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Abstract

In this paper, we study the twisted Poisson homology of truncated polyno-
mials algebra A in four variables, and we calculate exactly the dimension of
Ith (=1, 2, 3, 4) twisted Poisson homology group over A by the induction
on the length. The calculation methods provided in this paper can also solve
truncated polynomials algebra in a few variables.
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1. Introduction

For a Poisson algebra, Lichnerowicsz (see [1]) first introduced the notion of
Poisson cohomology in 1977. This Poisson cohomology provides important in-
formation about the structure of Poisson algebra. Launois S and Richard L (see
[2]) studied the Poisson (co)homology of the algebra of the truncated polynomi-
al in two variables and established a duality between the two. Can Zhu (see [3])
proved that this result is still true for all Frobenius Poisson algebra as follows
(Theorem 1):

Theorem 1. Let Sbe a Frobenius Poisson algebra. Then we have the following

isomorphism:
HP'(S,S) = HP(S.S,),

For all ie N, where S_ is the Poisson module induced by the Frobenius
isomorphismo: S — S* (see [3], Corollary 3.3).

In general, given a Poisson algebra, it is very difficult to calculate its Poisson
cohomology. From the above Theorem, the dimension of Poisson cohomology

space is determined by calculating twisted Poisson homology. So there is a natu-
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ral problem: how to calculate the twisted Poisson homology of a Poisson algebra.
For example, for algebra in [2], how would we calculate its twisted Poisson ho-
mology if we extended two variables to four variables or even n variables. The
purpose of this paper is to provide a solution to calculate the twisted Poisson
homology of truncated polynomials algebra in four variables.

In this article, we will recall some basic knowledge in the second part and

show the main conclusions in the third part.

2. Preliminaries

Throughout, k is a field of characteristic zero.

Definition 1 [4]. A right Poisson module A over the Poisson algebra R is a
k-vector space M endowed with two bilinear maps - and {—, —} v MxR—>M
such that

1) ( , ) is a module over the commutative algebra R;

( =, ) is a right Lie-module over the Lie algebra (R,{-,—});
3) {xa, b} ={x,b}, a+x{a,b} forany a,beR and xeM;
4) {x,ab}, ={x,a}, b+{x,b} a forany a,beR and xeM;

Left Poisson modules are defined similar. Any Poisson algebra R is naturally a
right or left Poisson module over itself.

Definition 2 [5]. Let A be a Poisson algebra. In general, let Q'(4) be the
Kéhler differential module of 4 and Q7 (4)=A"Q'(4) be the p-th Kéhler
differentia forms, where A is the wedge product over A (also in [6]). Given a
right Poisson module M over the Poisson algrbra A, there is a canonical chain
complex

e M ®, QF (A) LM ®, Q! (4) s 0
25 M®,Q (42 M®,Q°(4)—20 '
where for p21, 6,:M®,Q"(4)>M ®, Q"' (4) is defined as:

ap(m®dal/\-~/\dap)

(_l)i—l {m’ai}M ®da1 /\ga\lAdgp

|
-M‘

i=1

+1 z (—1)i+jm®{aj3aj}A dal /\gczga\//\dap
<ij<p

The complex (1.1) is called the Poisson complex of A with values in A4, and
for p>0 is p-th Poisson homology of A with values in A4, denoed by
HP, (A,M )

Definition 3 [5]. Let p e 4' (A) be a Poisson derivation, and M be a right
Poisson A-module. Define a new bilinear map {_ _}MD “MxR—>M as

{m,a}MD = {m,a}M +m-D(a)

Then the A-module with {—,—} > 18 a right Poisson A-module, which is
called the twisted Poisson module of M twisted by the Poisson derivation D, de-
noteby p/°.
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3. Twisted Poisson Homology of Truncated Polynomial

We consider the truncated polynomials algebra
A;:k[xl,x2,x3,x4]/<xix = XX, X, >

with the Poisson bracket {xl.,xj} =Axx;, V1<i<j<4,2, ek. The fact that
A; =—A4; is clear from the definition of Poisson bracket. We can get the mod-

ular derivation D(%,)= (A + A0 -+ 4, )= (A + Ay 44 A ) ) in (7).
Then we define a new bilinear map {-, _}AD as {xi,xj}AD = {xl.,xj}A +xiD(xj) .
By definition 3, 4” becomes a twisted Poisson right A-module with {-,-} ,.
Motivated by this result and definition 2, we obtain a new canonical chain com-

plex over A:
0—4"®,0(4) 454" ®, 0 (4)—E5 4" ®, 0 (4)
5 4"0,0 T 5(4)4"®, 0" (4)—E -0

where for 1<p<4, 57:4"®,Q" (4)—> 4" ®,Q""(4) isdefined as:

5Z(a0®dal A---/\dap)

:i(—l) {ay,a }AD®da1A da ~Nda,

S () e @ {0, da Ao

1<,</<p

P

Now we can get some conclusions as follows.
Proposition 3.1 HP, (4, 4”)=k(xx,xx,) dim(HR,(4,4))=1.
Proof. 4”®Q'(4)—1—4"®0Q"(4)—%-0
o m®dx; > {m,xl.}AD
First of all, we have that kerd; = 4” ® Q°(4), which leads to
HF,(4,4")=ker &7 [Im&] = 4° ® Q" (4)/Im&; |
So we just need to consider which elements in 4” ® Q°(4) have the inverse
image.
We proceed by the induction on the length of the elements in 4” ® Q°(4).
Remark: We make an agreement on the length: the length of 1®da, N\---Ada,
is 0; the length of a,a,-a,®da; \---N\da, isi.
1) The image of element of length 0

1®dx, 5 {1} o = D(x) = (A + Ay + Ay )%,

1®dx, > {Lx,} » =D(x,) (/123+/124 Ay) %,
(Zas = s = Aas) 3,
1®dx, - {1,x,} » =D(x4)=—(z14 + Ay + Ay ) X,

. T
Hence, we have: x,x,,x;,x, €ImJ/.

1®dx; - {1, x3}AD—D(x3)

2) The image of element of length 1
x, ®dx, — {xl,xz}AD :{xl,xz}A +x,.D(x,) = (A + Ay ) X,X,
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X, ®dx, > {xy, x5} » ={x, x5}, +x5,D(x)=(4, +A,) X%
X ®dxy > {x,x,} o ={x.%,}  +xD(x,)=—(Ay + Ay ) XX,
X, ®dvy o {x,, x5} o = {55}, +x,D(x;) = (4 - A3) %%
X, ®dx, - {x,,x,} p ={x,x,}, +5,D(x,) =—(4, + A, ) X,
X ®dx, - {xy.x,} o ={x.5,} 5D (x,) = (A, + 4y 3%,
Obviously, we get: x,x, € Im&7,VI<i< j<4.
3) The image of element of length 2
X%, ®dx, 5 {x,x,,5,} o ={x5,, x5} +x6D(x;) = A,x5x,x,
X%, @dx, - {xx,,x,} » ={x%,,%,} +xx,D(x,)=-Ayxx,%,
XXy ®dx, > {xxy, 5, 0 = {xx,0}, +x5D(x,) = —A,xxx,
X%, ®dx, 5 {x,x5, X, o = {550, ) +60,0,D(x,) = —A,%%,
Hence, we can see: x,x;x, e Im¢/,VI<i<j<k<4.
4) The image of element of length 3

ST (x,x,%, ®dx, ) =0

o) (xx,x, ®dx;)=0

o7 (x,x3x, ® dx,

)=

( )=
87 (xxyx, ®dx, ) =0
( )=0

Hence, xx,x;x, have no inverse image under the map ¢ . Thus
x%,%x, 2Im57,and xx,x,x, € HE, (A,AD).
Combined with (1)-(4), it is obvious that

HE, (4,47 ) =Kk (xx,x,x,), dim(HE (4,47 ))=14#

Proposition 3.2. HP, (A,AD) = ]k(xl.xjxk ®dx,) 1<i< j<k<4,
dim(HPl(A,AD))=4.

Proof. A ®Q*(4)—%— 4" @0 (4)—L—4"®0°(4)
o :m®dx, i—){m,x,.}AD

Sy :m®dx; ndx; > {m, x| ®dxj—{m,xj}AD ®dxi—m®d{xl.,xj}

AI)

In this part, we need to consider two questions: 1) what is the form of the
elementin ker 8 ; 2) whether the element in ker " has the inverse image.

We distinguish four cases below.

1) The element with the length of 0

Since &7 (1®dx,)={1,x} » =(4, + A3 +44)x #0, we have 1®dx, ¢ kerdy,
and all elements with the form as 1®dx, have the same situation.

2) The element with the length of 1

57 (Cox, ®dx, +Cyyx, ® dxl) = [Clz (/123 + Ay )+ Cyy (/713 + Ay ):' XX,
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Let C,x, ®dx, +C,x, ®dx, eker 57, then Cp, (A, +4,)+Cy (45 +4,)=0,

we can easy get:
(A + Ay ) X, @ ddxy +( Ay + Ay ) X, @ dx, € ker &7

Similarly, —(A4, +4,)x ®dx; + (A, + Ay, ) x; @dx, e ker &/

(A + 23 ) X, @y + (g + Aoy ) %, ®dx, e ker 57
Now we prove that these elements with the length of 1 in kerd” have in-
verse image under the map 0o, .

57 (1®dx, ndxy ) ={Lx,} » ®dx, —{L,x,} » ®dx, ~1®d {x,x,}
=D(x,)®dx, —D(x,)®dx, —1®d {x,,x,}
=(Ay + Ay ) %, ®dx, —(Ays + Ay ) x, ®dx,

5 (1®dx, Adxy)={1,x,} p ®dxy —{L,x;} » ®dx, —1®d {x,,x,}
:D(x1)®dx3—D(x3)®dx1—1®d{xl,x3}
= (A + A%, ®dx, —(Ay, + Ay ) Xy @ dx,

87 (1®@dxy ndx,) ={1,x3} » ®dlx, —{l,x,} » ®dlx, —1®d {x,,x,]
=D(x,)®dx, —D(x,)®dsx, —1®d{x3,x4}
:_(/113 Ay )%y ®dixy + (A + Ay ) x, ® i,y

3) The element with the length of 2
o/ (melx2 ® dx; + Cp3x, %, ® dx,y + Cpy x,%, @ dxl)
= (Clzz/lm +Cpdy + C231ﬂ“14)x1x2x3

If Cipyhy +Ciyndy +Coy Ay =0 (1.2), so0 that
Cip3x,%, @ dxy + Cppx,x, ® dx, + Cyy x,x; @ dx, e ker 6
For (1.2),let C,,; be a free variable, we can infer that

-C
_ Gk, xx, ®dx, _&xl)% ®dx, e ker 5"

Ciayhy + Craplyy =0 Cia 2
C123 4 C132 4 O = C 4 — 4
s Gy = G,y =—B0 b x,x, ® dx, —&xzyg ®dx, e ker &
N Z
similarly,

x,x;, ®dx, —pr@‘ ®dx, e ker 5"
3

x,x;, ®dx, + @)@x“ ®dx, eker&”
2

We can find the inverse image of all elements as the above by following
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o, (Lxl ®dx, A d)@) =x,x, ®dx, —%xlx3 ® dkx,

4 4

o, (sz ®dx, A d)@} =x,x, ®dx, —%xz)g ®dx,

4 4

57 (—Lxl ® dx; A dx4j =x.x, ®dx, —%xg@t ® dx,

3 3

o (L)g ®dx, A dx4j = x,x, ®dx, + %x3x4 ® dx,

2 2

4) The element with the length of 3

For Vi<i<j<k<4,8] (xl.xjxk ® dxt) =0, indeed, for
Vi<i<j<4,1<k<t<4, 52”(x[xj ® dx, Adx,)zO. Since the map &, keeps
the variable unchanged, so we can’t find the inverse image of xxx, ®dx, un-
der the map o5 .

In conclusion, only x,x,x, ® dx, € HR, (A,AD ) ,and
dim( HE, (4,47 ))=C} =4.

Similar to the proof of proposition 3.2, we can prove the following

Proposition 3.3. HP,(A4,4")=k(xx, ®dy, Ndx,) (1<i<j<4,1<k<1<4)
dim( HP, (4, 4" ))=6.

Proof. A ®Q*(4)—% 4" @0 (4)—%> 4" ®0'(4)

oy :m®dx, /\dxj — {m,xi}AD ®dxj —{m,xj}AD ®dx, —m ®d{xi,xj}

Oy im®dx, Adx; Adx, {m,xi}AD ®dx; Adx, —{m,xj}AD ®dx; Adx,
+{m,xk}AD ®dx; ndx, —m®d{xl.,xj}/\dxk
+m®d{xl.,xk}/\dxj—m®d{xj,xk}/\dxi

1) The element with the length of 0

When we calculate the 1-th twisted Poisson homology group, we have found
that each element of length 0 in  4” ® 3% (4) has an image under the map &7,
and never belongs to kero, .

2) The element with the length of 1

85 (kyx, ® dxy Adx, + kyxy ® dxy Adx, +kyx, ® dx, Adxs)
= (k3/112 — ki Ay ) XXy ®dx, + (kl/lz4 +k, A ) XX, @ dx; + (ksﬂ*m +hky Ay )x3x4 ® dx,
xx, ®dx,, xx,®dx; and x;x, ®dx, are linear independence. If and only if

such that kA, -kA, =0, kA, +kA,=0and kA, +k A, =0 atsame time,

Le.,

k3 — klﬂ?} R k4 :_klﬂ‘24 R
Az %

we get that x, ® dx; Adx, + kf% x, ®dx, Adx, — kfﬂ x, ®dx, ndx, eker 5y .

2 2
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Similarly,

k
o7 L®a’x Adx, Adx, |=x Qdx, Adx, + 1}bﬁx ®dx, Adx —k'ﬂz“x ® dx, Adx
3 1 3 4 1 3 4 ﬂ,l 3 1 4 A{[ 4 1 3

2 2 2

Obviously, the preimage of

k k
x, ®dx; Adx, + e x, ®dx, Adx, — s x, ®dx, Adx, is
7

2 2

1
—®dx, Adx; Adx, . Thus, this element in kerd, does not belong to
2

HP, (A,AD ) . It is clear that the element with the same form have the same situ-
ation.

3) The element with the length of 2

For 1<i<j<4,1<k<t<4, 52”(x,.xj®dxk/\dx,)=0.Also
65 (x, ®dx; Ndx, Ndx, ) =0.

This means that, the element x,x; ®dx;, Adx, has no inverse image under the
map o; .

Thus, only x.x, ®dx, Ady, e HP,(4,4”), (1<i<j<41<k<t<4).

In conclusion, it suffices to show that HP, (A,AD) = k(xl.xj ® dx, /\dxl) ,

moreover,
dim(HP, (4,4”))=C2 =6

Proposition 3.4. dim(HP3 (A,AD)) =3 dim(Ha (A,AD)) -0.

Proof. 0——4” @0 (4)—% 54 @0 (4)—F— 4° @O (4)

87 (1®dx, Adxy Adxy ndx,)=(=Ay — Ay — A3 ) X, ®dxy Adxy Adx,
+( Ay + A + Ay ) X, @dx, Adx; Adx,
+( s + Ay + Ay ) x, ®dx; Adx, Adx,
(A = Ay — Ay ) X, ®dx, Adxy A dx,
=t X+, X, +t X, +4,X,

When we calculate the 2-th twisted Poisson homology group, we have noticed
that each element like 1®dx, Adx; Adx; always has a image under the map
05 , that means 1®dx, Adx; Adx, & ker 57 . On the other hand,
oy (xl. ®dx; Ndx, N dxt) =0, implies that, dim(ker o5 ) =4, indeed,
dim(m3;] ) =1, 50 that dim(HP, (4, 4”))=3.

Obviously, since HP, (A, AD) =0, we have dirn(HP4 (A, AP )) =0.
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