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Abstract 
 
We present a European option pricing when the underlying asset price dynamics is governed by a linear 
combination of the time-change Lévy process and a stochastic interest rate which follows the Vasicek proc- 
ess. We obtain an explicit formula for the European call option in term of the characteristic function of the 
tail probabilities. 
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1. Introduction 
 
Let

 
 , , F P  be a probability space. A stochastic process

 
t  is a Lévy process if it has independent and stationary 

increments and has a stochastically continuous sample path,  
L

i.e. for any 0,   
0

lim 0t h t
h

P L L 
   . The sim-  

plest possible Lévy processes are the standard Brownian 
motion , Poisson process

 
 and compound Poisson 

process  where  is Poisson process with inten-  

tW
N

i
,tN

1
t

iY
 tN

sity t  and i  are i.i.d. random variables. Of course, we 
can build a new Lévy process from known ones by using 
the technique of linear transformation. For example, the  

Y

jump diffusion process , where 
1
tN

t i
t W Y 


  i ,    

are constants, is a Lévy process which comes from a lin- 
ear transformation of two independent Lévy processes, 
i.e. a Brownian motion with drift and a compound Poi- 
sson process. 

Assume that a risk-neutral probability measure Q exists 
and all processes in Section 1 will be considered under 
this risk-neutral measure. 

In the Black-Scholes model, the price of a risky asset 

t  under a risk-neutral measure Q and with non divi- 
dend payment follows  
S

  2
0 0

1
exp exp

2t t tS S L S rt W t        
 

 



 (1.1) 

where is a risk-free interest rates, r    is a vo- 

latility coefficient of the stock price. Instead of modeling 
the log returns  

 21
2t tL rt W t     

with a normal distribution. We now replace it with a more 
sophisticated process which is a Lévy process of the 

form 
tL

21
,

2t t tL rt W t J t         
 

     (1.2) 

where tJ and t denotes a pure Lévy jump component, 

(i.e. a Lévy process with no Brownian motion part) and 
its convexity adjustment. We assume that the processes 

 and tW tJ are independent. To incorporate the volatile- 

ity effect to the model (1.2), we follow the technique of 
Carr and Wu [1] by subordinating a part of a standard 

Brownian motion 21
2tW t   and a part of jump Lévy 

process tJ t  by the time integral of a mean reverting 

Cox Ingersoll Ross (CIR) process

 
0

d
t

t sT v s , 

where  follows the CIR process   tv

 d 1 d d v
t t v tv v t v    tW        (1.3) 

Here  is a standard Brownian motion which corre- 

sponds to the process . The constant 

v
tW

tv    is the rate 

at which the process reverts toward its long term mean 

and 
tv

0v   is the volatility coefficient of the process
 

.  tv
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Hence, the model (1.2) has been changed to  

21
,

2t tt T t TL rt W T J T        
 

t    (1.4) 

and this new process is called a stochastic volatility Levy 
process. One can interpret t  as the stochastic clock proc- 
ess with activity rate process

 t . By replacing t  in (1.1) 
with t , we obtain a model of an underlying asset under 
the risk-neutral measure Q with stochastic volatility as 
follows:

 

T
v L

L

 2
0

1
exp

2t tt T t TS S rt W T J T          
  

t


 (1.5) 

In this paper, we shall consider the problem of finding 
a formula for European call options based on the under- 
lying asset model (1.5) for which the constant interest 
rates r is replaced by the stochastic interest rates and ,tr

tJ  is compound Poisson process, i.e. the model under 

our consideration is given by 

2
0

1
exp

2t tt t T t TS S r t W T J T          
  

t




,



 (1.6) 

Here, we assume that rt follows the Vasicek process 
 

 d d d r
tt t rr r t W              (1.7) 

r
tW

0

 is a standard Brownian motion with respect to the 
process

 t  and . The constant r d d d d 0r v r
t t t tW W W W

   is the rate at which the interest rate reverts to- 
ward its long term mean, 0r   is the volatility coeffi- 
cient of the interest rate process (1.7), The constant 

0   is a speed reversion. 
 
2. Literature Reviews 
 
Many financial engineering studies have been undertaken 
to modify and improve the Black-Scholes model. For ex- 
ample, The jump diffusion models of Merton [2], the sto- 
chastic Volatility jump diffusion model of Bates [3] and 
Yan and Hanson [4]. Furthermore, the time change Lévy 
models proposed by Carr and Wu [1]. 

The problem of option pricing under stochastic interest 
rates has been investigated for along time. Kim [5] con- 
structed the option pricing formula based on Black-Scholes 
model under several stochastic interest rate processes, 
i.e., Vasicek, CIR, Ho-Lee type. He found that by incur- 
porating stochastic interest rates into the Black-Scholes 
model, for a short maturity option, does not contribute to 
improvement in the performance of the original Black- 
Scholes’ pricing formula. Brigo and Mercurio [6] mention 
that the stochastic feature of interest rates has a stronger 
impact on the option price when pricing for a long ma- 
turity option. Carr and Wu [1] continue this study by giving 
the option pricing formula based on a time-changed Lévy 
process model. But they still use constant interest rates in 

the model. 
In this paper, we give an analysis on the option pricing 

model based on a time-changed Lévy process with sto- 
chastic interest rates.  

The rest of the paper is organized as follows. The dy- 
namics under the forward measure is described in Section 
3. The option pricing formula is given in Section 4. Fi- 
nally, the close form solution for a European call option in 
terms of the characteristic function is given in Section 5. 
 
3. The Ddynamics under the Forward 

Measure 
 
We begin by giving a brief review of the definition of a 
correlated Brownian motion and some of its properties 
(for more details one see Brummelhuis [7]). Recalling 
that a standard Brownian motion in  is a stochastic  nR
process   0t t

Z  whose value at time t is simply a vector of  

n independent Brownian motions at t,  

 1, ,, , t t nZ ZZ t
 

We use Z instead of W since we would like to reserve the 
latter for the more general case of correlated Brownian 
motion, which will be defined as follows:  

Let  
1 ,ij i j n

 
 

  be a (constant) positive symmetric  

matrix satisfying 1ii   and 1 ij 1    By Cholesky’s 

decomposition theorem, one can find an upper triangul 
n n matrix    ijh  such that ,  t  where  

tΗ  is the transpose of the matrix .Η  Let  

 1, ,, , t t nZ ZZ t  be a standard Brownian motion as  

introduced above, we define a new vector-valued process 

 1, ,, , t t nW WW t tZ

n

 by  or in term of com-
ponents,  

tW

, ,
1

,  1, ,
n

i t ij j t
j

W h Z i


    

The process  W
0t t

 is called a correlated Brownian mo- 
tion with a (constant) correlation matrix  . Each com- 
ponent process  ,i t t

W
0

 is itself a standard Brownian 
motion. Note that if Id   (the identity matrix) then 

t  is a standard Brownian motion. For example, if we 
let a symmetric matrix  
W

1 0

1 0

0 0 1

v

v


 

 
   
  

            (3.1) 

Then   has a Cholesky decomposition of the form 
THH   where H  is an upper triangular matrix of 

the form 
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21 0

0 1

0 0

v v

H

  
 

  
 
  

0

1



 

Let  , ,r v
t t t tZ Z ZZ

t tW W

 be three independent Brownian 

motions then  , ,r
t tW W  defined by t t W Z , 

or in terms of components, 

 2 1 , ,v v r
t v t v t t t t tW Z Z W Z W Z      r



 (3.2) 

Now let us turn to our problem. Note that, by Ito’s 
lemma, the model (1.6) has the dynamic given by 

   
 
 

d d d e

d d d ,

d 1 d d ,

 

  

 

    

  

  

t

t t

Y
t t t m t T t T

r
t t r t

v
t t v t t

S S r v t W S N

r r t W

v v t v W

1 d ,

(3.3) 

where
 

,  and 
  e 1tY

m E   d d d d 0r r
t t t tW W W W 

d d dv
t t vW W t . 

We can re-write the dynamic (3.3) in terms of three 

independent Brownian motions  , , r
t t tZ Z Z follows (3.2), 

we get  

    
 

2d d 1

         e 1 d ,

   



    

 t

t

v
t t t m t t v t v t

Y
t T

S S r v t v dZ Z

S N

d

d ,tZ

(3.4) 

 d d r
t t rr r t             (3.5) 

 d 1 d d v
t t v tv v t v    ,tZ        (3.6) 

This decomposition makes it easier to perform a 
measure transformation. In fact, for any fixed maturity T, 
let us denote by  the T-forward measure, i.e. the 
probability measure that is defined by the Radon- 
Nikodym derivative,  

TQ

 
0

exp d
d

d 0,

T

uT
r u

Q

Q P T

 
 







          (3.7) 

Here,  is the price at time t of a zero-coupon 
bond with maturity  and is defined as 

 ,P t T
T

 , e
T

st r ds

QP t T E F
  t


          (3.8) 

Next, Consider a continuous-time economy where in- 
terest rates are stochastic and satisfy (3.5). Since the SDE 
(3.5) satisfies all the necessary conditions of Theorem 32, 
see Protter [8], then the solution of (3.5) has the Markov 
property. As a consequence, the zero coupon bond price 
at time t under the measure Q in (3.8) satisfies 

 , exp d
T

Q s
t

P t T E r s rt

  
   

   
        (3.9) 

Note that  ,P t T depends on t only instead of de- 
pending on all information available in Ft up to time t. 
As such, it becomes a function 

r

 , tF t r of ,  tr

   , , tP t T F t r , 

meaning that the pricing problem can now be formulated 
as a search for the function  , tF t r . 

Lemma 1 The price of a zero coupon bond can be de- 
rived by computing the expectation (3.9). We obtain 

      , exp , , tP t T a t T b t T r       (3.10) 

where            1
, e T t

tb t r 


  1  , 

   

   

2 2
2

2 3 3

2 2

3 2 2 2

3
, e

4 4

e
2

T tr r

T tr r

a t T

T t





 
  

  
   

 

 

 
   
 
   

      
   



 

Proof. See Privault [9] (pp. 38-39). 
Lemma 2 The process t  

following the dynamics in 
(3.5) can be written in the form 

r

 t tr x w t  , for each t       (3.11) 

where the process tx
 

satisfies 

0d d d ,r
t t r tx x t Z x  0    .      (3.12) 

Moreover, the function w(t) is deterministic and well 
defined in the time interval [0,T] which satisfied  

  0e 1 etw t r  


   t         (3.13) 

In particular,   00w r . 

Proof. To solve the solution of SDE (3.5),  

Let  , tg t r e r and using Ito’s Lemma 

 
2

2

2

1
d d d d

2

g g g
,g t r r

t r r

  
  
  

 

Then,  

  d d e d

          = d e d

t t t
t t t r

t t r
r t

e r e r t r t Z

e t Z

  

 

   

 

   



d r
t

 (3.14) 

Integrated on both side the above equation from 0 to t 
where 0 t T   and simplified, one get 

   
0 0
e 1 e e d

t t ut t
t rr r Z  r

u

 


        

By using the definition of  form (3.13),  w t
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u Hence,   0 0
d e 1

T T T u rr
u udx u Z


           (3.22)    

0
e d

t t u r
t rr w t Z             (3.15) 

where         0e 1 et tw t r  


    . 

Note that the solution of (3.12) is Note that the solution of (3.12) is 

   
0 0 0
e e d e

t tt u t ut r
t r u r

   
0 0 0
e e d e

t tt u t ut r
t r u r d r

u

. 

d r
ux x Z         

Substituting (3.22) into (3.17), once get 

Z

t



. (3.16) 
     

2 2

20 0

d
  

d

exp 1 e d 1 e d
2

T

T TT u T urr r
u

Q

Q

Z u  
 

    
    

 
 

 

Hence,  for each t. The proof is now 

complete. 

 tr w t x 
(3.23) 

Next we shall calculate the Radon-Nikodym derivative 
as appear in (3.7). By Lemma 1 and 2, we have 

and . Substituting and  t tr x w t  0,P T tr  0,P T  

into (3.7), we have 

The Girsanov theorem then implies that the three proc- 

esses ,rT vT
t tZ Z  and T

tZ defined by 

  
    

  

0

0

2 2

20
0

exp dd

d exp 0, 0,

       exp d 1 d
2

T
T u

T
T T u

u

x w u uQ

Q a T b T r

x u e 


 

 





u    

 



 

d u

  d d 1 e

d d , d d

T trT r r
t t

vT v T
t t t t

dZ Z t

Z Z Z Z




   

 
    (3.24) 



are three independent Brownian motions under the meas- 
ure . Therefore, the dynamics of  and under 

 are given by 

TQ ,t tr v tS
TQ

(3.17) 

    
 

  
 

2

2

d d d 1

        e 1 d ,

d 1 e d d ,

d 1 d d .

t

t

vT T
t t t m t v t t t v t

Y
t T

T t rTr
t t r t

vT
t t v t t

S S r v t v Z v Z

S N

r r t Z

v v t v Z



    


  



 



 

    

 

 
     
 

  

d

(3.25) 

Stochastic integration by parts implies that 

 
0 0 0

d d
T T T

u T ux u Tx u x T u x        (3.18) 

By substituting the expression for from (3.12), udx

 

   
0

0 0

  d

d d

T

u

T T r
u r

T u x

T u x u T u Z 



    



  u

    (3.19) 

 
Moreover by substituting the expression for ux from 

(3.16), the first integral on the right hand side of (3.19) 
becomes 

4. The Pricing of a European Call Option on 
the Given Asset 

 

    
0

0

d

e d d

T

u

T u u s r
r uo

T u x u

T u Z u



  

 

  



 
    (3.20) 

 
Let   0,t t T

S
   

be the price of a financial asset modeled as 

a stochastic process on a filtered probability space 

 , , , ,T
tF F Q

 tF is usually taken to be the price his-  

Using integral by parts, we have (Equation 3.21) 
Substituting (3.21) into (3.19), we obtain

 
    0 0

d e 1
T T T u rr

u uT u x Z


      d 


 

tory up to time t. All processes in this section will be de- 
fined in this space. We denote C the price at time t of a 
European u call option on the current price of an under- 
lying asset  with strike price K and expiration time T. tS

 

    
       
       

     

0

0 0 0 0 0

0 0 0 0

0 0 0

   e d d

e d e d e d d e d

e d e d e d e d

e e d d e 1 d

T u u s r
r uo

T u T u us r u s r v
r s r s

T T T uu r v v u r
r u u

T u T T uu v r rr
r u u

T u Z u

Z T u u Z T v v

Z T v v T v v Z

T v v Z Z



   

   

 



 








 

 

 

 

 

     

       

            

 

    

   

    
0

d .
T r

r uT u Z  

       (3.21) 
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The terminal payoff of a European option on the un- 

derlying stock  with strike pricetS K is 

max ,0TS K              (4.1) 

This means the holder will exercise his right only  
and then his gain is T . Otherwise, if 

 T

TS K
KS K S   then 

the holder will buy the underlying asset from the market and 
the value of the option is zero. 

We would like to find a formula for pricing a Euro- 
pean call option with strike price K and maturity T based 
on the model (3.25). Consider a continuous-time econ- 
omy where interest rates are stochastic and the price of 
the European call option at time t under the T-forward 
measure  is TQ

       
   

0

, , , ; , , max ,0 , ,

( , ) max ,0 , , d


 

 

T

T

t t t T t t tQ

T T t t t TQ

C t S r v T K P t T E S K S r v

P t T S K p S S r v S
 

where  is the expectation with respect to the T-for-  TQ
E

ward probability measure,
 

is the corresponding con-  TQ
p

ditional density given and P is a zero coupon 
bond which is defined in Lemma 1.  

 , ,t t tS r v 

With a change in variable ln ,t tX S  

 

     
     
   

   

   

lnln

ln

ln

ln

, , , ; ,

, max e ,0 , , , d

, e 1 , , d

= , e , , d

  , , , d

1
e e

e , ,

 

T
T

T
TT

T
T

T

t T
T

T
T

t t t

X
T t t t TQ

X
X K T t t t TQK

X
T t t t TQK

T t t t TQK

X X
T t t t TQX K

t t tQ

C t S r v T K

P t T K p X X r v X

P t T K p X X r v X

P t T p X X r v X

KP t T p X X r v X

p X X r v vX
E S r v















 

 



 
 













 

, ,



 
ln

  , , , dT T t t t TQK
KP t T p X X r v X


 

 

 
ln

, ,
e d

(e , , )

T
t T

T
T

T t t tQX X
TXK

t t tQ

p X X r v
e X

E S r v

 
 




   
ln

, ,T T t t t TQK
, dKP t T p X X r v X


   

(4.2) 
With the first integrand in (4.2) being positive and in-

tegrating up to one. The first integrand therefore defines a 
new probability measure that we denote by below  TQ

q

 

 

   
ln

ln

, , , ; ,

e , , d

  , ,

t
T

T

t t t

X
T t t t TQK

T t t t TQK

C t S r v T K

q X X r v X

, dKP t T p X X r v X













 

     
 
   

1 2e P , , , ; , , P , , , ; ,

e Pr ln , ,

   , Pr ln , ,   

 

 

 

t

t

X
t t t t t t

X
T t t t

T t t t

t X r v T K KP t T t X r v T K

X K X r v

KP t T X K X r v

 

(4.3) 
where those probabilities in (4.3) are calculated under the 

probability measure . TQ

The European call option for log asset price  
lnt tX S  will be denoted by 

   
   

1

2

ˆ , , , ; , e P , , , ; ,

                               e , P , , , ; ,

tX
t t t t t t

t t t

C t X r v T t X r v T

P t T t X r v T

 










(4.4) 

where ln K   and  

   P , , , ; ,  :=  P , , , ; , ,    1, 2j t t t j t t tt X r v T t X r v T K j  .  

Note that we do not have a closed form solution for these 
probabilities. However, these probabilities are related to 
characteristic functions which have closed form solutions 
as will be seen in Lemma 4. The following lemma shows 

the relationship between and in the option value of 

(4.4). 
1P 2P

Lemma 3 The functions  and  in the option val- 

ues of (4.4) satisfy the PIDEs (4.5): 
1P 2P

and subject to the boundary condition at expiration t= T 

 1 , , , ; , 1 .xP T x r v T           (4.6) 




 
Moreover, satisfies the Equation (4.7)2P

 

          1 1
1 1 10 e 1 , , , ; , , , ,y

v v

P P
; , dA P v v P t x y r v T P x t r v T k y y

t v
    





               
          (4.5) 

 

        

    



 

22
2 22 2 2

2 2

2 2
2 (

2 2

2
2 2

0 ,
2

, ,
1 , 1 e

2

, , , ; , , , , ; , (e 1) d

r

T tr r

y

P P Pv v
A P v b t T

t x rx

a t T b t T
P r b t T P r b

t t

P
v P t x y r v T P t x r v T k y y

x



 

 
 



 

 





          
    

                
 

      


  

 



) ,t T

          (4.7) 

Copyright © 2011 SciRes.                                                                                 JMF 



 103S. PINKHAM  ET  AL.

 
and subject to the boundary condition at expiration t = T 

 2 , , , ; , 1xP T x r v T                                     (4.8) 

where for i = 1,2 

  

   

     

2
2 1

2 2 2 222

2 2 2

1
[ ] 1 e

2

1
2 2 2

, , , ; , ( , , , ; , ) e 1 d

T ti ir
i

i v i i i ir
v v

yi
i i

P P
A P r v r

x r

P v P P P Pv
v v

v vv x r

P
v P t x y r v T P x t r v T k y y

x


  



  

 

 





               
    

     
   

  
      

   


 

    

 

x
 


             (4.9) 

 
Note that  if 1 1x   x   and otherwise

 
1 0x   . 

Proof. See Appendix A. 
 
5. The Closed-Form Solution for European  

Call Options 
 
For j = 1,2 the characteristic function for 

, with respect to the variable  , , , ; ,jP t x r v T    , are 

defined by

   iuκ, , , ; , : e d , , , ; , ,




   
j jf t x r v T u P t x r v T  (5.1) 

with a minus sign to account for the negativity of the 

measure jdP . Note that jf
 

also satisfies similar PIDEs 

 , , , ; , 0,j
j j

f
A f t x r v T

t



   





 

       (5.2) 

with the respective boundary conditions 

  

  

, , , ; , e d , , , ; ,

                           e d e .

iu
j j

iu iux

f T x r v T u P t x r v T

x







  









 

    







 

Since    d , , , ; , 1 d    
j xP t x r v T d x

The following lemma shows how to calculate the char- 

acteristic functions for  and as they appeared in 

Lemma 3.  
1P 2P

Lemma 4 The functions  and can be calculated 

by the inverse Fourier transformations of the character- 
istic function, i.e. 

1P 2P

   
0

e , , , ; ,1 1
, , , ; , Re d ,

2 π








 
   

  


iu
j

j

f t x r v T u
P t x r v T u

iu
 

for  with Re[.] denoting the real component of a 

complex number.  

1,2,j 

By letting T t   , the characteristic function jf  is 

given by  

        , , , ; , exp iux ,j j jf t x r v t u B rC vEj         

where   
2

1 2 2 2 1, ,
2

v
j j j j j j jb b b b b


      ,  

 

      

12 22

2 2
10

1 , ,

1
e e 1

2

v v v v

iux y y

b iu b iu

b iu u iu k y dy

     








    

 
      

 


 

      2 2
20

1
e e 1 d

2
iux yb u iu iu k y y





 
      

 


 
 

    

 

111 1212 11 12
1

11 11 1 11 12

2
2 2 2 2

3 2

22
2

3

e
 ln

2 2

e 1 2
2

4e e 3
4

r
r r

r

b bb b b
B

b b b b

iu
iu u
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    2
2 0 11 e , 4j j j j j

iu
C b


     b b

  

2
2 0 1

2
2 0 1

4

1 2

4

1 1 2

e 1
.

2 e

j j j

j j j

b b b

j j

j
b b b

j j j

b b
E

b b b










  
 

  
 

 

 

 
 

 

   

  

   

222 2122 21 22
2

21 21 2 21 22

2
2

3 2

2
2 2

3

2
2

2 2

ln
2 2

4 2 1 e )

4 2 e 1
4

1 4
2

r

r

r

b bb b e
B

b b b b

iu
u iu

u iu

iu u iu










 
 





2

b

  
 







   
   

  
 

     
 

   

 
      
 

  
 



 

Proof. See Appendix B.  
In summary, we have just proved the following main 

theorem. 
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Theorem 5 The value of a European call option of 
SDE (3.25) is 

 
 
  1 2

, , , ; ,

, , , ; , ( , ) , , , ; ,

t t t

t t t t t t t

C t S r v T K

S P t X r v T KP t T P t X r v T



  
 

where 1P  and 2P are given in Lemma 4 and  ,P t T  is 
given in Lemma 1.  
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Appendix A: Proof of Lemma 3 
 

By Ito’s lemma,  follows the partial inte-

gro-differential equation (PIDE)  

ˆ , , ,C t x r v

ˆ
ˆ ˆ 0,D J

t t

C
L C L C

t
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where  
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where is the Lévy density. ( )k y

We plan to substitute (4.4) into (A.1). Firstly, we compute  
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Substitute all terms above into (A.1) and separate it by 

assumed independent terms of 1P  and 2P . This gives  

two PIDEs for the T-forward probability for 
 , , , ; , , 1,2 :iP t x r v T j 
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and subject to the boundary condition at the expiration 
time t = T according to (4.6). 

By using the notation in (4.9), then (A.2) becomes 
Equation (A.3) 
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For  2 ( , , , ; , ) :P t x r v T 
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 Again, by using the notation (4.9), then (A.4) becomes 
(A.4) 

and subject to the boundary condition at expiration time t 
= T according to (4.8). 
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The proof is now completed. 
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 Appendix B: Proof of Lemma 4 
 

To solve the characteristic function explicitly, letting 
T t  

1f
 be the time-to-go, we conjecture that the func-

tion  is given by 
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exp iux ,
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   (B.1) 

and the boundary condition      1 1 10 0 0B C E   0 . 
This conjecture exploits the linearity of the coefficient in 
PIDEs (5.2).  

Note that the characteristic function of 1  always 
exists. In order to substitute (B.1) into (5.2), firstly, we 
compute 
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Substituting all the above terms into (5.2), after can- 
celling the common factor of 1f , we get a simplified 
form as follows: 
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By separating the order, r, v and ordering the re- 

maining terms, we can reduce it to three ordinary differ- 
ential equations (ODEs) as follows: 
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and substitute all term above into (B.3). we get 
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By method of variable separation, we have 
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Using partial fraction on the left hand side, we get 
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Integrating both sides, we have 
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Using boundary condition 1( 0) 0E     we get
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Solving for 1( )E  , we obtain 
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where . 1 2 2 2,b b b b    

In order to solve 1( )B  explicitly, we substitute 1( )C 
 

and 1( )E  in (B.5) and (B.6) into (B.4) .   
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Integrating with respect to and using boundary con- 
dition

 1( 0)B 0   , then we get 
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The details of the proof for the characteristic function 

2f are similar to 1f .  

Hence, we have 

 
     

2

2 2 2

, , , ; ,

exp

f t x r v T u

iux B rC vE



  



     
 

where    2 2,B C  and 2 ( )E  are as given in this Lem- 

ma. 
We can thus evaluate the characteristic function in 

close form. However, we are interested in the probabil- 

ity jP . These can be inverted from the characteristic 

functions by performing the following integration 

 
 iuκ

0

, , , ; ,

e , , . ; ,1 1
Re d

2

j

j

P t x r v T

f t x v r T u
u

iu






 
      





 e 


 



 
  




 


 



 
     
 


   



 

 



 
for 1,2j   where lnt tX S  and ln K  , see Ken- 

dall et al. [10]. The proof is now complete. 
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