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Abstract

We present a European option pricing when the underlying asset price dynamics is governed by a linear
combination of the time-change Lévy process and a stochastic interest rate which follows the Vasicek proc-
ess. We obtain an explicit formula for the European call option in term of the characteristic function of the

tail probabilities.
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1. Introduction

Let (Q, F, P) be a probability space. A stochastic process
L, is a Lévy process if it has independent and stationary

increments and has a stochastically continuous sample path,

ie. for any &>0, lhiH)lP(|L ~L|>£)—0. The sim-

t+h

plest possible Lévy processes are the standard Brownian
motion W, , Poisson process N,, and compound Poisson

N, . . . .
process Zi:[lYl. where N, is Poisson process with inten-

sity At and Y, arei.i.d. random variables. Of course, we

can build a new Lévy process from known ones by using
the technique of linear transformation. For example, the
jump diffusion process ut+oW, +2:V:’1Yi , where u,o
are constants, is a Lévy process which comes from a lin-
ear transformation of two independent Lévy processes,
i.e. a Brownian motion with drift and a compound Poi-
sson process.

Assume that a risk-neutral probability measure Q exists
and all processes in Section 1 will be considered under
this risk-neutral measure.

In the Black-Scholes model, the price of a risky asset
S, under a risk-neutral measure Q and with non divi-
dend payment follows

S, =S5, exp([:[) =S, exp(rt+(0W, _%O-thj (1.1)

where r eRis a risk-free interest rates, o € R is a vo-
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latility coefficient of the stock price. Instead of modeling
the log returns

]:, = rt+(0'W[ —%Uzt)
with a normal distribution. We now replace it with a more
sophisticated process L, which is a Lévy process of the
form

L, =rt+(0'Wt —%O'ztj+(Jt -¢t), (1.2)

where J,and ¢, denotes a pure Lévy jump component,

(i.e. a Lévy process with no Brownian motion part) and
its convexity adjustment. We assume that the processes
W, and J, are independent. To incorporate the volatile-

ity effect to the model (1.2), we follow the technique of
Carr and Wu [1] by subordinating a part of a standard

Brownian motion o¥, ~-15% anda part of jump Lévy

2
process J,—¢t by the time integral of a mean reverting
Cox Ingersoll Ross (CIR) process

t
T, =) vds,

where v, follows the CIR process
dv, =y (1-v,)dt + o, v, dw;” (1.3)
Here W, is a standard Brownian motion which corre-
sponds to the processv,. The constant y R is the rate
at which the process v, reverts toward its long term mean

and o, >0 is the volatility coefficient of the process v, .

JMF



S.PINKHAM ET AL. 99

Hence, the model (1.2) has been changed to
L= rt+(aWTr —%027;)+<JTI —¢T),  (14)

and this new process is called a stochastic volatility Levy
process. One can interpret 7, as the stochastic clock proc-
ess with activity rate process v,. By replacing L: in (1.1)
with L, , we obtain a model of an underlying asset under
the risk-neutral measure Q with stochastic volatility as

follows:
S =S, exp(rt+(0WTl —%GZTIJ+(JT[ —{T,)J(LS)

In this paper, we shall consider the problem of finding
a formula for European call options based on the under-
lying asset model (1.5) for which the constant interest
rates r is replaced by the stochastic interest rates 7, and

J, is compound Poisson process, i.e. the model under

our consideration is given by
S, =S, exp(r[t +(UWT, _%02];)+(J7} -¢T )] (1.6)

Here, we assume that 7, follows the Vasicek process
dr, =(a—ﬂi;)dt+0'rde, (1.7)
Wi 1is a standard Brownian motion with respect to the
process 7, and dW/ dW" =dW/dW,=0. The constant
£ >0 is the rate at which the interest rate reverts to-
ward its long term mean, o, >0 is the volatility coeffi-
cient of the interest rate process (1.7), The constant
a >0 isa speed reversion.

2. Literature Reviews

Many financial engineering studies have been undertaken
to modify and improve the Black-Scholes model. For ex-
ample, The jump diffusion models of Merton [2], the sto-
chastic Volatility jump diffusion model of Bates [3] and
Yan and Hanson [4]. Furthermore, the time change Lévy
models proposed by Carr and Wu [1].

The problem of option pricing under stochastic interest
rates has been investigated for along time. Kim [5] con-
structed the option pricing formula based on Black-Scholes
model under several stochastic interest rate processes,
i.e., Vasicek, CIR, Ho-Lee type. He found that by incur-
porating stochastic interest rates into the Black-Scholes
model, for a short maturity option, does not contribute to
improvement in the performance of the original Black-
Scholes’ pricing formula. Brigo and Mercurio [6] mention
that the stochastic feature of interest rates has a stronger
impact on the option price when pricing for a long ma-
turity option. Carr and Wu [1] continue this study by giving
the option pricing formula based on a time-changed Lévy
process model. But they still use constant interest rates in
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the model.

In this paper, we give an analysis on the option pricing
model based on a time-changed Lévy process with sto-
chastic interest rates.

The rest of the paper is organized as follows. The dy-
namics under the forward measure is described in Section
3. The option pricing formula is given in Section 4. Fi-
nally, the close form solution for a European call option in
terms of the characteristic function is given in Section 5.

3. The Ddynamics under the Forward
Measure

We begin by giving a brief review of the definition of a
correlated Brownian motion and some of its properties
(for more details one see Brummelhuis [7]). Recalling
that a standard Brownian motion in R" is a stochastic

process (Z,) . whose value at time ¢ is simply a vector of

120
n independent Brownian motions at ¢,

Z :(Zl,r"“’Zn,t)

t

We use Z instead of W since we would like to reserve the
latter for the more general case of correlated Brownian
motion, which will be defined as follows:

Let p=(p,)
matrix satisfying p, =1 and —-1<p, <1 By Cholesky’s

e be a (constant) positive symmetric
<i,j<n

decomposition theorem, one can find an upper triangul
nxnmatrix fJ = ( hl_j) such that p= HH', where

H' is the transpose of the matrix H. Let

Z, :(Zu,u-,Zm) be a standard Brownian motion as

introduced above, we define a new vector-valued process
W, = (W, .7,

t n,t
ponents,

) by W,=HZ, or in term of com-

,t’“

W, :Z;hiij’,, i=l-,n
J=

The process (W, ) _ is called a correlated Brownian mo-
tion with a (constant) correlation matrix p . Each com-
ponent process (W,.J )t>0 is itself a standard Brownian
motion. Note that if p=1Id (the identity matrix) then
W, is a standard Brownian motion. For example, if we
let a symmetric matrix

I p 0
p=lp, 1 0 (3.1)
0 0 1

Then p has a Cholesky decomposition of the form
p=HH" where H is an upper triangular matrix of
the form
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I-p; p, 0
H= 0 1 0
0 0 1

Let Z, = (Z VA ZV) be three independent Brownian

[ S
motions then W, = (W,,VW,W,V) defined by W, =HZ,,

or in terms of components,

=m0t )z pzr =z wr =2 32)

w,

Now let us turn to our problem. Note that, by Ito’s
lemma, the model (1.6) has the dynamic given by

ds, =S, ((r = A,v, ) dt + od, )+ S, (" ~1)dN,,
dr, =(a-pr)dt+o,dw;, (3.3)
dv, =y (1-v,)dt+o, v, dw;,
where A, —/1E( 1) dw.dw =dwW,dw; =0 and
AW AW, = p,dz .

We can re-write the dynamic (3.3) in terms of three
independent Brownian motions (Zt, z', er) follows (3.2),

we get
ds, = S((r—/imvt)dt+0'\/v—,(pvdZ,V+ 1—p§dz,))
(3.4)
(" =1)an,
=(a-pr)di+0,dZ;, (3.5)
dv, = y(1-v,)dt+ 0,V dzZ;, (3.6)

This decomposition makes it easier to perform a
measure transformation. In fact, for any fixed maturity 7,
let us denote by Q" the T-forward measure, i.e. the
probability measure that is defined by the Radon-
Nikodym derivative,

, exp[—'[rudu]
QO _ - (3.7)
do P(0,T)

Here, P(¢,T) is the price at time ¢ of a zero-coupon
bond with maturity 7 and is defined as

F| (38)

1} IT ryds

P(1,T)=E, [e’

Next, Consider a continuous-time economy where in-
terest rates are stochastic and satisfy (3.5). Since the SDE
(3.5) satisfies all the necessary conditions of Theorem 32,
see Protter [8], then the solution of (3.5) has the Markov
property. As a consequence, the zero coupon bond price
at time ¢ under the measure Q in (3.8) satisfies

Copyright © 2011 SciRes.

P(1,T)=E, {exp[—jrsds}rt} (3.9)

Note that P(t,T ) depends on 7 only instead of de-
pending on all information available in F, up to time ¢.
As such, it becomes a function F (t, ”;) of r,

P(1,T)=F(t.r,),
meaning that the pricing problem can now be formulated
as a search for the function F(z,r,).

Lemma 1 The price of a zero coupon bond can be de-
rived by computing the expectation (3.9). We obtain

P(t,T)=exp(a(t,T)+b(1,T)r,) (3.10)
where b(t,rt) :%(eﬂ(“)—l) s
a(1.T) = @ 307\ 0] apr
’ ﬁz 4,83 453

Proof. See Privault [9] (pp. 38-39).
Lemma 2 The process v, following the dynamics in
(3.5) can be written in the form

r,=x+w(t), for each t 3.11)
where the process x, satisfies
dx, =-pxdt+0,dZ/, x,=0. (3.12)

Moreover, the function w(t) is deterministic and well
defined in the time interval [0,T] which satisfied

w(t)=re” +%(1—e’/”) (3.13)

In particular, w(0)=r,.
Proof. To solve the solution of SDE (3.5),
Let g(t,7)=e”r and using Ito’s Lemma

dg=2ar+ By a§(dr) :

ot or 2 or
Then,
de’'r = pe’rdt+e” r)dt+o,dZ;
= perdire” ((a-pr,) ) 614

= ae’dt+e’c,dZ;

Integrated on both side the above equation from 0 to ¢
where 0<¢<T and simplified, one get

r=re’+ ﬁ’<1 eﬁ’)+o"fe (=qz”

By using the definition of w(#) form (3.13),
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t W(t) +o, .[ot ei/}(tiu)dzur

r =
R
i),
Note that the solution of (3.12) is

(3.15)

where w(t)=re

x, =3 o, [z = o, [ Az (3.16)

Hence, 7, =w(r)+x, for each . The proof is now

complete.
Next we shall calculate the Radon-Nikodym derivative
as appear in (3.7). By Lemma 1 and 2, we have

r,=x,+w(t)and P(0,T). Substituting r,and P(0,T)
into (3.7), we have
do" exp(—fOTxu +w(u)du)
40 exp(a(0,7)+5(0,T)r,)

=exp[—jor , 2 T(l_ AT u))zduJ
0

Stochastic integration by parts implies that

(3.17)

T T T
J-o xudu=TxT—I0 udxu=.[0 (T—u)dxu (3.18)
By substituting the expression for dx, from (3.12),

[ (T -u)dx,
(3.19)
T T
=—ﬂ_[0 (T—u)xudu—i-o;'fo (T—u)dZu’
Moreover by substituting the expression for x, from
(3.16), the first integral on the right hand side of (3.19)
becomes

—ﬂ.[r T—u x,du
(3.20)
:—,BGI(T u.[e “dZ’)du

Using integral by parts, we have (Equation 3.21)
Substituting (3.21) into (3.19), we obtain

[[(1-u)dx, = —%Uj(eﬂf*") —l)lef}
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T
Hence, jo x,du =

i e] e

Substituting (3.22) into (3.17), once get

do’
do
= exp(z jOT(l_ B(T-u )d 7" _%jz(l_e—ﬁ(r—u) )z duJ

(3.23)
The Girsanov theorem then implies that the three proc-
esses Z/7,Z" and Z defined by

[
+2 {1

:dZt

dz" =dz’

(3.24)

dz)" =dz;,dz!

are three independent Brownian motions under the meas-
ure Q" . Therefore, the dynamics of 7,v, and S,under
Q" are given by

ds, =5, ((rt — A, dt+ p,ov,dZ)" + oy, (l—pf )dZtT)
+5, (" ~1)dN;

2
dr, :[a— : O,;

dv, =y(1-v,)dt +o,

(1 —e /) )Jdt +o0.dz",

vdzZ".
(3.25)

4. The Pricing of a European Call Option on
the Given Asset

Let (S,) be the price of a financial asset modeled as

t€[0,7]
a stochastic process on a filtered probability space
(Q F, t,QT), F, is usually taken to be the price his-

tory up to time ¢. All processes in this section will be de-
fined in this space. We denote C the price at time ¢ of a
European u call option on the current price of an under-
lying asset S, with strike price K and expiration time 7.

~po, [, (T=w)[! e az; ) au
-
S
=por e (1,

ﬂvdv)dZ }

Copyright © 2011 SciRes.

-v) e'ﬂ"dv) - _[OT

—u)e Mdu = —ﬂo-r.fOT(L: e”dz! ) d(j:(T—v)e'ﬂvdv)
(IS(T—v)e_'Bvdv)eﬂ“dZ;}

51

(3.21)

fo (e —l)dZ;}—ar [ (T-u)dz;.

0
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The terminal payoff of a European option on the un-
derlying stock S, with strike price X is
max (S, —K,0) 4.1)
This means the holder will exercise his right only S, > K
and then his gain is S, — K . Otherwise, if S; <K then
the holder will buy the underlying asset from the market and
the value of the option is zero.

We would like to find a formula for pricing a Euro-
pean call option with strike price K and maturity 7 based
on the model (3.25). Consider a continuous-time econ-
omy where interest rates are stochastic and the price of
the European call option at time ¢ under the 7-forward
measure Q' is

C(t,8,.1,,v:T.K) = P(1.T) E r (max (S, = K,0)|S,.7;.v, )

1ot
:P(t,T)J.0 max(ST —K,O)pQT (ST |St,rt,vt)dST
where EQT is the expectation with respect to the 7-for-

ward probability measure, Py is the corresponding con-

ditional density given (S,,r,v,)and P is a zero coupon
bond which is defined in Lemma 1.

With a change in variable X, =InS,,
C(t S.r,v 'T,K)

s les Vo
= P(6,7) [ max(e'T =K, 0)p ; (X, |X,.1,,v,.) X,
= P(t,T)J.:K(eXT _K)lxrzanpQT (XT|erth)dXT
:p(t,T)j:KexrpQT (X, X,.7,.,)dX,
1

~KP(LT)|, Py (X, |X,.5,v,)dX;

X, 1

=e
X
EQT (e T|S,,rt,v,)

JI:KeXTpQT (XT|Xt,rt,vt)vXT

—KP(I,T) lepQr (XT|Xt9rt’vt)dXT

—KP(,T)[ pyr (Xp [ X,rv )X,

4.2)

With the first integrand in (4.2) being positive and in-

tegrating up to one. The first integrand therefore defines a
new probability measure that we denote by q,r below

C(tS 7 v‘T,K)

s sl Vs

:eXr I:qur (XT|XI,I’;,Vt)dXT
-KP(L.T)[ " Py (Xr [X,r.v, )X,

=e"P (1, X,,1,,v;T,K)-KP(t,T)P, (t, X,,1,,v;;T,K)
=" Pr(X, >InK|X,.%,v,)

12727t
—KP(1,T)Pr(X; >InK|X,.r,v,)

(4.3)
where those probabilities in (4.3) are calculated under the
probability measure Q" .

The European call option for log asset price
X, =InS, will be denoted by

é(l,X rovsT,K) = e“ P, (1, X

12712 t

—e*P(,T)P, (t, X,,7,,v,;T,x)

’r)V ;T)K
v ) (4.4)

where x=InK and

P (,X,.1,v:T.x) = P (t,X,,r,v:;T.K), j=12.

Note that we do not have a closed form solution for these
probabilities. However, these probabilities are related to
characteristic functions which have closed form solutions
as will be seen in Lemma 4. The following lemma shows
the relationship between B and P, in the option value of
(4.4).

Lemma 3 The functions P, and P, in the option val-

ues of (4.4) satisfy the PIDEs (4.5):
and subject to the boundary condition at expiration t= T

e[ en Py (Xr X, B(T,x,rviT,x)=1_,. (4.6)
n X -
e EQT (e |St’rt’vr) Moreover, P, satisfies the Equation (4.7)
0 :%“LA[EJ“L(PVO'VO'V)%JFV_L[(@V —l)(i’1 (t,x+y,r,v;T,x)- PR (x,t,r,v;T,/c))}k(y)dy 4.5)
~ s ~
0=aﬁ+ A[I%J—O'zv@+ﬂa 12)2 +b(l‘,T)Gfa£
ot ox 2 oOx r
- (oa(t,T) (0b(t,T) o! . o, pae
+P2[ o +r( o -1 +7b2(;,T) +P, a—ﬂr—F(l—e B t>) b(1,T) 4.7
s D aﬁZ y
+vf P, (t,x+y,r,v;T,/<)—Pz(t,x,r,v;T,K)—a—(e' -1 |k(y)dy
- x
Copyright © 2011 SciRes. JMF
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and subject to the boundary condition at expiration t = T

A[fl’] (r+ ! o vj@P (
2 Ox

where for i =1,2

+y(1-v)—

P, (T,x,r,v;T, k) =1, 4.8)
s\ | OB
o)
B or
8P O'VGZP Gv@zP o, 62 815.
Lovon 4.9
v ot ) (49)

6‘v 26v

©

—0

Note that 1__=1 if x>k andotherwise 1_,_=0.
Proof. See Appendix A.

5. The Closed-Form Solution for European
Call Options

For j = 1,2 the characteristic function for
}N?/.(t,x,r,v;T ,k), with respect to the variable &, are
defined by

fi(tx,rviTu) = J.e'u'(dPtxrvTK) (5.1

with a minus sign to account for the negativity of the
measure dﬁj . Note that f, also satisfies similar PIDEs
o,
—+A e, x,r,v;T,x)=0, 5.2
4,10 ) (5:2)
with the respective boundary conditions

f(TxrvTu .fe””‘dP(txrvTK)
je”“ )dic—e
Since df’,(t,x,r,v;T,zc):dlDK =-8(x—x)dx

The following lemma shows how to calculate the char-
acteristic functions for P and P as they appeared in
Lemma 3.

Lemma 4 The functions B and P, can be calculated

by the inverse Fourier transformations of the character-
istic function, i.e.

mK-t,”;T’
P(txrvT,():%+ J‘R{e fj(xrv u):|du,

TG, iu

for j=1,2, with Re[.] denoting the real component of a
complex number.

By letting 7 =T —t, the characteristic function f; is
given by

Copyright © 2011 SciRes.

X

+v_[ {131 (t,x+y,r,v;T,K)—é(x,t,r,v;T,K)—(?J(& —1)}k(y)dy

S (tx,r vt +7,u) :exp(iux+B/(r)+rCf (7)+VE, (r)),

where

2
O

bp=bptV, by=by =V, by="r,

Jj1

=p,00, =y,

by = _(%O_z (iu_u2)+1(eiux+y —iu(ey _1))k(y)dyJ
T (e"’“ —iu(ey _1))k(y)dyJ

b,y = —(%0'2 (u2 +z’u)—

_ _77512 n y(b“ +b12)ln[511 +ervll;12]

2b,, 2b,V, 1;11 +b~12

b, = p,oo, (1+iu)-y, by,

l;;f( - —1)2 +(2iu(aﬂ—of)—afuz)é
2
+Z;l: ( de /" e’ 3)
C;(7) =%<1_e_m)’v./ =yby" —4bb,,

~ ~ \b;y2 —4bob
b,b,, (e (e 1}

E. (z’) = .
J - - —
2bj1 (bjl +bjze’\lbi22 4bjobj1 j
7(522 +1;21)1r{b21 +eTV2b22J

B 2b,, 2b,V, by, +by,
+[;2 (u + 4iu — 2)—%—?}(1—6/;7))
40;;3 (u? +diu—2)(e" -1)

g2

2 (u + 4iu — 2))
Proof. See Appendix B.
In summary, we have just proved the following main
theorem.

+
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Theorem 5 The value of a European call option of
SDE (3.25) is

C(1,8,,r,v;T,K)
S,B(t,X,,1,,v;T, k)= KP(t,T)P,(t,X,,1,,v,;T,x)

2712 7t t27to Vo

where f{ and 152 are given in Lemma 4 and P(t,T) is
given in Lemma 1.
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Appendix A: Proof of Lemma 3 - P P .
PP a_ xﬁ—eKP(t,T) 6—2+Pzﬁ(a(t,T)+b(t,T)r) ,
N ot ot ot ot
By Ito’s lemma, C (t,x, r,v) follows the partial inte- - -
. . . GC o oh, OP,
gro-differential equation (PIDE) —L+B |-e"P(1,T)=2,
26 o Ox Ox
= +IPC+I/C=0, (A1) 5 5
or ! 6C eX%_e'fp(t,T)aﬁ,
where o ov ov
R A 2 A ac L OP P,
L?Cz(r—lazvj£+ a—pr- (1_e—ﬁ<r—r)) oc et e P(1, T)[a—Jer(t T)J
2 Ox g or
2 2D
o€ olvC ovdC ol 3°C “’ B l-erp(r) 52
+y(1-v)—+ + 2w
o 2 a2 o 2 or’ X
*C 4 *C azﬁ
+ -rC =¢" —-e“P(¢t,T
(pover) ooy o’ 6\/2 (LT 57 o’
and 24 p p p 2 A 2p
. 6C=e‘ OPF +% e P(1,T) or, o°C exapl
L Ovox ovox  Ov ovox’ or’ or’
2 4 . oC *P, oP, ,
= C(t,x+y,r,v)=C(t,x,r,v)——(e’ =1) |k(y)d —-e"P(t,T +2th—+Pb tT
V_'L( (x yrv) (xrv) 8x<e )J (J/)y ( )[8}” ( )8 j
where k(y)is the Lévy density. oC _ o o'R LB e P(1.T)| L2 0P, +b(1, T)ai
We plan to substitute (4.4) into (A.1). Firstly, we compute Ox0r oxor  or 8x6r Ox
é(t X+ y,r, v,;T,K)—é(t,x,r,v,;T,K)
:ex[(e —1) (t,x+y,r,vT,x)+ (E(t,x+y,r,v;T,K) P(xtrvTK))J
-e*P(t, T)[ (t,x+y,rwvT,Kx)- P(t,x,r,v;T,K)].
Substitute all terms above into (A.1) and separate it by two PIDEs for the 7-forward probability for
assumed independent terms of P and P,. This gives E(t,x,r,v;T,K), j=1,2:
OB aﬁ o’ prn\ | OB
L (N it (—e'g(r'))—1
ot 2 6x p or
+( ovo, ) 815 +0'v2v 52}3{ +O'_2V(92}~)1 + o 62131 +( (1—v)+ ovo )6_}31
P ovox 2 o 2 at 2 o 4 povoy ov (A2)

©

+v_[ {131 (t,x+y,r,v;T,K)—}~71(x,t,r,v;T,K)—(

X

%E](ey —1)}k(y)dy.

+v.|. [(e—v —1)(16 (t,x+y,r,v;T,K)— E(x,t,r,v;T,K))}k(y)dy.:0

and subject to the boundary condition at the expiration
time ¢ = T according to (4.6).

By using the notation in (4.9), then (A.2) becomes

Equation (A.3)

O:%—}; A[f’] (pvavav)%+vi[( —1)( (t x+y,rvT1() f’(xtrvTK))Jk(y)dy. .
0P s '
::E A [P1:|
Copyright © 2011 SciRes. JMF
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For IBZ(Z,X,I’,V;T,K)t

p D > 2. A2 5 2, 2P o2
0-Lsfrt | (1) P (o) L SR T TR T IR

ot ox v Yavex 2 a2 o 2

+[a—/§’r—o-75(l—e A0 )4 2b(1,7) ZJ[%};}E(&Z%T)* abgtT) ( /5’( —e ’))]b(t,T)J

- ~ 6P
+v|| Bt x+y,rv;T,x)=P(t,x,r,v;T,x)——=e" —1) |k(»)dy.
e e ]

(A.4)
and subject to the boundary condition at expiration time ¢ Again, by using the notation (4.9), then (A.4) becomes
= T according to (4.8).

p . p 2, %P - (Oa(t,T ob(t, T 2
O:%+A[1’2J—azv%+ﬂa 2 4b(1,T)o0? R “2.p a(eT)  [2(LT) | + 20 b2 (1,7)
ot Ox 2 ox or ot ot 2
- ’ P,
+Pz[a—ﬂ ﬂ(l e )Jb(t T):6—+A[ ) ]
(A.5)

The proof is now completed.

Copyright © 2011 SciRes. JMF
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Appendix B: Proof of Lemma 4

To solve the characteristic function explicitly, letting
7=T—t be the time-to-go, we conjecture that the func-
tion f; is given by

b (t,x,r,v;t+‘r,u)
= exp(iux + B, (T) +rC, (T) +VE, (T)),
and the boundary condition B, (0)=C,(0)=E,(0)=0.
This conjecture exploits the linearity of the coefficient in
PIDE:s (5.2).
Note that the characteristic function of f, always
exists. In order to substitute (B.1) into (5.2), firstly, we
compute

o, , : /
a_];: —(B1 (7)+rC/(7)+VE| (T))fw

(B.1)

%

—=iu
1’
Ox

0=r[~C/()+iu-BC,(r)]

+ v{—El’(r)+ (o0, (1+iu)-y)E (7)+ Oj

2
»

+|:—Bl'(z')+£a _"75(1 ) )]q ()+2

By separating the order, », v and ordering the re-
maining terms, we can reduce it to three ordinary differ-
ential equations (ODEs) as follows:

C/(7) ==pC\(2) +iu, (B.2)

2

El'(T) = 2V

E; (7)+(p,00,(1+iu)-y)E (7)

+%(z’u—u2)+ J (e"“”y —iu(ey —1))k(y)dy, (B.3)

—0

2
O,
> Cl (7).

B(7) :{a—o-?;(l—eﬁ(“) )}q (£)+7E, (7)+

(B.4)
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0 0 0°
a—fj:q(f)fl, a—{izEl(r)ﬁ, Efj:-wﬂ
0’ 0
L5 ) Sl
I e, (c) i Th ik (o)
Oxor ! " ovex ! b

e fi(t,x,r, vt +T,u)

= fit,x+y,r,vit+7,u)— f,(t, X, 7, vt +T,u)

Substituting all the above terms into (5.2), after can-
celling the common factor of f,, we get a simplified
form as follows:

2

B0 S (=i} J[e -inler ) o(e ) i) |

C’(7)+7E (7)

It is clear from (B.2) and C(0) = 0 that

G (r) = Zx(1-c77), (B.5)
B
Let
2
b=2x,
2

b, = p,oo, (1+iu)-y,

by = —Gaz (iu —u2)+];(e"“*+y —iufe’ —1))k(y)dyj

and substitute all term above into (B.3). we get

2
- —4
E(e)=t [E ()2 b —abh,

2h,

By method of variable separation, we have

JX[EI ()22 _Jb 4, J

2h,

Using partial fraction on the left hand side, we get

Copyright © 2011 SciRes.
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lb v~ lb v dEl(z'):VdT
— + — p—
E _ 2 E _ 2
( () 2h, J [ © 2h, ]
where V =,/b,> —4bb, .
Integrating both sides, we have
E (r)__béljv
In 3 —IV =1V +E,
EI(T)_Zi
2h,

Using boundary condition £, (7 =0) =0 we get
—b, -V
Solving for E,(7) , we obtain
(e’v —1) hb,
- 2b, (51 + ervl;z)

E, (r) (B.6)
where b =b,+V, b,=b,~V.
In order to solve B, (r) explicitly, we substitute C,(7)

and E (7)in (B.5) and (B.6) into (B.4) .

B'1 (Z') = {%_ luﬂazrz j(l_eﬂr)_l_ luﬁazrz (e*ﬂ‘r _e—Zﬂr)

Copyright © 2011 SciRes.

Integrating with respect to 7 and using boundary con-
dition B,(r =0) =0, then we get
B/(7) = (2iu(aﬂ—af)—afu2)%
.2 22
+ ma;' (e’ﬂ’ - 1)2 + —O-"L; (—4e’ﬂ’ ye 2 3)
2p 4p
B2 7(b +bz)ln b+e"h,
2b, 2bV b +b,

The details of the proof for the characteristic function
/, are similar to f; .

Hence, we have
5y (t,x,r,v;T—r,u)
=exp|iux+B, (7)+rC, () +vE, (7]

where B, (7),C,(7)and E,(7)are as given in this Lem-

ma.
We can thus evaluate the characteristic function in
close form. However, we are interested in the probabil-

ity 13] These can be inverted from the characteristic

functions by performing the following integration

E(t,x,r,V;T’K‘)
:%+1TRe[eMKfj (t,;.c,v.r;T,u)jdu

g, iu

for j=1,2 where X, =InS, and x=InK , see Ken-
dall et al. [10]. The proof is now complete.
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