
scientific computing. Matrix functions are used in various fields, for example, in 
control theory and electromagnetism and can also be used to study complex 
networks like social networks. 

Let ( )f z  be a complex-valued function, such that n nz C ×∈  and ( )f z  is 
analytic in the disc z R< , where R∈ . Using Taylor’s theorem, we can 
represent ( )f z  as a convergent power series  

( ) 2
0 1 2 ,f z a a z a z= + + +                    (31) 

for z R< , and , 0ka k ≥  are complex-valued constants [12]. 
Let n nC ×∈A  be a complex-valued matrix. Then we define the matrix 

function of A  as  

https://doi.org/10.4236/ojdm.2018.84008


L. L. Njotto 
 

 

DOI: 10.4236/ojdm.2018.84008 97 Open Journal of Discrete Mathematics 
 

( ) 2
0 1 2 .f a a a= + + +A I A A                   (32) 

The matrix series in Equation (32) is convergent to the n n×  matrix ( )f A  
if all n2 scalar series that make up ( )f A  are convergent. It turns out that the 
series of ( )f A  converges if all eigenvalues of A  lie in the region of convergence 
of ( )f z  in Equation (31). This can be proved by the following theorem.  

Theorem 3. Suppose that ( )f z  has a power series representation, written as  

( )
0

k
k

k
f z a z

∞

=

= ∑                         (33) 

in an open disc z R< . Then the series  

0

k
k

k
a

∞

=
∑ A                             (34) 

is convergent if and only if the eigenvalues of A  lie in z R<  [12].  
Proof. We prove this theorem only for diagonalisable matrices using the 

Jordan form of matrix A . 
Let Q  be a transformation matrix which diagonalizes A . Then we can write  

( ) 1
1, , .ndiag λ λ −= =D Q AQ                   (35) 

Thus,  

( ) ( ) ( )( )

( )

1
1

1
1

0 0

1

0

1

0

0

, ,

, ,

.

n

k k
k k n

k k

k
k

k

k

k
k

k
k

k

f diag f f

diag a a

a

a

a

λ λ

λ λ

−

∞ ∞
−

= =

∞
−

=

∞
−

=

∞

=

=

 =  
 

 =  
 

=

=

∑ ∑

∑

∑

∑

A Q Q

Q Q

Q D Q

QDQ

A





              (36) 

If A  has an eigenvalue i Rλ ≥ , then the series in Equation (33) diverges 
when evaluated at iλ . It follows that the series in Equation (34) also diverges. 
That is, if there exist eigenvalues of matrix A  which fall outside z R< , then 
the series in Equation (34) diverges. 

Therefore ( )f A  converges if and only if i Rλ < , where ,1i i nλ ≤ ≤  are the 
eigenvalues of matrix A .  

In general, if the function ( )f z  can be expressed by using Taylor series and 
it converges in the disc z R<  which contains the eigenvalues of A , then 

( )f A  can be computed by substituting the matrix A  for variable z in the 
function ( )f z . For instance,  

( ) ( ) ( ) ( )11
1

zf z f
z

−+
= ⇒ = − +

−
A I A I A  

The most important matrix functions which can be expressed by using the 
Taylor series are the following:  
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• Exponential function  

( )
2 3

0
e 1

2! 3! !

k
z

k

z z zf z z
k

∞

=

= = + + + + =∑               (37) 

( )
2 3

e
2! 3!

f⇒ = = + + + +A A AA I A   

( )
0 !

k

k
f

k

∞

=

= ∑ AA                         (38) 

• Cosine function  

( ) ( ) ( )
( )

22 4

0

1
cos 1

2! 4! 2 !

k k

k

zz zf z z
k

∞

=

−
= = − + + = ∑  

( ) ( )
2 4

cos
2! 4!

f⇒ = = − + +
A AA A I   

( ) ( )
( )

2

0

1
cos

2 !

k k

k k

∞

=

−
= ∑

A
A                      (39) 

• Sine function  

( ) ( ) ( )
( )

2 13 5

0

1
sin

3! 5! 2 1 !

k k

k

zz zf z z z
k

+∞

=

−
= = − + + =

+∑  

( ) ( ) ( )
( )

2 13 5

0

1
sin .

3! 5! 2 1 !

k k

k
f

k

+∞

=

−
⇒ = = − + + =

+∑
AA AA A A        (40) 

• Logarithmic function  

( ) ( ) ( )( )12 3 4

1

1
log 1

2 3 4

k k

k

zz z zf z z z
k

+∞

=

−
= + = − + − + = ∑       (41) 

( ) ( ) ( )( )12 3 4

1

1
log .

2 3 4

k k

k
f

k

+∞

=

−
⇒ = + = − + − + = ∑

AA A AA I A A     (42) 

• Hyperbolic function   
1) sinh function  

( ) ( ) ( )
3 5 2 1

0
sinh

3! 5! 2 1 !

k

k

z z zf z z z
k

+∞

=

= = + + + =
+∑

 

( ) ( ) ( )
3 5 2 1

0
sinh

3! 5! 2 1 !

k

k
f

k

+∞

=

⇒ = = + + + =
+∑A A AA A A 

 

2) cosh function  

( ) ( ) ( )
2 4 2

0
cosh 1

2! 4! 2 !

k

k

z z zf z z
k

∞

=

= = + + + = ∑
 

( ) ( ) ( )
2 4 2

0
cosh .

2! 4! 2 !

k

k
f

k

∞

=

⇒ = = + + + = ∑A A AA A I 
 

Each of these functions can (in theory) be used to define a centrality measure 
on a network with adjacency matrix A . For example, to obtain the centralities 
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of all the nodes we can compute ( )f A e , where e  is the vector of ones, or 
( )( )diag f A . 

We may need to be careful with these raw centrality measures as ( )f A  may 
contain negative (or even complex) entries. For instance, to compute the 
logarithmic function ( )f A , we need to take care of the complex entries, since it 
is not possible to make ranking out of complex entries. To avoid the complex 
entries, we compute ( )log γ +I A , where γ  is a real constant chosen so that 
( )γ +I A  has positive eigenvalues. The constant γ  differs for different 
networks. 

We can also define centrality measures by applying analytic continuations of 
( )f z  outside its radius of convergence. 

Recall that, if the attenuation factor 
1

1
α

λ
< , where 1λ  is the principal 

eigenvalue of A , then  

( ) 1

0
.k k

k
Iα α

∞
−

=

= −∑ A A  

But  

( ) ( ) 1f I α −= −A A  

is also defined for 
1

1α
λ

≥  as long as 1

i

α
λ

≠  where iλ  is an eigenvalue of 

A . Then we can generalize Katz centrality by the following definition:  

( ) ( ) ( )
1 1 1diag or withI Iα α α

ρ
− −= − = − >k A k A e

A
 

where e  is the column vector of ones and ( )ρ A  is the spectrum of A . 
To determine which of the matrix functions can be used to asses centrality in 

the network, we will do some experimental work on a variety of networks in the 
following section. We will perform the experimental work by making comparisons 
between the rankings based on the common centrality measures discussed in 
section V and the rankings based on these matrix functions. 

8. Experimental Work and Discussion 

In this section we aim to analyse experimentally the agreements between the 
centrality measures discussed in section V, and whether the matrix functions 
discussed in section VII can be used to determine the important nodes in a 
network. The experimental work will compare matrix functions to the common 
centrality measures. 

A variety of techniques can be used to compute centrality measures (those 
discussed in section V) and matrix functions. To compute the exponential of a 
matrix, logarithmic of a matrix and other matrix functions we will use SciPy 
matrix functions [14]. In our new measures involving matrix functions and 
generalisations to Katz centrality, we will calculate centralities by using the 
diagonal entries of these functions. We will use the Kendall correlation 
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coefficient in our experiments to compare the agreement between centrality 
measures. 

8.1. Correlation (Kendall, Pearson, Spearman) Coefficient 

Correlation is a bivariate analysis that measures the strengths of association 
between two variables. The value of the correlation coefficient varies between 1 
and −1. The positive correlation signifies that the ranks of both variables are 
increasing, while the negative correlation signifies that as the rank of one 
variable increases, the rank of the other variable is decreasing. The correlation 
coefficient between the two variables is said to be a perfect association if it lies 
between ±1 [15]. The closer the value of the correlation coefficient to 1 or to −1, 
the stronger the relationship between the two variables. As the correlation 
coefficient value goes towards 0, the relationship between the two variables will 
be weaker. In statistics, we usually measure the strengths of association by: 
Pearson correlation, Kendall rank correlation and Spearman correlation. 

The Kendall coefficient of correlation is the measure of the degree of 
correspondence between two set of ranks given to the same set of objects. The 
Kendall coefficient is interpreted as the difference between the probability of 
these objects being in the same order and the probability of these objects being 
in a different order [2]. 

Let X and Y be two observations, such that ( ) ( ) ( )1 1 2 2, , , , , ,n nx y x y x y  is the 
set of joint random variables of X and Y, respectively. The values ( )ix  and 
( )iy  are all unique.  
• Any pair of observations ( ),i ix y  and ( ),j jx y  is said to be concordant if  

0,i j

i j

x x
y y
−

>
−

 

which implies that either i jx x>  and i jy y>  or i jx x<  and i jy y< .  
• The pair is said to be discordant if  

0,i j

i j

x x
y y
−

<
−

 

which implies that either i jx x>  and i jy y<  or i jx x<  and i jy y> .  
• The pair is neither concordant nor discordant if i jx x=  or i jy y= .  

The Kendall ( )τ  correlation coefficient is defined as  

( )

o oN concordant pairs N discordant pairs
1 1
2

n n
τ

−
=

−
 

The Kendall rank coefficient can be interpreted as follows: the values of τ  
greater than zero show an agreement, being close to one indicates a strong 
agreement. On the other hand, values less than zero show a disagreement and 
those close to negative one indicate a strong disagreement [2]. Indeed, if all pairs 
are concordant, then 1τ = , which implies that the variables are in exactly the 
same ranking (order). If they are all discordant then 1τ = − , which implies that 
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the variables are in exactly the opposite ranking (order).  
Pearson correlation is a measure of degree of linear relationship between two 

variables and is denoted by r. Pearson correlation is basically used to draw a line 
of best fit through the data of two variables, r indicates how far away all these 
data points are to the line of best fit. 

The following formula is used to calculate the Pearson r correlation:  

( )( ) ( )( )2 22 2

N xy x y
r

N x x N y y

−
=

− −

∑ ∑ ∑
∑ ∑ ∑ ∑

             (43) 

where:  
r = Pearson correlation coefficient 
N = number of observation in each data set 

xy∑  = the sum of the products of paired scores 
x∑  = sum of scores of variable x 
y∑  = sum of scores of variable y scores 

2x∑  = sum of squared scores of variable x 
2y∑  = sum of squared scores of variable y 

To use Pearson correlation r, the two variables must be measured either in 
interval or ratio scale. However, both variables do not need to be measured on 
the same scale (for instance, one variable can be ratio and one can be interval). 
We can not use the Pearson correlation for ordinal data, instead we use 
Spearman’s rank correlation or a Kendall’s Correlation. 

Spearman rank correlation is the nonparametric version of the Pearson 
correlation coefficient that is used to measure the degree of association between 
two two continuous or ordinal variables. 

The following formula is used to calculate the Spearman rank correlation:  

( )
2

2

6
1

1
iD

N N
ρ = −

−
∑                       (44) 

where; 
i ii x yD R R= −  is the difference between the two ranks of each 

observation; N is the number of observations.  
We use the Spearman correlation coefficient when the relationship between 

variables is not linear. 
Despite the fact that both Spearman and Kendall correlations measure 

monotonicity relationships and have a nice interpretation but in this paper we 
will opt to use the Kendall correlation coefficient due to the following reasons 
[16] [17]:  
• The distribution of Kendall’s has better statistical properties.  
• The interpretation of Kendall’s in terms of the probabilities of observing the 

agreeable (concordant) and non-agreeable (discordant) pairs is very direct.  
• The Kendall correlation has a smaller gross error sensitivity (GES) (more 

robust) and a smaller asymptotic variance (AV) (more efficient), that is 
Kendall correlation has a ( )2O n  computation complexity comparing with 
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( )logO n n  of Spearman correlation, where n is the sample size.  

8.2. Network Models 

Networks have been around us for so many years and the study is not new. 
Graph theorists and mathematicians have been surrounded by problems where 
they were trying to make sense of these complex networks. As a result of this, 
random network theory was generated stating that nodes and links in a graph 
are connected randomly to each other. In this paper we will consider three 
networks model due to its significance:  
• Erdös-Rényi model: are formed by completely random interactions between 

the nodes. Each node chooses its neighbours at random, constrained either 
by an overall number of relationships that might be assigned in the graph, or 
a probability of connecting to a certain neighbour [18]. Mathematically, each 
network would be following a poison distribution. This distribution is such 
that vast majority of nodes have equal number of links and it is almost 
impossible to find outliers.  

• Barabási-Albert model: these are scale-free networks which are formed by 
two simple mechanisms, growth and preferential attachment. The main 
prediction which a scale free network makes is the presence of few outlier 
nodes which have many connections. These nodes are also known as hubs. 
Preferential attachment is a probabilistic mechanism in which a new node is 
free to connect to any node in the network, whether it is a hub or has a single 
link [18] [19].  

• Watts-Strogatz model: is important because it shows how the “small-world 
effect” in networks can coexist with other commonly observed features of 
social networks, like a high clustering coefficient. More specifically, the 
model showed how adding a small fraction of random long-range links in an 
otherwise regular network can lead to slow, logarithmic scaling of the typical 
distance between nodes with network size [20].  

8.2.1. First Experiment 
We begin our experiments by considering a small network with 20 nodes. The 
network was randomly generated in text editor and drawn using Sage. The aim 
is to determine which of the matrix functions give similar rankings as the 
common centrality measures. We have many functions to choose from and we 
want to limit our choice. Note that we will not consider the exponential 
functions since it is similar to the subgraph centrality. 

The experiment shows that the diagonal entries of the logarithmic function 
and cosine function give the ranking of the nodes in reverse order as compared 
to other rankings. Also, we observe that the sine function does not match any 
other centrality measure. The network in Figure 10, having 20 nodes and 42 
edges gives us a real picture on node ranking. 

The rankings of the nodes obtained for the graph in Figure 10 by using 
different centrality measures including matrix functions are shown in Table 1.  
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Table 1. Rankings of nodes using centrality measures and matrix functions for the net-
work in Figure 10. 

Ranking Centrality measure Matrix functions 

(l) 2-11 CC DC EC KC SC log cosh sinh cos sin 

1 6 19 19 19 19 8 19 19 16 9 

2 12 12 3 3 3 13 3 3 13 10 

3 19 3 4 4 12 16 12 4 8 8 

4 2 4 12 12 4 11 4 12 5 16 

5 14 6 14 14 14 7 6 14 18 13 

6 3 2 0 6 6 18 14 0 7 11 

7 4 14 6 2 0 1 2 17 11 6 

8 15 0 2 0 2 5 0 2 1 5 

9 17 9 17 17 17 17 17 6 0 1 

10 1 10 18 18 15 0 15 18 17 12 

11 5 15 5 15 18 10 10 15 15 17 

12 9 17 15 5 10 15 9 7 10 2 

13 7 1 7 7 7 9 5 10 14 0 

14 18 5 1 1 5 14 18 11 9 18 

15 0 7 9 9 9 2 7 5 3 3 

16 10 11 10 10 1 4 1 1 4 7 

17 11 18 16 11 11 3 11 9 2 19 

18 16 8 11 16 16 6 16 16 6 15 

19 8 13 8 13 13 12 13 13 12 14 

20 13 16 13 8 8 19 8 8 19 4 

 

 
Figure 10. Network with 20 nodes and 42 edges. 

 
Note that the ranking is from the most to the least important/central node with 
respect to the centrality measure used. 

To avoid making many comparisons using Kendall correlation coefficient 
between the common centrality measures and those produced by matrix 
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functions, we will choose one centrality measure among the other one. To do 
this we need to investigate whether the chosen centrality measure agrees with 
the other centralities measures. In this case, we make a comparison between the 
closeness centrality (CC) and degree centrality (DC), eigenvector centrality (EC), 
Katz centrality (KC) and subgraph centrality (SC) for graph in Figure 10. 

Table 2 shows that there is an agreement between closeness centrality and 
other centrality measures. 

We observe from graph of Figure 11 that there is an agreement between 
closeness centrality and other centrality measures. 

In Table 1, we have to modify the cosine and logarithmic functions so that 
they match with other rankings. The best way of doing this seems to be by 
reversing the order of their rankings. 

To be more confident about the rankings of nodes using matrix functions, we 
will use the Kendall correlation coefficient to make the comparison between 
closeness centrality and the matrix functions. We chose closeness centrality 
among the other standard centrality measure to make the comparison with 
matrix functions in as much as it takes into account neighbours and the 
neighbours of neighbours of a node to determine its centrality. In the 
comparisons, we denote by ( )CC, fτ  the Kendall coefficient between closeness 
centrality and centrality measure induced by ( )f A . 

In Table 3, we reversed the rankings given by the cosine and the logarithmic 
functions before calculating the Kendall coefficients. We observe in Table 3 that the 
Kendall coefficients ( )CC,logτ , ( )CC,coshτ , ( )CC,sinhτ  and ( )CC,cosτ  
are all positive. This implies the agreement of these matrix functions with the  
 
Table 2. Kendall coefficients between closeness centrality and other centrality measure 
applied to graph in Figure 10. 

Comparison Kendal Coefficient 

( )CC,DCτ  0.695 

( )CC,ECτ  0.653 

( )CC,KCτ  0.684 

( )CC,SCτ  0.695 

 
Table 3. Kendall coefficients between closeness centrality and matrix functions applied to 
graph in Figure 10. 

Comparison Kendal 

 Coefficient 

( )CC,logτ  0.737 

( )CC,coshτ  0.674 

( )CC,sinhτ  0.558 

( )CC,cosτ  0.695 

( )CC,sinτ  −0.211 
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Figure 11. Agreement. 
 
closeness centrality measure and the agreement is quite strong for logarithmic, 
cosh, and cosine functions since their Kendall coefficients are close to 1. On the 
other hand, the Kendall coefficient between closeness centrality and sine 
function is negative, which implies that there is no agreement between their 
rankings. 

8.2.2. Second Experiment 
We compare the agreement of centrality measures, by generating 10 random 
networks using the Barabási-Albert preferential attachment model.  

The Barabási-Albert model is a simple scale-free random graph generator. The 
network begins with an initial set of 0 2m ≥  nodes. The degree of each node in 
the initial network should be at least 1, if not, the network will always end up 
being disconnected. New nodes are free to attach to an existing node in the 
network. At each step, a new node is created and connected to an existing node. 
Each new node is connected to 0m m≤  existing nodes with a probability that is 
proportional to the number of links that the existing nodes already have. To use 
this method, we specify the number of nodes in the network (n) and the number 
of new nodes form as they appear (m) in such a manner that nodes with higher 
degree have a higher chance of being selected for attachment [21]. 

The comparisons involve rankings of nodes using centrality measures such as 
closeness centrality, degree centrality, eigenvector centrality, Katz centrality and 
subgraph centrality. We use ( ) 1α −= −k I A e  in this experiment to compute  

Katz centrality. In all cases we take 
1

1
α

λ
< . For each choice of n and m, we  

generate 5 networks and record the mean values of the Kendall coefficients. We 
denote the Kendall coefficient correlation by iτ  according to the Table 4. 

It is evident from Table 5, that all Kendall coefficients are positive, which 
indicates an agreement between the rankings. The Kendall coefficient shows that  
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Table 4. The notations of Kendall correlation coefficients. 

 DC EC KC SC 

CC 1τ  2τ  3τ  4τ  

DC  5τ  6τ  7τ  

EC   8τ  9τ  

KC    10τ  

 
Table 5. Kendall coefficients for centrality measures applied to different random net-
works generated by using the Barabási-Albert method. 

Networks Kendall Coefficient 

(n, m) 1τ  2τ  3τ  4τ  5τ  6τ  7τ  8τ  9τ  10τ  

(200, 2) 0.43 0.84 0.83 0.81 0.42 0.55 0.54 0.84 0.84 0.95 

(200, 4) 0.59 0.88 0.89 0.88 0.57 0.60 0.57 0.96 0.99 0.96 

(200, 5) 0.61 0.88 0.89 0.88 0.58 0.61 0.56 0.97 1.0 0.97 

(400, 4) 0.55 0.89 0.89 0.89 0.54 0.56 0.54 0.98 1.0 0.98 

(400, 7) 0.64 0.89 0.9 0.89 0.63 0.68 0.63 0.96 1.0 0.96 

(600, 1) 0.19 0.82 0.59 0.79 0.18 0.43 0.24 0.64 0.85 0.74 

(600, 16) 0.77 0.92 0.93 0.93 0.75 0.78 0.75 0.97 1.0 0.97 

(700, 4) 0.45 0.90 0.91 0.91 0.44 0.48 0.44 0.97 0.99 0.97 

(800, 10) 0.66 0.92 0.88 0.92 0.65 0.77 0.65 0.88 1.0 0.88 

(800, 20) 0.78 0.93 0.91 0.93 0.77 0.85 0.77 0.92 1.0 0.92 

n: Number of nodes in the network. m: Number of neighbours to attach to each new node. 

 
closeness centrality is highly correlated with centrality measures corresponding 
to 2τ , 3τ  and 4τ . The eigenvector, Katz and subgraph centralities are also 
highly related, as indicated by 8τ , 9τ  and 10τ . The experiment shows that the 
agreement becomes stronger if the network is more connected. In general, we 
say that for sufficiently dense (i.e., very connected) networks, the two measures 
provide almost identical rankings, producing Kendall correlation coefficients 
close to 1. 

8.2.3. Third Experiment 
We generate 10 random networks as in the second experiment. This time, we fix 
the value of n to be 200 and we vary m. We calculate the Katz centrality for each 
network using different choices of α . Recall, the Katz centrality of the nodes is 
given by ( ) 1

iα
−= −k I A e . We choose  

1 1 2 2
max max

0.1 0.8for , for ,α α
λ λ

= =k k  

3 3 4 4
max max

1.5 10for , and for .α α
λ λ

= =k k  

We calculate the Kendall correlation coefficients ( ),i jτ k k  between all pairs 
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of measures as denoted in Table 6. 
Note that the Kendall coefficient involving 3k  and 4k  are computed by 

taking the absolute value of the inverse function, that is ( ) 1α −−I A e  and the 
other coefficient are computed by using the normal formula. 

We observe in Table 7 that the Kendall coefficient between 3k  and 4k  is 
exactly 1. The Kendall coefficient between 1k  and both 3k  and 4k , 2k  and 
both 3k  and 4k  are the same. Since 3k  and 4k  correspond to the generalised  

Katz centrality (i.e. 
max

1
α

λ
≥ ), then we conjecture that the rankings provided by 

any generalised Katz centrality are always the same regardless of the choice of 

α , this is when 
1

1
α

λ
≥ . 

8.2.4. Fourth Experiment 
We repeat the second experiment involving generating 10 random networks 
with different number of nodes by using the Erdös-Rényi method. We will use 
the same notation for Kendall coefficients as we used in the second experiment, 
see Table 4. 

The Erdös-Rényi model is used to generate random networks in which edges 
are set between nodes with equal probabilities. The model can be used to prove  
 
Table 6. The notations of Kendall correlation coefficients. 

 K2 K3 K4 

K1 1 2k kτ  
1 3k kτ  

1 4k kτ  

K2  
2 3k kτ  

2 4k kτ  

K3   
3 4k kτ  

 
Table 7. Kendall coefficients for generalized Katz centrality applied to random networks 
generated by using the Barabási-Albert method. 

Networks Kendall Correlation coefficient 

(n, m) 
1 2k kτ  

1 3k kτ  & 
1 4k kτ  

2 3k kτ  & 
2 4k kτ  

3 4k kτ  

(200, 1) 0.701 0.385 0.401 1.0 

(200, 2) 0.703 0.526 0.493 1.0 

(200, 3) 0.684 0.549 0.493 1.0 

(200, 5) 0.734 0.638 0.639 1.0 

(200, 6) 0.784 0.666 0.658 1.0 

(200, 7) 0.777 0.697 0.677 1.0 

(200, 8) 0.809 0.712 0.703 1.0 

(200, 10) 0.828 0.759 0.761 1.0 

(200, 15) 0.881 0.739 0.74 1.0 

(200, 40) 0.911 0.479 0.54 1.0 
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the existence of networks satisfying various properties, it can also be used to 
provide a rigorous definition of what it means for a property to hold for almost 
all networks [22]. To generate random networks using the Erdös-Rényi model, 
we need to specify two parameters: the number of nodes in the network denoted 
by n and the probability p that a link should be formed between any two nodes 
[22]. 

The Kendall coefficients in Table 8 are all positive and they are close to 1. 
Using the concept of Kendall coefficients, we say that rankings of nodes using 
centrality measures for random networks generated by using the Erdös-Rényi 
are highly correlated. This implies that there is a strong agreement in their 
rankings. 

We repeat the third experiment but this time, generating 10 random networks 
with 200 nodes by using the Erdös-Rényi method. We will use the same 
definition of Katz centrality and the same notation as in Table 6. 

Table 9 shows that there is a high agreement between the rankings of 1k  and 

2k . On the other hand, we observe that the rankings of the nodes produced by  

Katz centrality when 
1

1
α

λ
<  and those produced by generalised Katz centrality, 

when 
1

1
α

λ
≥  disagree, as we see from Table 9 that the Kendall coefficient 

1 3k kτ  

and 
2 3k kτ  are approximately zero. 

8.2.5. Fifth Experiment 
We repeat the second experiment, but now with 10 random networks generated 
by using the Watts-Strogatz method. The same notation for the Kendall 
coefficient will be used as that used in the second experiment, see Table 4. 
 
Table 8. Kendall coefficients for centrality measures applied to different random net-
works generated by using the Erdös-Rényi method. 

Networks Kendall Coefficient 

(n, p) 1τ  2τ  3τ  4τ  5τ  6τ  7τ  8τ  9τ  10τ  

(200, 0.01) 0.668 0.836 0.847 0.779 0.593 0.785 0.843 0.767 0.691 0.921 

(200, 0.04) 0.798 0.875 0.888 0.866 0.79 0.817 0.815 0.97 0.96 0.973 

(200, 0.05) 0.804 0.864 0.876 0.861 0.783 0.806 0.79 0.973 0.986 0.979 

(400, 0.04) 0.811 0.827 0.885 0.891 0.885 0.837 0.861 0.837 0.974 0.999 

(400, 0.07) 0.833 0.841 0.849 0.841 0.882 0.905 0.882 0.976 1.0 0.976 

(600, 0.02) 0.826 0.904 0.911 0.903 0.822 0.84 0.826 0.981 0.993 0.984 

(600, 0.06) 0.842 0.853 0.859 0.853 0.892 0.919 0.892 0.972 1.0 0.972 

(700, 0.05) 0.851 0.87 0.874 0.87 0.893 0.921 0.893 0.97 1.0 0.97 

(800, 0.08) 0.884 0.866 0.877 0.866 0.919 0.944 0.919 0.974 1.0 0.974 

(1000, 0.1) 0.997 0.937 0.942 0.937 0.937 0.942 0.937 0.995 1.0 0.995 

n: Number of nodes in the network. p: Probability of edge creation. 
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Table 9. Kendall coefficients for generalised Katz centrality applied to 10 random net-
works with 200 nodes generated by using the Erdös-Rényi method. 

Networks Kendall Correlation coefficient 

(n, p) 
1 2k kτ  

1 3k kτ  & 
1 4k kτ  

2 3k kτ  & 
2 4k kτ  

3 4k kτ  

(200, 0.01) 0.888 0.033 0.055 1.0 

(200, 0.02) 0.872 0.042 0.031 1.0 

(200, 0.03) 0.913 0.007 0.003 1.0 

(200, 0.05) 0.924 −0.003 −0.001 1.0 

(200, 0.06) 0.924 0.054 0.062 1.0 

(200, 0.08) 0.942 −0.034 −0.046 1.0 

(200, 0.1) 0.94 0.006 0.001 1.0 

(200, 0.15) 0.959 0.001 −0.003 1.0 

(200, 0.3) 0.981 −0.004 −0.003 1.0 

(200, 0.9) 1.0 0.043 0.043 1.0 

n: Number of nodes in the network. p: Probability of edge creation. 

 
The Watts-Strogatz model was developed as a way to impose a high clustering 

coefficient onto classical random graphs. It produces networks with a small-world 
property. To generate these networks, we use watts_strogatz_graph(n, k, p) in Sage. 
Here, n denotes the number of nodes in the network which are arranged in a 
ring and connected to k nearest neighbours in the ring. Each node is considered 
independently and, with probability p, a link is added between the node and one 
of the other nodes in the network, chosen uniformly at random in accordance 
with experiments detailed in [1]. 

In our experiment, we varied n,k and p and in each case, five networks were 
created. The averages of the Kendall coefficients over these 5 networks for 
different centrality measures are given in Table 10. These Kendall coefficients 
are computed for the complete set of rankings. The Kendall coefficients show 
that the agreement between the centrality measures are much weaker than for 
the networks produced by Barabási-Albert and Erdös-Rényi methods. The 
experiment also shows that as the network becomes denser the correlation 
between measures becomes stronger. 

We then repeat the third experiment using the Watts-Strogatz method. The 
same definition of Katz centrality and the same notation were used as in Table 
6. 

In Table 11 we see a high agreement between the rankings of 1k  and 2k . 
The rankings by 3k  and 4k  are exactly the same. We also see the same 
pattern as in Table 9, so the same conclusion apply. 

8.2.6. Sixth Experiment 
The aim of this experiment is to use the three methods (Barabási-Albert, 
Erdös-Rényi and Watts-Strogatz) for generating random networks and to use  
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Table 10. Kendall coefficients for centrality measures applied to random networks gener-
ated by using the Watts-Strogatz method. 

Networks Kendall Coefficient 

(n,k,p) 1τ  2τ  3τ  4τ  5τ  6τ  7τ  8τ  9τ  10τ  

(200, 2, 0.2) 0.118 0.583 0.331 0.301 0.057 0.434 0.446 0.122 0.093 0.943 

(400, 3, 0.1) 0.231 0.252 0.169 0.176 0.198 0.332 0.377 0.24 0.186 0.871 

(500, 4, 0.3) 0.367 0.519 0.504 0.226 0.43 0.62 0.63 0.723 0.496 0.686 

(500, 6, 0.3) 0.433 0.543 0.547 0.191 0.535 0.726 0.583 0.753 0.52 0.614 

(600, 7, 0.3) 0.406 0.605 0.557 0.208 0.553 0.736 0.623 0.77 0.521 0.626 

(400, 3, 0.4) 0.143 0.275 0.202 0.17 0.065 0.594 0.65 0.123 0.114 0.902 

(300, 6, 0.1) 0.149 0.201 0.281 −0.115 0.37 0.537 0.421 0.604 0.453 0.528 

(700, 2, 0.2) 0.048 0.477 0.189 0.167 0.044 0.437 0.453 0.155 0.133 0.953 

(800, 100, 0.4) 0.992 0.919 0.935 0.919 0.921 0.938 0.921 0.98 1.0 0.98 

(800, 110, 0.5) 1.0 0.936 0.942 0.936 0.936 0.942 0.936 0.993 1.0 0.993 

n: Number of nodes in the network. k: Each node is connected to k nearest neighbours. p: Probability of 
rewiring each edge. 

 
Table 11. Kendall coefficients for generalised Katz centrality applied to 10 random net-
works with 200 nodes generated by using the Watts-Strogatz method. 

Networks Kendall Correlation coefficient 

(n, k, p) 
1 2k kτ  

1 3k kτ  & 
1 4k kτ  

2 3k kτ  & 
2 4k kτ  

3 4k kτ  

(200, 2, 0.1) 0.968 −0.08 −0.083 1.0 

(200, 4, 0.1) 0.915 0.021 0.026 1.0 

(200, 4, 0.3) 0.863 0.006 0.047 1.0 

(200, 3, 0.5) 0.86 −0.02 −0.021 1.0 

(200, 6, 0.3) 0.897 −0.043 −0.032 1.0 

(200, 8, 0.4) 0.914 0.012 0.02 1.0 

(200, 8, 0.5) 0.926 −0.022 −0.007 1.0 

(200, 10, 0.2) 0.903 0.088 0.128 1.0 

(200, 40, 0.3) 0.954 0.006 0.025 1.0 

(200, 100, 0.1) 0.988 0.037 0.047 1.0 

 
the Kendall correlation coefficient to see whether there will be an agreement 
between the closeness centrality and matrix functions, such as the logarithmic, 
cosh, sinh, cosine and sine functions. Using each method, we generate 10 
random networks and for each network we create five networks in which the 
Kendall coefficient will be obtained by taking the average over these 5 created 
networks. The aim is to see whether the pattern observed in our first experiment 
is repeated. 

Table 12 shows that there is an agreement between closeness centrality and 
matrix functions (logarithmic, cosh and sinh) in their ranking measures for  
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Table 12. Kendall coefficients between closeness centrality and matrix functions for 10 
random networks generated by using the Barabási-Albert method. 

Networks Kendall Correlation coefficient 

(n, m) ( )CC,logτ  ( )CC,coshτ  ( )CC,sinhτ  ( )CC,cosτ  ( )CC,sinτ  

(200, 2) 0.527 0.786 0.793 0.071 0.202 

(200, 6) 0.665 0.877 0.877 −0.05 −0.118 

(300, 4) 0.55 0.867 0.866 0.05 −0.05 

(300, 8) 0.721 0.916 0.916 0.015 −0.027 

(500, 2) 0.538 0.82 0.827 0.019 0.031 

(500, 10) 0.685 0.913 0.913 0.033 0.054 

(700, 1) 0.364 0.535 0.216 −0.131 0.216 

(800, 15) 0.734 0.923 0.923 0.002 −0.037 

(800, 30) 0.852 0.912 0.912 0.041 0.034 

(1000, 100) 0.969 0.92 0.92 0.121 0.054 

 
networks generated by using the Barabási-Albert method. On the other hand, 
the agreement between closeness centrality and other matrix functions such as 
cosine and sine is weak. 

We now generate 10 random networks by using the Erdös-Rényi and 
Watts-Strogatz methods. 

Table 13 shows that networks generated by using the Erdös-Rényi method 
agree in the ranking measures given by closeness centrality and matrix functions 
such as logarithmic, cosh and sinh. 

Table 14 shows that the agreement between closeness centrality and the 
matrix functions (cosh, sinh, cosine and sine) are weak in many cases. When we 
use the Watts-Strogatz method to generate the networks, the logarithmic 
function, gives a ranking similar to closeness centrality when 10m ≥ . 

In general, the agreement between closeness centrality and hyperbolic 
functions (cosh and sinh) is not strong for the networks generated by using the 
Watt-Strogatz methods. The agreement between closeness centrality and the 
cosine function as well as the sine function in networks generated by using 
Barabási-Albert, Erdös-Rényi and Watts-Strogatz methods are all weak. Among 
the tested matrix functions, the logarithmic function gives the best agreement of 
ranking with other centrality measures. 

8.2.7. Real-World Network Experiments 
In this experiment, we will study the Kendall correlation coefficient for 
real-world networks. The networks in this experiment come from a variety of 
sources, some of these data we have obtained from Gephi sample datasets [23] 
and others are found in Pajek Data Sets [24]. We will compare only some of the 
centrality measures (closeness, subgraph and Katz) and the logarithmic matrix 
function. Note that we are not interested in the meaning of each node within the  
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Table 13. Kendall coefficients between closeness centrality and matrix functions for 10 
random network generated by using the Erdös-Rényi method. 

Networks Kendall Correlation coefficients 

(n, p) ( )CC,logτ  ( )CC,coshτ  ( )CC,sinhτ  ( )CC,cosτ  ( )CC,sinτ  

(200, 0.1) 0.824 0.826 0.826 −0.16 −0.105 

(200, 0.3) 0.651 0.928 0.928 0.032 0.056 

(300, 0.4) 0.385 0.94 0.94 0.06 −0.038 

(400, 0.2) 0.821 0.929 0.929 0.008 −0.011 

(500, 0.5) 0.176 0.968 0.968 0.003 0.041 

(600, 0.09) 0.866 0.858 0.858 −0.13 −0.03 

(600, 0.4) 0.528 0.967 0.967 0.009 −0.02 

(800, 0.3) 0.607 0.965 0.965 −0.013 −0.038 

(900, 0.08) 0.895 0.894 0.894 0.027 0.011 

(1000, 0.2) 0.77 0.958 0.958 0.036 0.002 

 
Table 14. Kendall coefficients between closeness centrality and matrix functions for 10 
random networks generated by using the Watts-Strogatz method. 

Networks Kendall Correlation coefficient 

(n, m, p) ( )CC,logτ  ( )CC,coshτ  ( )CC,sinhτ  ( )CC,cosτ  ( )CC,sinτ  

(200, 3, 0.5) 0.26 0.26 −0.167 0.094 0.011 

(200, 3, 0.8) 0.279 0.273 −0.048 0.109 −0.026 

(300, 2, 0.4) 0.285 0.285 0.101 0.103 0.067 

(400, 8, 0.2) 0.511 0.101 0.003 0.426 0.316 

(500, 10, 0.5) 0.721 0.612 0.514 0.177 0.239 

(600, 3, 0.09) 0.21 0.213 0.104 0.017 0.104 

(600, 12, 0.4) 0.684 0.475 0.441 0.179 0.231 

(800, 10, 0.4) 0.682 0.413 0.296 0.249 0.247 

(900, 12, 0.2) 0.615 −0.003 −0.017 0.382 0.357 

(1000, 20, 0.8) 0.842 0.889 0.889 −0.338 0.001 

 
network, what we really want to know is whether there is an agreement between 
these centrality measures in real-world networks. We chose the logarithmic 
function over other matrix functions since it shows a high agreement with other 
centralities when applied to random networks. 

We can clearly see from Table 15 that all Kendall coefficient are positive. This 
implies that there is an agreement between the rankings of nodes. We also 
observe that the agreement between centrality measures (closeness, Katz, 
subgraph) and the logarithmic function is high, irrespective of the connectivity 
of the underlying network. In general, we can say that the logarithmic function is 
the best of the tried matrix functions and can be used as a centrality measure, 
since it gives a ranking similar to rankings of other centrality measures. 
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Table 15. Kendall coefficients for the logarithmic function and some standard centrality 
measures as applied to 10 real-world networks. 

  Kendall Correlation coefficient 
Networks Nodes ( )CC,SCτ  ( )CC,KCτ  ( )CC,logτ  ( )SC,KCτ  ( )SC,logτ  ( )KC,logτ  

Flying Team 51 0.233 0.095 0.173 0.153 0.555 0.062 

Dolphins 62 0.715 0.797 0.696 0.87 0.824 0.768 

Lesmis 77 0.641 0.612 0.591 0.9 0.683 0.755 

Sun-Juan-Sur 79 0.168 0.259 0.128 0.39 0.713 0.326 

Polbooks 105 0.312 0.359 0.451 0.924 0.635 0.696 

Word adjacencies 112 0.889 0.889 0.742 0.978 0.779 0.8 

College Football 115 0.156 0.23 0.335 0.898 0.256 0.338 

Cele2 307 0.681 0.688 0.634 0.954 0.755 0.795 

Key Words 831 0.759 0.769 0.667 0.968 0.759 0.783 

Netscience 1589 0.298 0.581 0.069 0.693 0.727 0.447 

9. Conclusions 

In this work we examined the centrality measures such as closeness, degree, 
eigenvector, Katz and subgraph. We showed the relationship between the Katz 
centrality and eigenvector as well as degree centrality. We developed our notion 
of centrality measure by considering the rankings of nodes based on matrix 
functions such as logarithmic, cosine, sine, hyperbolic functions and the 
generalised Katz centrality. We showed experimentally by using various classes 
of graphs that the rankings of the nodes given by closeness, degree, eigenvector, 
Katz and subgraph centrality are highly correlated. Moreover, we showed 
experimentally that the rankings of nodes given by different choices of attenuation  

factor α  for the generalised Katz centrality, in which 
1

1
α

λ
≥  where 1λ  is the  

principal eigenvalue of the network adjacency matrix A , are exactly the same. 
In terms of matrix functions, the experiment shows that there is a high 
agreement between the rankings of nodes given by the logarithmic function and 
other common centrality measures discussed in Section V. 

Similar results were found to hold for real-world networks: the rankings given 
by the logarithmic function and those given by closeness, Katz and subgraph 
centrality are highly correlated irrespective of the connectivity of the network. In 
general, we concluded that the logarithmic function, out of the matrix functions 
we have considered, is the best and can be used as a centrality measure. 

In this work, we considered only the diagonal entries of the matrix functions 
with some modifications of the calculations of their Kendall correlation 
coefficients. We also found that the logarithmic function gives a relatively good 
ranking as compared to the rankings given by other centrality measures. We 
suggest that in the future, we can consider the row sums of these matrix 
functions with or without any modification and examine whether they give 
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similar rankings as other centrality measures. The paper did not analyse the 
significance and the uses of the centrality measures based on matrix and it has 
been left for future work. 
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