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Abstract 
In case of mathematical programming problems with conflicting criteria, the 
Pareto set is a useful tool for a decision maker. Based on the geometric prop-
erties of the Pareto set for a bicriteria linear programming problem, we 
present a simple and fast method to compute this set in the criterion space 
using only an elementary linear program solver. We illustrate the method by 
solving the pig diet formulation problem which takes into account not only 
the cost of the diet but also nitrogen or phosphorus excretions. 
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1. Introduction 

Animal diet formulation is a very important problem from an economic and 
environmental point of view, so it is an interesting example in operations 
research. Many modern animal diet formulation methods tend to take into 
account nitrogen and phosphorus excretions that are detrimental from an 
environmental point of view. Following [1], it is appropriate to apply a tax on 
excretions so as to change the behavior of the producers in the swine industry. 
These changes in behavior are studied using a formulation of the problem as a 
bicriteria problem and are obtained by the determination of the Pareto set of the 
problem. For linear models, this Pareto set is a simple polygonal line. This fact 
implies that changes in behavior of the producers are abrupt and correspond to 
particular values of the tax. In other words even in increasing the tax it can 
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happen that there is no change in behavior. Behavior changes happend only at 
very particular values of the tax. We will see that these behaviors correspond to 
efficient extreme points of the Pareto set, and to every extreme point 
corresponds a tax interval so that any value of the tax in this interval leads to the 
behavior given by that extreme point. 

The computation and visualization of the Pareto set, also known as the 
efficiency set, for bicriteria linear programming problems is a useful tool for 
decision makers. We could try to compute this set in the decision space [2]-[10], 
but due to the high dimension of this space, it can be a quite large and 
complicated set. Methods to obtain this set are also complicated, see for example 
[11]. Fortunately, the geometric aspect of the Pareto set in the criterion (or 
outcome) space for bicriteria linear program is quite simple [12]. 

The outline of the paper is the following. The bicriteria problem is presented 
in Section 2. We will see in Section 3, that the Pareto set of a bicriteria linear 
problem is a simple polygonal line with L + 1 extreme points joined by L 
adjacent segments. Then in Section 4 we presents the link between the geometric 
structure of the Pareto set and the weighted-sums approach. Then an elementary 
algorithm to determine the Pareto set in the criterion space is suggested and its 
complexity is analyzed. Let us point out that this method uses only elementary 
result from a linear program solver, that is to say the optimal solution (values of 
the decision variables). This fact is an interesting property of the method. 

Few methods exist for computing the Pareto set in the criteria space. One such 
method is presented in [13]. The method requires information about the dual, 
assume the feasible set is compact, and determine the Pareto set with at most 2L 
+ 4 calls to a linear program solver. Another simple method for bi-criteria 
problems is presented in [12] to obtain the Pareto set in the criterion space. The 
algorithm is based on information about the reduced costs of all nonbasic 
variables, which is equivalent to have information about the solution of the dual 
problem. For bi-criteria linear problems we could also use a parametric analysis 
to obtain the Pareto set [11] [14]. The last two methods require that the software 
used to solve a linear program send information about the dual, reduced cost or 
postoptimal analysis, which is not always possible for a simple linear program 
solver. Unfortunately, even if it seems that those two methods require around 2L 
iterations, their complexities are nowhere analyzed. Moreover they can cycle as 
explained in [15] (pages 281-282), and [16] (pages 162-166).  

Finally, in Section 5, we compute the Pareto sets for least cost diet formulation 
problems for pig, or any monogastric animal, taking into account the nitrogen 
and/or phosphorus excretions. Tax systems related to efficient extreme points of 
this problem are described. 

2. Bicriteria Linear Programming Problem 

Let us consider the standard form of the bicriteria linear programming problem 
[11] 
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where x is a column vector in n , and the kc 's ( 1,2k = ) are two row vectors 

( ),1 ,, ,k k k nc c c=   in n . The feasible set   in n  is defined by 

{ }| and 0nx Ax b x= ∈ = ≥ , where A is a ( ),m n -matrix, and b is a column 
vector in m . Let C be the ( )2, n -matrix given by  
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The feasible set in the criterion space 2  is then  

{ }2 | forc z z Cx x C= ∈ = ∈ =   . It is well-known that   and c  are 
polyhedral sets in n  and 2  respectively. Throughout this paper we will 
suppose that the two criteria are lower bounded on   which means that for 

1,2i =  we have  

( ){ }min min | .i i iz z x c x x= = ∈ > −∞  

3. Structure of the Pareto Set 
3.1. Efficiency Set 

A feasible solution x∈  is an efficient solution if and only if it does not exist 
any other feasible solution x ∈  such that 1) ( ) ( )i iz x z x≤  for 1,2i = , and 
2) ( ) ( )j jz x z x<  for at least one { }1,2j∈ . The set of all efficient solutions is 
called the efficiency set noted  , also called Pareto set. The corresponding set 
in the criterion space is the set c C=  . 

3.2. Geometric Structure 

Under the assumption that the two cost vectors 1c  and 2c  are linearly 
independant, Using weighted-sums, we can replace the bicriteria linear 
programming problem by a single criterion linear programming problem. We 
consider [ ]0,1λ∈  and the weighted-sum function is  

( ) ( ) ( ) ( ) ( )1 2 1 2; 1 1 ,z x z x z x c c xλ λ λ λ λ= − + = − +    

and we consider the single criteria problem for [ ]0,1λ∈   

( )( )
( ) ( ) ( ) ( )1 2 1 2min ; 1 ( ) 1

subject to
.

z x z x z x c c x

P
x

λ λ λ λ λ

λ

 = − + = − +  

 ∈ 

 

The value function ( )ϕ λ  of ( )( )P λ  is defined by  

( ) ( ){ }min ; | .z x xϕ λ λ= ∈  

From [11] we have 
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Hence the efficiency set   in the decision space is a connected set and is the 
union of faces, edges and vertices of  . This set may be quite complex due to 
the high dimension of the decision space. On the other side c , which is the 
image in 2  of   by a linear transform, is a much simpler set.  

Since we have assumed that both criteria are lower bounded on  , it follows 
that c  is a simple compact polygonal line. Indeed in that case c  is the union 
of a finite number L of segments [ ]1,l lQ Q−  

[ ]1
1

,
L

c l l
l

Q Q−
=

=


  

where  

[ ] ( ) [ ]{ }2
1 1, | 1 for 0,1 ,l l l lQ Q Q Q Q Qσ σ σ− −= ∈ = − + ∈  

and such that  

( ) ( )1 1, , if ,l l l lQ Q Q Q l l− − = ∅ ≠
 



  

with  

( ) ( ) ( ){ }2
1 1, | 1 for 0,1 .l l l lQ Q Q Q Q Qσ σ σ− −= ∈ = − + ∈  

To each segment is associated a weight 1,l lλ −  such that the vector 

( )1, 1,1 ,
t

l l l lλ λ− −−  is orthogonal to the segment [ ]1,l lQ Q−  in 2 . To each point 
Q of c  is associated an interval ( )QΛ  defined by  

( )
( )

( ) ( )1, 1, 1

, if 0, , ,

, if , 1, , ,

l ll

l l l l l l

Q Q l L
Q

Q Q Q l L

λ λ

λ λ− − −

  = = Λ = 
  ∈ = 
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0

1 1,

0,
for 1, , ,

1,
l l ll

L

l L
λ
λ λ λ
λ

− −

=
 = = =
 =

  

with 0l lλ λ− >  for 0, ,l L=  . 

3.3. Weak Efficiency Set 

We will call weak efficiency set, or weak Pareto set, the set defined by  

[ ]
( )

0,1
arg min ; .f

x
z x

λ
λ

∈∈

=



  

Obviously f⊆  . In the criteria space we will have f f
c C=  . 

Geometrically in the criterion space 2 , this means we add to c  possibly a 
vertical segment or a ray from 0Q  in the positive direction of 2z , ( )0 0,1D = ,  

( ) ( ]{ }0 0 0 0 0; | 0, ,cR Q D Q Dη η η= + ∈ ⊂   

and/or a horizontal segment or a ray from LQ  in the positive direction of 1z , 
( )1,0LD = ,  
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( ) ( ]{ }; | 0, ,L L L L L cR Q D Q Dη η η= + ∈ ⊂   

where 0η  and Lη  are nonnegative finite or infinite values. They are the 
maximal values of η  such that ( )0 0;R Q D  and ( );L LR Q D  are both subsets 
of c . To these points on c  we set  

( )
[ ] ( )
[ ] ( )

0 00,0 if ; ,

1,1 if ; .L L

Q R Q D
Q

Q R Q D

 ∈Λ = 
∈

 

3.4. Link to Parametric Analysis 

The parametric analysis is based on the weighted-sum given by  

( ) ( ) ( )1 2;z x z x z xµ µ= +  

for [ )0,µ∈ +∞ , and the value function in this case is defined by  

( ) ( ){ }min ; | .z x xϕ µ µ= ∈
   

Instead of ( )( )P λ , we could consider the single criteria problem for 0µ ≥   

( )( )
( ) ( ) ( ) ( )1 2 1 2min ;

subject to
.

z x z x z x c c x
P

x

µ µ µ
µ

= + = +


 ∈




 

Since λ  and µ  are related by the formulae  

and ,
1 1
µ λ

λ µ
µ λ

= =
+ −

 

to the efficient extreme points { } 0

L
l l

Q
=

 on the efficiency set c  correspond also 
the following intervals for the parameter µ   

( )
( )

( ) ( )1, 1, 1

, if 0, , ,
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l l l l l l
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where  

0

1 1,

0,

for 1, , ,

.
l l l l

L

l L

µ

µ µ µ

µ
− −

=


= = =
 = +∞

  

In many applications, the parameter µ  is in fact a tax over the the second 
criteria (for a minimization problem). Interesting enough is to observe that the 
behavior change (extreme point) only for the critical values 1,l lµ −  of the 
parameter µ . Indeed when µ  increases and its value passes through 1,l lµ − , 
the optimal point, extreme point, move from 1lQ −  to lQ . Thus, any level of 
taxes µ  strictly between the values 1,l l lµ µ− =  and , 1l l lµ µ+ =  causes the same 
behavior described by lQ . 

4. Computation of the Pareto Set 
4.1. Preliminaries 

Let us associate to any ( )1 2, cQ z z= ∈  the weighted-sum function given by  
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( ) ( ) 1 21 .Q z zϕ λ λ λ= − +  

Then the value function ( )ϕ λ  associated to ( )( )P λ  is such that  

( ) ( ){ }
( ){ }
( ){ }

min |

min |

min | 0, , .
l

Q c

Q c

Q

Q

Q

l L

ϕ λ ϕ λ

ϕ λ

ϕ λ

= ∈

= ∈

= = 



  

Hence we have the following results. 
Theorem 4.1. [12] Let cQ∈ , we have ( ) ( )Qϕ λ ϕ λ=  if and only if 

( )Qλ∈Λ .  
Theorem 4.2. [12] Let cQ∈  and 1 20 1λ λ≤ < ≤ . Then 1λ  and 

( )2 Qλ ∈Λ  if and only if [ ] ( )1 2, Qλ λ ⊆ Λ . It follows that Q is one of the lQ  
( 0, ,l L∈  ).  

Theorem 4.3. [17] The function ( )ϕ λ  is continuous, piecewise linear and 
concave. The abscissae of slope changes are the increasing values 1,l lλ −  for 

1, ,l L=  .  
Let us observe that the slope associated to ( )Qϕ λ  strictly decreases for Q 

going from 0Q  to LQ  on c , since 1z  increases and 2z  decreases steadily. 
We deduce the next results. 

Theorem 4.4. [12] Let iQ′  and jQ′  be two distinct points on c . For 

[ ]0,1λ∈ , ( )1 , tλ λ−  is orthogonal to the segment ,i jQ Q′ ′    if and only if 
( ) ( )

i jQ Qϕ λ ϕ λ′ ′= .  
Theorem 4.5. Let iQ′  and jQ′  be two distinct points on c  and [ ]0,1λ∈ , 

such that ( )1 , tλ λ−  is orthogonal to the segment ,i jQ Q′ ′   . For a fixed λ , the 
function ( )Qϕ λ  is constant as a function of Q on the segment ,i jQ Q′ ′   . Let us 
note this constant value by 

i jQ Qϕ ′ ′ . Moreover  
1) if ( )

i jQ Qϕ λ ϕ ′ ′=  then ,i j cQ Q′ ′  ⊂   , ( )iQλ ′∈Λ  and ( )jQλ ′∈Λ ;  
2) if ( )

i jQ Qϕ λ ϕ ′ ′>  then ( ),i j cQ Q′ ′ = ∅ .  
Theorem 4.6. Let iQ′  and jQ′  be two distinct points on c . If ( )iQλ ′∈Λ  

is such that ( ) ( )
jQϕ λ ϕ λ′=  then ( )jQλ ′∈Λ . Moreover there exists 

{ }0, ,l L∈   such that 1,l lλ λ −=  and [ ]1, ,i j l l cQ Q Q Q−′ ′  ⊆ ⊆   .  
Theorem 4.7. Let iQ′  and jQ′  be two distinct points on f

c . Let 
( )i iQλ′ ′∈Λ  and ( )j jQλ′ ′∈Λ , and consider the following two lines  

( ) ( ) ( ){ }2 |i i Q i iQλ ϕ λ ϕ λ′ ′ ′= ∈ =  

and  

( ) ( ) ( ){ }2 | .j j Q j jQλ ϕ λ ϕ λ′ ′ ′= ∈ =  

(A) If i jλ λ′ ′≠ , the point of intersection of ( )i iλ′  and ( )j jλ′  is 

( ) ( ) ( )( ), 0; , , 1; ,i j i j i jQ λ λ ψ λ λ ψ λ λ′ ′ ′ ′ ′ ′=  where  

( ) ( ) ( ); , ,j i
i j i j

j i j i

λ λ λ λ
ψ λ λ λ ϕ λ ϕ λ

λ λ λ λ

′ − ′−′ ′ ′ ′= +
′ ′ ′ ′− −

 

so  
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( ) ( ) ( )
0; , i jj i

i j
j i j i

λϕ λλ ϕ λ
ψ λ λ

λ λ λ λ

′ ′′ ′
′ ′ = −

′ ′ ′ ′− −
 

and 

( ) ( ) ( )1 1
1; , .j i

i j i j
j i j i

λ λ
ψ λ λ ϕ λ ϕ λ

λ λ λ λ

′ − ′−′ ′ ′ ′= +
′ ′ ′− −

 

(B) If i jλ λ′ ′= , then ( ) ( )i i j jλ λ′ ′=   which contains the segment ,i jQ Q′ ′    .  

4.2. Algorithm 

In this section we consider both criteria upper bounded on  . In the 
forthcoming algorithm we initialize the process with the two points 0Q  and 

LQ  on c . Then we gradually obtain a sequence of points { } 0

I
i i

Q
=

′  on c , and  

a sequence of intervals associated to these points ( ){ }
0

,
I

i i i
i

Q λ λ
=

 ′′ ′ ′Λ =
   such 

that ( ) ( )i iQ Q′ ′ ′Λ ⊆ Λ  and  

( ) ( ) ( )for all .
iQ iQϕ λ ϕ λ λ′ ′ ′= ∈Λ  

At the end of the process I L=  and we have l lQ Q′ =  with  

( ) ( ), ,l l l l llQ Qλ λ λ λ ′ ′ ′ ′  = Λ = Λ =   
 

for 0, ,l L I= = . 
Algorithm (Pareto bicriteria) 
STEP 0. Initialization. 
(A) Enter the data of the problem. 
(B) Determine ( )* arg mini x ix z x∈=   for 1,2i =  and set ( )min *

i iz z x= . For 
, 1, 2i j =  and j i≠  set ( )*

|j i j iz z x= . We get the initial point ( )min
0 1 2|1,Q z z=  

which as the same first coordinate as 0Q , and ( )min
1|2 2,LQ z z=  which as the 

same second coordinate as LQ . Those two points might not be on c , but are 
on f

c .  

(C) Set 0 0:Q Q′ =   and ( ) [ ]0 0 0, : 0,0Q λ λ ′′ ′ ′Λ = =
 

;  

(D) Set 1 : LQ Q′ =   and ( ) [ ]1 1 1, : 1,1Q λ λ ′′ ′ ′Λ = =
 

;  
(E) Set : 1I = .  
STEP 1. As long that there exists an index i such that 1 0i iλ λ −

′ ′− > , select one 
such index i and do:  

(A) Find *
1,i iλ λ λ−

 ′′∈
 

 such that ( ) ( )1 1

* * *:
i i i iQ Q Q Qϕ ϕ λ ϕ λ
− −′ ′ ′ ′= = , hence 

[ ]* 0,1λ ∈  such that ( )* *1 ,
t

λ λ−  is orthogonal to the segment [ ]1,i iQ Q−′ ′  (see 

Theorem 4.4);  
(B) Solve ( )( )*P λ , compute ( )* *

* 1 2: , cQ z zλ λ
λ

= ∈  with ( ) ( )*

* *
Q
λ

ϕ λ ϕ λ= ;  
(C) Update the list of points { } 0

I
i i

Q
=

′  and their intervals  
( ){ }

0
,

I

i i i
i

Q λ λ
=

 ′′ ′ ′Λ =
  :  

I) Modification of the intervals. If ( ) 1

* *
i iQ Qϕ λ ϕ
−′ ′=  then all the segment 

[ ]1,i iQ Q−′ ′  is in c  (see Theorem 4.5), and ( )ϕ λ  is defined on 1,i iλ λ−
 ′′
 

 by 
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(see Theorems 4.1 and 4.5)  

( )
( )

( )
1

*
1

*

for ,

for , .

i

i

Q i

Q i

ϕ λ λ λ λ
ϕ λ

ϕ λ λ λ λ

−′ −

′

  ′∈  = 
  ′∈  

 

We modify as follow: 
a) for 1iQ −′ : ( ) *

1 1 1 1, : ,i i i iQ λ λ λ λ− − − −
   ′ ′′ ′ ′Λ = =
   

;  

b) for iQ′ : ( ) *, : ,i i i iQ λ λ λ λ ′  ′ ′ ′ ′Λ = =   
;  

In the sequel no more point will be generated on [ ]1,i i cQ Q−′ ′ ⊆  .  
II) Point insertion and interval modification. If ( ) 1

* *
i iQ Qϕ λ ϕ
−′ ′<  then 

[ ]* 1,i iQ Q Q
λ −′ ′∉ , insert the point and modify intervals as follows (see Theorem 

4.6):  
a) Insert *Q

λ
 between 1iQ −′  and iQ′  in the list with  

( )*
* * * *, : ,Q

λ
λ λ λ λ   ′Λ = =    ;  

b) Set : 1I I= + ;  
c) If ( ) ( ) ( )* 11 1 1iQ i Q i i

λ
ϕ λ ϕ λ ϕ λ

−′− − −′ ′ ′= = , then *1,i cQ Q
λ−

 ′ ⊆    and any  

*
1,iλ λ λ− ′∈    is in ( )*Q

λ
′Λ , hence we modify ( )*Q

λ
′Λ  by setting *

1: iλ λ −′= ;  

d) If ( ) ( ) ( )* iQ i Q i i
λ

ϕ λ ϕ λ ϕ λ′
′ ′ ′= = , then * , i cQ Q

λ
 ′ ⊆    and any *, iλ λ λ ′∈

 
 

is in ( )*Q
λ

′Λ , hence we modify ( )*Q
λ

′Λ  by setting * : iλ λ′= .  
STEP 2. For any i such that 0i iλ λ′′− = , remove iQ′  from the list and set 
: 1I I= − .  
STEP 3. End of the process (and I L= ). The output is the list 

{ }
0

; ,
L

l ll l
Q λ λ

=
   .  

Let us observe that this process use only optimal solutions of ( )( )P λ , 
optimal values of the decision variables, which is easily obtained from any 
elementary linear program solver. 

Remark 4.8. This algorithm produces at each iteration an inner and an outer 
approximation. The inner approximation is the polygonal line joining the iQ′  
for 0, ,i I=  . The outer approximation is the polygonal line joining the points 

0Q′ , ( )0 1,Q λ λ′′ , 1Q′ , ( )1 2,Q λ λ′′ , 2Q′ ,  , 2IQ −′ , ( )2 1,I IQ λ λ− −
′′ , 1IQ −′ ,  

( )1,I IQ λ λ−
′′ , IQ′ , as long as the ( )1,i iQ λ λ−

′′ ’s are well determined (see Theorem 
4.7). At the end of the algorithm the two approximations agree. 

4.3. Complexity 

In this section we are going to determine the maximum number of calls to a 
linear program solver to completely determine the Pareto set, or equivalently its 

1L +  efficient extreme points { } 0

L
l l

Q
=

. The result is given in the last theorem of 
this section and says that it takes at most 2 3L +  calls to a linear program 
solver to generates the 1L +  extreme points { } 0

L
l l

Q
=

. 
We will use the following ordering on f

c . For any two distinct points iQ′  
and jQ′  on f

c , we will say that iQ′  precedes jQ′  on f
c , or equivalently 

that jQ′  follows iQ′  on f
c , if moving from on f

c  in the direction from 
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0Q  to LQ  we move from iQ′  to jQ′ . We will note i jQ Q′ ′<  or equivalently 

j iQ Q′ ′> . 
Theorem 4.9. The algorithm generates at most 3 points on [ ]1,l lQ Q−  on c  

and two of these points are 1lQ −  and lQ .  
Proof. Let us remark that the algorithm will eventually find a point in 

[ ]1,l lQ Q−  for any 1, ,l L=  . Let 1Q  be the first point generated by the 
algorithm in [ ]1,l lQ Q− . This first point can be generated at STEP 0, an initial 
point, if [ ]0 0 0 1,Q Q Q Q= ∈  for 1l =  or [ ]1,L L L LQ Q Q Q−= ∈  for l L= . 
Otherwise, it is generated through STEP 1-C-II, with 1 1i lQ Q− −′ <  and l iQ Q′< . 
Then this point is included in the list, and there are three cases to study: 

1) *
1

1lQ Q Q
λ−= =  for a ( )*

1 2, 1 1 1,1 ,l l l l l llQλ λ λ λ λ− − − − −− ∈Λ = = =   and we 
have ( )1 ** *,Q λ λ ′Λ =    with ** *λ λ≤ . We will have ** *λ λ= , or **

2, 1l lλ λ − −=  
if the lower bound is modified through STEP 1-C-II-c (if [ )1 2 1,i l lQ Q Q− − −′ ∈  and 

( )2, 1 1l l iQλ − − −′ ′∈Λ ).  
2) *

1
lQ Q Q

λ
= =  for a ( )*

1, , 1,l l l l l llQλ λ λ λ λ− + ∈Λ = = =   and we have 

( )1 * **,Q λ λ ′Λ =    with * **λ λ≤ . We will have ** *λ λ= , or **
, 1l lλ λ +=  if the 

upper bound is modified through STEP 1-C-II-d (if ( ]1,i l lQ Q Q +′∈  and 
( ), 1l l iQλ + ′ ′∈Λ ).  

3) ( )1
1,l lQ Q Q−∈  for *

1,l lλ λ −=  and we have ( )1 * *,Q λ λ ′Λ =   .  
Let 2Q  be the second point generated by the algorithm in [ ]1,l lQ Q− . 1Q  

must be one of the two points used to generate 2Q , and hence *
1,l lλ λ −≠ . This 

point 2Q  is generated through STEP 1-C-II, and it is included in the list. There 
are two cases to study:  

1) 1 1i lQ Q− −′ <  and ( ]1
1,i l lQ Q Q Q−′ = ∈ , we will have *

1,l lλ λ −<  and  
) ( )*

1 1, 11, l l l ll Qλ λ λ λ− − −−∈ = ⊂ Λ . Consequently *
2

1lQ Q Q
λ −= =  and  

( )2 ** *,Q λ λ ′Λ =    with **λ  modified as in the preceding case. Moreover if 

( )1
1,l l Qλ − ′∈Λ  we will modify the upper bound to get ( )2 **

1,, l lQ λ λ − ′Λ =   .  

2) [ )1
1 1,i l lQ Q Q Q− −′ = ∈  and i lQ Q′ > , we will have *

1,l lλ λ −>  and  

( ( )*
1, ,l l l ll Qλ λ λ λ− ∈ = ⊂ Λ . Consequently *

2
lQ Q Q

λ
= =  and  

( )2 * **,Q λ λ ′Λ =    with **λ  modified as in the preceding case. Moreover if 

( )1
1,l l Qλ − ′∈Λ  we will modify the lower bound to get ( )2 **

1, ,l lQ λ λ− ′Λ =   . 

Two points of [ ]1,l lQ Q−  are now in the list. We can have a point 
( )1,l lQ Q Q−′∈  with ( ) 1, 1,,l l l lQ λ λ− −′ ′  Λ =    or an extreme point 1lQ − , with 

( )1 1 1,,l l l lQ λ λ− − −
 ′′Λ =
 

, or lQ , with ( ) 1, ,l l l lQ λ λ−′  ′Λ =   . Otherwise the two 
points are the extreme points 1lQ −  and lQ . In that case, if 1 1i lQ Q− −′ =  and 

i lQ Q′ = , it can happen that 1 1, 1, 0i i l l l lλ λ λ λ− − −
′ ′− = − =  and we will have 

terminated with the interval [ ]1,l lQ Q− . Otherwise let us note 3Q  the third 
point generated in [ ]1,l lQ Q− . There are two cases to study:  

1) We have only one extreme point 1lQ − , or lQ , of the segment in the list 
and ( )1,l lQ Q Q−′∈ . As in the preceding paragraph, we will introduce it in the list, 
and depending of the case, by passing through STEP 1-C-II, 3

1lQ Q −=  if 

1 1i lQ Q− −′ <  and iQ Q′ ′= , or 3
lQ Q=  if 1iQ Q−′ ′=  and i lQ Q′ > . Moreover, 
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we will have respectively ( ) ( )1 1 1, 1,l l l l lQ Qλ λ− − − −
 ′′Λ = ⊆ Λ
 

 or  
( ) ( )1, ,l l l l lQ Qλ λ−′  ′Λ = ⊆ Λ  . 
2) We already have two extreme points 1lQ −  and lQ  in the list. In that case 

1 1i lQ Q− −′ =  and i lQ Q′ =  and we will have *
1,l lλ λ −=  and [ ]* 1,l lQ Q Q

λ −∈ . We 
pass through STEP 1-C-I and we modify the intervals to get  

( ) ( )1 1 1, 1,l l l l lQ Qλ λ− − − −
 ′′Λ = ⊆ Λ
 

 et ( ) ( )1, ,l l l l lQ Qλ λ−′  ′Λ = ⊆ Λ  . Since  

1 1,l l l lλ λ λ− −
′′ = = , *

3Q Q
λ

=  is not added to the list.  
In the sequel, the algorithm generate no more point on [ ]1,l lQ Q−  because if 

we have two points 1 1i lQ Q− −′ =  and i lQ Q′ =  we have 1 1, 1, 0i i l l l lλ λ λ λ− − −
′ ′− = − = , 

or else, if we have three points, 1 1i lQ Q− −′ =  and ( )1,i l lQ Q Q−′∈  and 1i lQ Q+′ =  
we have 1 1, 1, 0i i l l l lλ λ λ λ− − −

′ ′− = − =  and 1 1, 1, 0i i l l l lλ λ λ λ+ − −
′ ′− = − = .  

Theorem 4.10. If 0 0Q Q<  , respectively L LQ Q>  , then 0Q , respectively 

LQ , is eventually removed of the list without any supplementary call to the 
linear program solver.  

Proof. When 0Q  is introduced in the list, there is no supplementary call for 

0 0,Q Q  
 . Similarly for the interval ,L LQ Q  

  when LQ  is introduced in the 
list. The points 0Q  and LQ  are removed from the list at STEP 2 since 

( ) [ ]0 0,0Q′Λ =  and ( ) [ ]1,1LQ′Λ = . 
Theorem 4.11. The algorithm generates the extreme points { } 0

L
l l

Q
=

 of the 
Pareto set in at most 2 3L +  calls to a linear program solver.  

Proof. The initialization STEP 0 requires 2 calls. For STEP 1, as we generate 
the lQ  for 0, ,l L=   and possibly one supplementary call for each segment 
[ ]1,l lQ Q−  for 1, ,l L=  , there is at most 2 1L +  calls. Hence the algorithm 
requires at most 2 3L +  calls.  

5. A Real World Application: Pig Diet Formulation 

To illustrate our method of computation of the Pareto set we consider the pig 
diet formulation problem taking into account not only the cost of the diet but 
also environmental considerations, such as the reduction of nitrogen or 
phosphorus excretions. One way to analyze this problem is to rewrite the 
problem as bicriteria problem. Hence the Pareto set indicates the effect of the 
reduction of excretions, nitrogen or phosphorus, on the cost of the diet. This 
information is certainly useful for a decision maker which have to choose a diet 
which decrease the excretions without being too expensive [1]. Even if in 
thispaper we describe the problem for the swine industry, the method could be 
applied to any monogastric animal: pig, rabbit, chicken, etc. 

5.1. Classical Model 

The least cost diet problem, introduced in [18], is a classical linear programming 
problem [19] [20] [21]. A decision variable jx  is assigned to each ingredient 
and represents the amount (in kg) of the jth ingredient per unit weight (1 kg) of 
the feed. Together, they form the decision vector ( ) 1

n
j j

x x
=

=  in our model. The 
model's objective function is the diet cost. A vector of unit costs ( ) 1

n
j j

c c
=

=  is 
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used, where each jc  represents the unit cost of the jth ingredient (euro/kg or 
$/kg). Thus the total cost of a unit of weight (1 kg) of diet ( ) 1

n
j j

x x
=

=  is 

1
n

j jjz cx c x
=

= =∑  which must be minimized over the set of feasible diets 
denoted by  . The classic least cost animal diet formulation model is: 

( )
{ }

diet

min
subject to

| et 0 .n

z cx
P

x x Ax b x

 =



∈ = ∈ ≥  

 

The constraints impose some bounds on the quantity of the different 
ingredients in the diet. For example a unit of feed is produced (a 1 kg mix), 
expressed by the constraint 1 1n

jj x
=

=∑ . Some ingredients, or combinations of 
ingredients, can be imposed on the diet. These restrictions give rise to equality 
constraints (=) or inequality constraints (≥ or ≤). More specifically, to satisfy 
protein requirements, the following constraints are introduced for the L groups 
of amino acids contained in the ingredients. We set  

( )*

1
1, ,

n
dig
lj j l

j
aa x b l L

=

≥ =∑   

where dig
ljaa  represents the amount of digestible amino acid l contained in a 

unit of ingredient j and *
lb  is the minimum amount of digestible amino acid l 

required. Finally, the diet must satisfy the digestible phosphorus requirements 
*
phb  given by  

*

1

n
dig
j j ph

j
ph x b

=

≥∑  

where dig
jph  is the amount of digestible phosphorus contained in a unit of 

ingredient j. 

5.2. Modelling of Nitrogen and Phosphorus Excretions 

Nitrogen and phosphorus excretions are directly related to the excess of 
amounts of protein (amino acids) and phosphorus in the diet. Hence, we have to 
establish the protein and the phosphorus contents of the diet and take into 
account the parts that are actually assimilated. 

The protein content of a diet ( ) 1

n
j j

x x
=

=  is 1
n

pr j jjq x pr x
=

= ∑ , where jpr  is 
the amount of protein per unit of ingredient j. The total excretion of protein 

( )prr x  is then given by the amount in protein of the diet from which we remove 
the amount of protein effectively digested given by * *

1
L

l prl b b
=

=∑ , then  

( ) * .pr pr prr x q x b= −  

Hence decreasing the total excretion ( )prr x  is equivalent to decrease the 
protein content prq x  of the diet while maintained fixed the needs *

prb  in 
protein. 

As for the nitrogen, the amount of phosphorus of a unit weight diet 

( ) 1

n
j j

x x
=

=  is 1
n

ph j jjq x ph x
=

= ∑ , where jph  is the amount of phosphorus per 
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unit of ingredient j. The amount *
phb  is the the amount of phosphorus which is 

actually digested. In this way the phosphorus excretion ( )phr x  is given by the 
phosphorus content of the diet from which we remove the amount of 
phosphorus which is actually digested  

( ) * .ph ph phr x q x b= −  

Hence, decreasing the phosphorus excretion ( )phr x  is equivalent to 
decreasing the phosphorus content prq x  of the diet while maintained fixed the 
needs *

phb  in phosphorus. 

5.3. Data 

The ingredients and their corresponding variables are described in Table 1. 
Table 2 contains the entire model together with the values of the technical 
coefficients of the model. 

5.4. Software 

The algorithm was programmed in MATLAB, which includes in its standard 
library the linear program solver called Linprog. This software can use the 
simplex method or an interior point method. 

5.5. Two Criteria Models and Results 

At first we analyse the relation between the cost of the diet and the two different 
excretions (nitrogen and phosphorus). As a curiosity, we also consider the 
interactions between the two kind of excretions: nitrogen and phosphorus. 
 
Table 1. List of available ingredients. 

Type Ingredient Variable 

Cereals Oats x1 

 Hard wheat x2 

 Corn x3 

 Barley x4 

Oleaginous Soybean meal x5 

 Colza meal x6 

Animal byproducts Meat and bones meal x7 

 Animal fat x8 

Minerals Dicalcique phosphate x9 

 Calcium carbonate x10 

 Sodium chloride x11 

Synthetic amino acids L-lysine x12 

 DL-methione x13 

 L-threonine x14 

 L-tryptophane x15 

Premix Fixed quantity 5 g/kg x16 
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5.5.1. Cost and Excretions 
We have considered two separate bicriteria models. We look for least cost diets 
while taking into account the nitrogen excretion for the first model and the 
phosphorus excretion for the second model. For each of these two bicriteria 
problems, the Pareto curve indicates the diet cost increase caused by an 
excretion decrease. 

While considering the nitrogen excretion, the problem is :  

( )
1

2
,

min
min

subject to
.

pr
c pr

z cx
z q x

P

x

=
 =


 ∈ 

 

Table 3 presents the set of efficient extreme points of the Pareto set in the 
criterion space, and the Pareto curve is sketched in Figure 1. For this problem, 
the algorithm detects 10L =  segments and 11 efficient extreme points  

( ) ( ),1 ,2 ,cost ,nitrogen excretion, ,l l l l lQ z z z z= =  

for 0, , 10l L= = . A total of 22 calls to the linear program solver was required 
(the predicted maximum is 2 3 23L + = ).  

From its associated weighted-sum model given by  

( )( )
( ) ( ) ( ) ( ) ( )1 2

,

min ; 1 1

subject to
,

pr

c pr

z x z x z x c q x

P
x

λ λ λ λ λ

λ

  = − + = − + 

 ∈


 

 
Table 3. Efficient extreme points in the criterion space 2  and the corresponding taxes 
for ( )( ),P c pr . and the corresponding taxes. 

Pareto set Taxation system 

l lλ  lλ  ,costlz  
$/kg 

,nitrogen excretionlz  
g/kg 

,phosphorus excretionlz  
g/kg 

lµ  
lµ  

0 0 0.02617 0.40062 0.19021 6.21226 0 0.02687 

1 0.02617 0.13661 0.40072 0.18661 6.18977 0.02687 0.15823 

2 0.13661 0.15375 0.40147 0.18184 6.15847 0.15823 0.18168 

3 0.15375 0.30996 0.40292 0.17385 6.03610 0.18168 0.44920 

4 0.30996 0.49911 0.40759 0.16347 5.67457 0.44920 0.99643 

5 0.49911 0.76922 0.40816 0.16289 5.67073 0.99643 3.33314 

6 0.76922 0.81451 0.40820 0.16288 5.66990 3.33314 4.39120 

7 0.81451 0.81847 0.41580 0.16115 5.44005 4.39120 4.50866 

8 0.81847 0.85167 0.41608 0.16108 5.43126 4.50866 5.74169 

9 0.85167 0.99010 0.41798 0.16075 5.36141 5.74169 100.013 

10 0.99010 1.00000 0.42713 0.16066 5.29463 100.013 +∞ 
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Figure 1. Pareto curve: nitrogen excretion vs diet cost. 

 
we get the following expression for its value function ( )ϕ λ , defined for 

[ ]0,1λ∈ , by  

( ) ( ){ } ( ) ,cost ,nitrogen excretionmin ; | 1 l lz x x z zϕ λ λ λ λ= ∈ = − +  

defined for , llλ λ λ ∈   , and 0, , 10l L= = . So this expression depends on 
the interval , llλ λ    in which λ  is. 

For the parametric model given by  

( )( )
( ) ( ) ( ) ( )1 2

,

min ;

subject to
,

ph

c pr

z x z x z x c q x

P
x

µ µ µ

µ

 = + = +


 ∈




 

we get the following expression for its value function ( )ϕ µ  defined for 
[ )0,µ∈ +∞  by  

( ) ( ){ } ,cost ,nitrogen excretionmin ; | l lz x x z zϕ µ µ µ= ∈ = +
   

defined for ,l lµ µ µ ∈   , and 0, , 10l L= = . So this expression depends on 
the interval ,l lµ µ    in which µ  is. 

So we see that for any tax value in ,l lµ µ    we will always have the same 
expression for the value function ( )ϕ µ , or the same behavior given by the 
efficient extreme point ( ),cost ,nitrogen excretion,l l lQ z z= , and the change in the 
behavior will happend only when the taxation level µ  passes through the 
extremities lµ  or lµ  of this interval 

A similar analysis holds for the second bicriteria problem with phosphorus 
excretion. Indeed, for the phosphorus excretion problem, the model is:  

( )
1

3
,

min
min

subject to
.

ph
c ph

z cx
z q x

P

x

=
 =


 ∈ 
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Table 4 presents the efficient extreme points in the criterion space while the 
Pareto curve is sketched in Figure 2. For this problem, the algorithm detects 

22L =  segments and 23 extreme points  

( ) ( ),1 ,3 ,cost ,phosphorus excretion, ,l l l l lQ z z z z= =  

for 0, , 22l L= = . A total of 45 calls to the linear program solver was required 
(the predicted maximum is 2 3 47L + = ). 

From its associated weighted-sum model given by 

( )( )
( ) ( ) ( ) ( ) ( )1 3

,

min ; = 1 1

subject to
,

ph

c ph

z x z x z x c q x

P
x

λ λ λ λ λ

λ

  − + = − + 

 ∈


 

 
Table 4. Efficient extreme points in the criterion space 2  for ( )( ),P c ph , and the 

corresponding taxes. 

Pareto Set Taxation system 

l lλ  lλ  ,costlz  
($/kg) 

,phosphorus excretionlz  
(g/kg) 

,nitrogenex cretionlz  
(g/kg) 

lµ  lµ  

0 0 0.00428 0.40062 6.21226 0.19021 0 0.00430 

1 0.00428 0.00452 0.40072 6.18977 0.18661 0.00430 0.00454 

2 0.00452 0.00456 0.40164 5.98711 0.18707 0.00454 0.00458 

3 0.00456 0.00500 0.40196 5.91713 0.18927 0.00458 0.00502 

4 0.00500 0.00528 0.40219 5.87162 0.18854 0.00502 0.00531 

5 0.00528 0.00628 0.40310 5.69979 0.18742 0.00531 0.00632 

6 0.00628 0.00708 0.40365 5.61223 0.18802 0.00632 0.00713 

7 0.00708 0.00783 0.40379 5.59297 0.18676 0.00713 0.00789 

8 0.00783 0.00919 0.40400 5.56609 0.18566 0.00789 0.00927 

9 0.00919 0.01003 0.40541 5.41416 0.18737 0.00927 0.01013 

10 0.01003 0.01458 0.40601 5.35505 0.18975 0.01013 0.01479 

11 0.01458 0.02357 0.40633 5.33336 0.18640 0.01479 0.02414 

12 0.02357 0.09694 0.40798 5.26498 0.17596 0.02414 0.10734 

13 0.09694 0.11478 0.41768 5.17458 0.16744 0.10734 0.12967 

14 0.11478 0.12931 0.42351 5.12967 0.16700 0.12967 0.14852 

15 0.12931 0.14182 0.42429 5.12440 0.16609 0.14852 0.16526 

16 0.14182 0.48610 0.43631 5.05165 0.16364 0.16526 0.94589 

17 0.48610 0.49168 0.74777 4.72237 0.26885 0.94589 0.96727 

18 0.49168 0.62773 0.79624 4.67226 0.28486 0.96727 1.68624 

19 0.62773 0.69486 1.12394 4.47793 0.38921 1.68624 2.27723 

20 0.69486 0.99962 1.30843 4.39691 0.45147 2.27723 2662.91 

21 0.99962 0.99998 2.06125 4.39663 0.46634 2662.91 59645.9 

22 0.99998 1.00000 15.32799 4.39641 0.42199 59645.9 +∞ 
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Figure 2. Pareto curve: phosphorus excretion vs diet cost. 

 
we get the following expression for its value function ( )ϕ λ  defined for 

[ ]0,1λ∈  by  

( ) ( ){ } ( ) ,cost ,phosphorus excretionmin ; | 1 l lz x x z zϕ λ λ λ λ= ∈ = − +  

defined for , llλ λ λ ∈   , and 0, , 22l L= = . So this expression depends on 
the interval , llλ λ    in which λ  is. 

For the parametric model given by  

( )( )
( ) ( ) ( ) ( )1 3

,

min ;

subject to
,

ph

c ph

z x z x z x c q x

P
x

µ µ µ

µ

 = + = +


 ∈




 

we get the following expression for its value function ( )ϕ µ  defined for 
[ )0,µ∈ +∞  by  

( ) ( ){ } ,cost ,phosphorus excretionmin ; | l lz x x z zϕ µ µ µ= ∈ = +
   

defined for for ,l lµ µ µ ∈   , and 0, , 22l L= = . So this expression depends 
on the interval ,l lµ µ    in which µ  is. 

So we see that for any tax value in ,l lµ µ    we will always have the same 
expression for the value function ( )ϕ µ , or the same behavior given by the 
efficient extreme point ( ),cost ,phosphorus excretion,l l lQ z z= , and the change in the 
behavior will happend only when the taxation level µ  passes through the 
extremities lµ  or lµ  of this interval. 

These problems of taxation are nice examples of abrupt (discrete) changes in 
behavior depending on the level of taxation of one criterion. 

5.5.2. The Two Kinds of Excretion as Criteria 
As a curiosity, we have computed the Pareto set for the bicriteria problem where 
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the two kinds of excretions are considered. This bicriteria problem is given by  

( )
2

3
,

min
min

subject to
.

pr

ph
pr ph

z q x
z q x

P

x

=
 =


 ∈ 

 

Table 5 presents the set of efficient extreme points of the Pareto set in the 
criteria space. Its corresponding Pareto curve is sketched in Figure 3. This table 
shows the opposite effect of trying to reduce simultaneously both excretions. 
Minimizing one excretion leads to an increse in the other excretion. For this 
problem, the algorithm detects 5L =  segments and 6 extreme points. A total of 
12 calls to the linear program solver was required (the predicted maximum is 
2 3 13L + = ). 

For each 0, ,5l =  , the value function is 
 

 
Figure 3. Pareto curve: phosphorus excretion vs nitrogen excretion. 

 
Table 5. Efficient extreme points in the criterion space 2  for 2  pour ( )( ),P pr ph . 

Pareto set 

l lλ  lλ  ,nitrogen excretionlz  
g/kg 

,phosphorus excretionlz  
g/kg 

,costlz  
$/kg 

0 0 0.00410 0.16066 5.29463 0.42713 

1 0.00410 0.02350 0.16125 5.15082 0.44249 

2 0.02350 0.22291 0.16364 5.05164 0.43631 

3 0.22291 0.32435 0.27253 4.67205 6.65922 

4 0.32435 0.40870 0.36591 4.47753 12.20160 

5 0.40870 1.00000 0.42199 4.39641 15.32799 
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( ) ( ) ,nitrogen excretion ,phosphorus excretion1 l lz zϕ λ λ λ= − +  

for , llλ λ λ ∈   . For all value of the parameter λ  in the interval , llλ λ    we 
will have the same expression for the value functionn ( )ϕ λ  or the same 
behavior ( ),nitrogen excretion ,phosphorus excretion,l lz z  and a change in the behavior will 
happend for values of the parameter λ  corresponding to the extremities lλ  
ou lλ  of this interval. 

Let us observe that the last line of Table 3 ( 10l = ) corresponds to the first 
line of Table 5 ( 0l = ) and the last line of Table 4 ( 22l = ) corresponds to the 
last line of Table 5 ( 5l = ). 

6. Conclusion 

In this paper we have considered bicriteria linear programming problems and 
have presented an elementary and efficient algorithm to compute the Pareto set 
in the criterion space. We have illustrated the method on a real important 
application. This application also suggests that it could be interresting to extend 
the method to three-criteria problems. Moreover it could be interesting to 
compare our method to other methods to find the Pareto set in the criterion 
space, but it is out of the scope of this paper and could be a nice subject for a 
future research. 

Acknowledgements 

This work has been supported in part by the Natural Sciences and Engineering 
Research Council of Canada and by the canadian corporation Swine Innovation 
Porc. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Dubeau, F., Julien, P.-O. and Pomar, C. (2011) Formulating Diets for Growing Pigs: 

Economic and Environmental Considerations. Annals of Operations Research, 190, 
239-269. https://doi.org/10.1007/s10479-009-0633-1 

[2] Adulbhan, P. and Tabucanon, M.T. (1977) Bicriterion Linear Programming. Com-
puters & Operations Research, 4, 147-153.  
https://doi.org/10.1016/0305-0548(77)90036-3 

[3] Benson, H.P. (1979) Vector Maximization with Two Objective Functions. Journal of 
Optimization Theory and Applications, 28, 253-258.  
https://doi.org/10.1007/BF00933245 

[4] Cohon, J.L., Church, R.L. and Sheer, D.P. (1979) Generating Multiobjective 
Trade-Offs. Water Resources Research, 15, 1001-1010.  
https://doi.org/10.1029/WR015i005p01001 

[5] Gearhart, W.B. (1979) On the Characterization of Pareto-Optimal Solutions in Bi-
criteria Optimization. Journal of Optimization Theory and Applications, 27, 

https://doi.org/10.4236/ajor.2018.85019
https://doi.org/10.1007/s10479-009-0633-1
https://doi.org/10.1016/0305-0548(77)90036-3
https://doi.org/10.1007/BF00933245
https://doi.org/10.1029/WR015i005p01001


F. Dubeau, M. E. N. Habingabwa 
 

 

DOI: 10.4236/ajor.2018.85019 342 American Journal of Operations Research 
 

301-307. https://doi.org/10.1007/BF00933233 

[6] Geoffrion, A.M. (1967) Solving Bicriterion Mathematical Programs. Operations 
Research, 15, 39-54. https://doi.org/10.1287/opre.15.1.39 

[7] Kiziltan, G. and Yucaoglu, E. (1982) An Algorithm for Bicriterion Linear Program-
ming. European Journal of Operationl Research, 10, 406-411.  
https://doi.org/10.1016/0377-2217(82)90091-1 

[8] Prasad, S.Y. and Karwan, M.H. (1992) A Note on Solving Bicriteria Linear Pro-
gramming Problems Using Single Criteria Software. Computers & Operations Re-
search, 19, 169-173. https://doi.org/10.1016/0305-0548(92)90090-R 

[9] Sadagan, S. and Ravindran, A. (1982) Interactive Solution of Bicriteria Mathemati-
cal Programs. Naval Research Logistics Quarterly, 29, 443-459.  
https://doi.org/10.1002/nav.3800290307 

[10] Walker, J. (1978) An Interactive Method as an Aid in Solving Bicriteria Mathemati-
cal Programming Problems. Journal of the Operational Research Society, 29, 
915-922. https://doi.org/10.1057/jors.1978.195 

[11] Steuer, R.E. (1986) Multiple Criteria Optimization. Wiley, New York. 

[12] Dubeau, F. and Kadri, A. (2012) Computation and Visualization of the Pareto Set in 
the Criterion Space for the Bicriteria Linear Programming Problem. International 
Journal of Mathematics and Computation, 15, 1-15. 

[13] Benson, H.P. (1997) Generating the Efficient Outcome Set in Multiple Objective 
Linear Programs: The Bi-Criteria Case. Acta Mathematica Vietnamica, 22, 29-51. 

[14] Bertsimas, D. and Tsitsiklis, J.N. (1997) Introduction to Linear Optimization. 
Athenas Scientific and Dynamic Ideas, Belmont. 

[15] Murty, K.G. (1983) Linear Programming. Wiley, New York. 

[16] Chvatal, V. (1983) Linear Programming. W.H. Freeman and Company, New York. 

[17] Ferris, M.C., Mangasarian, O.L. and Wright, S.J. (2007) Linear Programming with 
MATLAB, MPS-SIAM Series on Optimization, Philadelphia. 

[18] Stigler, G.J. (1945) The Cost of Subsistance. Journal of Farm Economics, 27, 
303-314. https://doi.org/10.2307/1231810 

[19] Dantzig, G.B. (1963) Linear Programming and Extensions. Princeton Press, Prince-
ton. 

[20] Dantzig, G.B. (1990) The Diet Problem. Interfaces, 20, 43-47.  
https://doi.org/10.1287/inte.20.4.43 

[21] Garille, S.G. and Gass, S.I. (2001) Stigler’s Diet Problem Revisited. Operations Re-
search, 49, 1-13. https://doi.org/10.1287/opre.49.1.1.11187 

 
 

https://doi.org/10.4236/ajor.2018.85019
https://doi.org/10.1007/BF00933233
https://doi.org/10.1287/opre.15.1.39
https://doi.org/10.1016/0377-2217(82)90091-1
https://doi.org/10.1016/0305-0548(92)90090-R
https://doi.org/10.1002/nav.3800290307
https://doi.org/10.1057/jors.1978.195
https://doi.org/10.2307/1231810
https://doi.org/10.1287/inte.20.4.43
https://doi.org/10.1287/opre.49.1.1.11187

	Fast Computation of Pareto Set for Bicriteria Linear Programs with Application to a Diet Formulation Problem
	Abstract
	Keywords
	1. Introduction
	2. Bicriteria Linear Programming Problem
	3. Structure of the Pareto Set
	3.1. Efficiency Set
	3.2. Geometric Structure
	3.3. Weak Efficiency Set
	3.4. Link to Parametric Analysis

	4. Computation of the Pareto Set
	4.1. Preliminaries
	4.2. Algorithm
	4.3. Complexity

	5. A Real World Application: Pig Diet Formulation
	5.1. Classical Model
	5.2. Modelling of Nitrogen and Phosphorus Excretions
	5.3. Data
	5.4. Software
	5.5. Two Criteria Models and Results
	5.5.1. Cost and Excretions
	5.5.2. The Two Kinds of Excretion as Criteria


	6. Conclusion
	Acknowledgements
	Conflicts of Interest
	References

