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Abstract 
By the large and small wave-function components approach we achieved the 
nonrelativistic limit of the Dirac equation in interaction with an electromag-
netic potential in noncommutative phase-space, and we tested the effect of 
the phase-space noncommutativity on it, knowing that the nonrelativistic 
limit of the Dirac equation gives the Schrödinger-Pauli equation. 
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1. Introduction 

In the last few years there has been much interests in the study of physics in 
non-commutative space, knowing that the study of noncommutative geometry 
has a long history [1] [2], the studies of noncommutativity in phase-space and 
their involvement for quantum field theories play an important role in various 
fields of physics especially in the theory of strings, and in the matrix model of 
M-theory [3], also in the description of quantum gravity. 

The common method for studying the noncommutativity of quantum mechan-
ics (NCQM) is the correspondence between commutative space and the non-
commutative space using the method of translation which known as Bopp-shift, 
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or using the Moyal star product [4] [5] [6] [7]. 
In the quantum-mechanical description of particles, there are various relati-

vistic or non-relativistic wave equations as the usual Schrödinger equation ap-
plies to the spin-0 particles in the non-relativistic domain, and the Klein-Gordon 
equation is the relativistic equation appropriate for spin-0 particles [8] [9] [10], 
and in regards to the spin-1/2 particles are governed by the relativistic Dirac. 

To move from the relativistic quantum mechanics toward the nonrelativistic 
one it is very necessary to pass by the nonrelativistic limit, which is to transform 
the physical information under the condition v c

, we speak of the 
nonrelativistic limit for low speeds in front of the speed of the light or for the  

regime of weak or low energy in front of the mass energy 2 1v pc
c mc
≈  , the  

nonrelativistic limit can be achieved through various ways, the most important 
ways are the Foldy-Wouthuysen transformation (it is only applicable to weak 
fields) [11] [12], and the Douglas-Kroll-Hell transformation [13] [14] [15], this 
canonical transformation is an unitary transformation allows separating 
(block-diagonalize) Dirac hamiltonian into two parts, one part describes elec-
trons, while the other gives rise to negative energy states, which are the so-called 
positronic states, and the classical approach which is the large and small wave 
function components approach [16] [17], in this work we investigate the nonre-
lativistic limit of the Dirac equation according to the large and small wave func-
tion components approach to derive directly the Schrödinger-Pauli equation 
[18] [19] [20], but in the case of particles with spin 1 or higher, only relativistic 
equations are usually considered [21], noting that the uses of the Schrödin-
ger–Pauli equation represented on the study of the fine structure of the hydro-
gen atom, and various scattering problems knowing that it does not consider the 
spin of the particles in the studies, but it can be introduced by assuming the 
presence of an electromagnetic field in the Dirac equation before the extraction 
of the nonrelativistic equation, which describes the interaction of a spin 1/2 par-
ticle with the external electromagnetic field. It correctly predicts the spin of the 
particle and the gyromagnetic ratio, in fact the examples of using and applying 
Schrödinger-Pauli equation are many and we can not all mention them. 

2. Length-Momentum Noncommutativity 

At string scales (very small scales) the space does not commute anymore, so that 
we consider the operators of coordinates and momentum in the noncommutative 
phase-space nc

ix  and nc
ip  respectivly, then considering a noncommutative 

algebra satisfying the commutation relations 

( )

,

, , 1, 2 ,

,

nc nc
i j ij

nc nc
i j ij

nc nc eff
i j ij

x x i

p p i i j

x p i δ

  = Θ 
  = Θ = 
  =  

                      (1) 

taking into account the effective Plank constant 
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21 .
4

eff  Θ ⋅Θ
= + 

 
 



                           (2) 

where ij ijk kΘ = Θ , ( )0,0,kΘ = Θ , ij ijk kΘ = Θ , ( )0,0,kΘ = Θ , ,Θ Θ  are 
antisymmetric constant matrices (noncommutative parameters) with the 
dimension of (lenght)2 and (momentum)2 respectively. 

The mapping between the noncommutative phase space and the commutative 
one doing through the Bopp-Shift linear transformations [22] [23]. 

1 1
2 2 ,

1 1
2 2

nc nc
x

nc nc
x

x y

y

y

x x p y y p

p p y p p x

= − Θ = + Θ

= + Θ = − Θ

 

 

                  (3) 

vanishing the noncommutative parameters the system will reduce to the 
commutative one. 

With another method the noncommutativity in space can be realized using 
the Moyal product (⋆-product) [24] [25] [26]. 

( )( ) ( ) ( )

( ) ( ) ( ) ( )1 1
1 1

1

exp
2
1 ,
! 2

a b

k k
k k

ab x x a b

n
a ba b

a a b b
n

if g x f x g x

if x g x f x g x
n=

 = Θ ∂ ∂  
  = + Θ Θ ∂ ∂ ∂ ∂  
  

∑   


   (4) 

in other term the noncommutativity information is encoded in the Star product 

( ) ( ), ,.ncA A=                           (5) 

3. Nonrelativistic Limit of the Noncommutative Dirac  
Equation 

3.1. Noncommutative Dirac Equation 

Starting with the Dirac equation in the noncommutative phase space [27] [28] 

( ) ( ) ( ) ( ), , ,nc nc ncH x p x H x p x Eψ ψ ψ= ⋅ =              (6) 

where the Dirac equation in interaction with electromagnetic four-potential 
( )( ){ }0 , iA A A xµ =  in commutative phase space is 

( ) ( ) 2
0

ˆˆ ˆ ,i i i
ec p A x eA x mc E
c

α β ψ ψ  − + + =  
  

              (7) 

where the momentum ˆ ip  is giving by ˆ i ip i= ∇ , and the matrices ˆiα  and β̂  
satisfy the anticommutation relations 

{ } { } 2 2ˆ ˆˆ ˆ ˆ ˆ, 2 , , 0, 1.i j ij i iα α δ α β α β= = = =                   (8) 

Using the Equation (4), we achieve the noncommutativity in space 

{ }ncx x→ , then the Dirac Equation (7) transforms to Equation (6) as 

( ) ( ) ( )2
0

ˆˆ ˆ ,i i i nc
ec p A x eA x mc x E
c

α β ψ ψ  − + + =  
  

           (9) 

as ( )A x hx=  for that the derivation in Equation (4) will automatically stop in 
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the first order 

( )( ) ( )2 ,
2

ab
a b

if g x f g= Θ ∂ ∂ +Ο Θ                 (10) 

it means that terms upper than the first order will vanish, the Equation (9) 
transforms to 

( )( )

( ) ( ) ( ) ( ) ( )2
0

ˆˆ ˆ,
2

,

nc
ab a i i i b

nc

H x

i eH x p x c p A x eA x mc x
c

E

ψ

ψ α β ψ

ψ

  = + Θ ∂ − + + ∂  
  

=



(11) 

as ( ) ( )2ˆˆ ˆ 0a i i ac p mcα β∂ = ∂ = , Equation (20) becomes 

( ) ( ) ( ) ( )( ) ( )0ˆ, ,
2

nc
ab a i i b nc

ieH x p x c A x eA x x Eψ α ψ ψ− Θ ∂ + ∂ =       (12) 

after there we achieve the noncommutativity in phase { }ncp p→  using the 
Equation (3) for finding the entire noncommutative phase space Dirac equation, 

( ) ( )

( ) ( )

( ) ( )( ) ( )

2
0

0

,

1 ˆˆ
2

ˆ
2

,

nc

i i ij j i

ab a i i b

nc

H x p x

ec p x A x eA x mc
c

ie c A x eA x x

E

ψ

α β

α ψ

ψ

 = + Θ − + + 
 

− Θ ∂ + ∂ 


=



 



         (13) 

we rewrite, the Equation (13) in more compact forme (see Appendix): 

( ) ( )( )2
0 0

ˆˆ ˆ ˆ

.

nc nc

nc

nc

H

e c ec p A eA mc x A A p
c

E

ψ

α β α α ψ

ψ

  = − + + + × ⋅Θ + ∇ − × ⋅Θ  
  

=



  

 

  

  



(14) 

3.2. Large and Small Wave-Function Components Approach 

It is possible to define the nonrelativistic limit of the Dirac equation, using sev-
eral ways, including that there is the Douglas-Kroll-Hell approach, it used most-
ly as part of relativistic quantum chemistry, and the Foldy-Wouthuysen trans-
formation, which are both canonical transformation, and the method of devel-
opment in power of   [29], and the classical approach, the latter one depends 
on the upper two components of the Dirac wave-function ψ  in the standard 
representation are much larger than the lower two components, using this prop-
erty we can derive simply the Schrödinger-Pauli equation. 

To define the nonrelativistic limit of the phase-space noncommutative Dirac 
equation we should firstly study the case of an electron at rest, so that without 
the electromagnetic interaction { }0, 0p Aµψ = = , Equation (14) becomes 

( )2
0

ˆ ˆ .nc nc nc nc
cH m c x Eψ β α ψ ψ = + × ⋅Θ = 

 









             (15) 

This system of equations is simply solved, and leads to the following 
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four-solutions 

( ) ( )

( ) ( )

2 2
0 0

2 2
0 0

ˆ ˆ

ˆ
4

ˆ

1 2

3

1 0
0 1e e
0 0
0 0

,
0 0
0 0e e
1 0
0 1

i c i cm c x t m c x t

i c i

nc nc

nc n

cm c x t x

c

m c t

α α

α α

ψ ψ

ψ ψ

   − + × ⋅Θ − + × ⋅Θ   
   

   + + × ⋅Θ + + × ⋅Θ   
   

   
   
   = =
   
   
   
   
   
   = =
   
   
   

 

 





  





 



 

   

        (16) 

1
ncψ  and 2

ncψ  correspond to the positive energy value and 3
ncψ , 4

ncψ  to the 
negative one. 

At first, therefore we restrict ourselves to solutions of positive energy. In order 
to show that the Dirac equation reproduces the two component Pauli equation 
in the nonrelativistic limit. 

The nonrelativistic limit of the Equation (14) can be most efficiently studied 
in the representation 

,nc
nc

nc

φ
ψ

χ
 

=  
 





                        (17) 

where the four-component spinor ncψ  is decomposed into two-two compo-
nent spinors ncφ  and ncχ , with ep A

c
 − →Π 
 




 , the Dirac Equation (14) be-
comes 

( ) ( )( )

2
0 0

0

ˆˆ

ˆ ˆ ,

nc nc nc nc

nc nc nc nc

nc nc

nc nc

i c eA m c
t

c ex A A p

φ φ φ φ
α β

χ χ χ χ

φ φ
α α

χ χ

       ∂
= Π + +       

∂        
   

+ × ⋅Θ + ∇ − × ⋅Θ   
   

   



   



  

 
 



 

 

  (18) 

according to the Dirac matrices 

ˆ0 1 0ˆˆ , ,
ˆ 0 10

σ
α β

σ

   
= =     −  







                    (19) 

and setting ( )ˆ xαΘΞ = × ⋅Θ






, and ( )( )0ˆ A A pαΘΞ = ∇ − × ⋅Θ
 





 it comes 

2
0 0

ˆ

ˆ

,

ncnc nc nc

nc nc ncnc

nc nc

nc nc

c
i eA m c

t c

c e

σ φφ φ φ
χ χ χσ χ

φ φ
χ χΘΘ

      Π∂
 = + +      ∂ −Π      

   
+ Ξ + Ξ   

   







  



  



 


 







       (20) 

if the rest energy 2
0m c , as the largest occurring energy, is additionally separated  

by 
2

0
e

i cm c tncnc

ncnc

φφ
χχ

Θ
 − + Ξ 
 

   
=   
  

 





, the Equation (18) takes the form 

2
0 0

ˆ 0
2 ,

ˆ
nc nc nc nc

nc nc nc ncnc

c ei eA m c
t c

φ σ χ φ φ
χ χ χ χσ φ

Θ

 Π       ∂
 = + − + Ξ        ∂ Π        













   (21) 
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firstly considering the lower of the above equation. Using the slow-time  

dependence 0E i
t
∂
∂

  , and the weak coupling of the electromagnetic potential  

0 0E eA  approach, which means that the kinetic energy as well as the potential 
energy are small compared to the rest energy, by another term the transition to 
the nonrelativistic limit is realized by assuming that the momentum is small 
compared to the characteristic quantity mc and that the Coulomb interaction 
energy is weak compared to the mass energy, so that the Equation (21) goes to 

2
0

ˆ 0
2 0,

ˆ
nc nc

nc ncnc

c em c
c

σ χ φ
χ χσ φ

Θ

 Π    
  − + Ξ =    Π      









            (22) 

using the second equation of the above system Equation (22) then we obtain 

2
0

ˆ
,

2
nc nc

c
em c

σ
χ φ

Θ

Π
=

− Ξ






                      (23) 

where ncχ  represent the small component of the wave function ncψ . Insertion 
of Equation (23) into the first equation of Equation (21) results in a nonrelativis-
tic wave function for ncφ  

( )( )
0

0 2

ˆ ˆ
,

2
nc nc nc nc

ei eAet m
c

σ σ
φ φ φ φΘ

Θ

Π Π∂
= + + Ξ

∂ − Ξ






 

 

           (24) 

with the help of 

( )( )ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ .A B AB i A Bσ σ σ= + ×
    

                      (25) 

Finally, the Equation (24) becomes 

( )
2

0

0 2 0 2

ˆ
.

2 2
nc nc

ep A e B eci eAe et m c m
c c

σ
φ φΘ

Θ Θ

  −  ∂   = − + + Ξ 
∂   − Ξ − Ξ    



















    (26) 

This is as it should be the noncommutative phase-space Schrödinger-Pauli 
equation. 

For 0 0ΘΘ = ⇒ Ξ = , the Equation (26) returns to that of usual Schrödinger- 
Pauli equation [30] [31]. 

3.3. Gyromagnetic Factor of the Electron (g = 2) 

According to 1,
2

B B A B x= ∇× = ×
   

 , we have 

2 2
2 ,

2
e e ep A p B x p B L
c c c

   − = − × ≈ − ⋅   
   

   

                 (27) 

where L x p= ×


   and 1ˆ ˆ
2

S σ=




  are the operator of orbital angular 

momentum and the spin operator respectively. 
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So that the Equation (26) finally takes the form of 

( )2

0

0 2 0 2

ˆ2 .
2 2

nc nc
p e ei L S B eAe et m c m

c c

φ φΘ

Θ Θ

 
 ∂  = − + + + Ξ 

∂   − Ξ − Ξ    













 (28) 

While we are in very tiny space scales, so the NC term 1ΘΞ  , it is possible 
to use the Maclaurin series, by changing the variable 

2
0

,
2

e
m c Θ ΘΞ = Ω


                         (29) 

00
0 2

0

1 ,
2

2 1
2

n
j

j

e
mem

m c

Θ
=

Θ

≅ Ω
 
− Ξ 

 

∑


                 (30) 

we find that the Equation (28) goes to 

( )2 2
0 0

00

1 ˆ2 2 .
2

n
j

nc nc
j

ei p L S B eA m c
t m c
φ φΘ Θ

=

 ∂   = Ω − + + + Ω  ∂    
∑

 



     (31) 

The Equation (28) represents the phase-space noncommutative Schrödinger- 
Pauli equation, and it contains the NC kinetic energy operator and the NC Zee-
man coupling term (which had been added by hand by Pauli when we talk about 
the commutative term), and the term that associated with the NC diamagnetism, 
in the absence of magnetic field ( )0A B= = , the Equation (31) takes its original 
form without the information about the spin, which is the noncommutative 
Schrödinger equation as follows 

( )2 2
0

00

1 2 .
2

n
j

nc nc
j

i p m c
t m
φ φΘ Θ

=

 ∂  = Ω + Ω 
∂   

∑ 

             (32) 

The Equation (31) is a first order equation of 
1
m

, the nonrelativistic  

expansion of this equation allows to add potentials such the electrical potential, 
but also to find corrections terms if one realize the development in the second  

and third order of 
1
m

, precisely we predict that in the seconde order we find the  

Darwin interaction and Spin-Orbit coupling NC terms knowing that Darwin’s 
NC term is interpreted as a correction of the potential energy due to the Zitter-
bewegung phenomenon (the tremor movement) [32] [33], in the third order we 
find corrections of the kinetic energy and temporal dependence of the electric 
field NC terms. 

4. Conclusion 

In conclusion, the nonrelativistic limit of the Dirac equation with electromagnetic 
potential has been studied in noncommutative phase-space using the large and 
small wave-function components approach. We find that the effect of the non-
commutativity in phase on the nonrelativistic limit vanished, but the effect of the 
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noncommutativity in space appeared widely and it reduced in the NC term ΘΞ  
(at least to the order of approximation we have considered). Under the condition 
that space-space and momentum-momentum are all commutative (namely, 

0Θ = Θ = ), the results return to that of the usual quantum mechanics. 
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Appendix 

Calculations between moving from the Equation (13) to the Equation (14): 

Using ij ijΘ = Θ  and 1
2k kij ijΘ = Θ  then 

11 1 12
2 2 2i ij j k kij i j k kij i jc x c x c xα α α−Θ = Θ = Θ
 

  , knowing that kij ijk=  , 

we know that ( )u v u vµυλ υ λµ
= ⋅×  , so that 

( ) ( )1
2 k kij i j kk

c cc x x xα α αΘ = × ⋅Θ = × Θ⋅




 





 , 

with the same manner we prove that 

( ) ( )

( )( )
0 0

0

k abk a i i b k abk a b
ieie A A A A

e A A p

α α

α

−
− Θ ∂ − ∂ = Θ ∂ −

⋅

∂

= ∇ − × Θ
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