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Abstract 
Electron spectrum in doped n-Si quantum wires is calculated by the Tho-
mas-Fermi (TF) method under finite temperatures. The many-body exchange 
corrections are taken into account. The doping profile is arbitrary. At the first 
stage, the electron potential energy is calculated from a simple two-dimensional 
equation. The effective iteration scheme is proposed there that is valid for 
multidimensional problems. Then the energy levels and wave functions of 
this quantum well are simulated from the Schrödinger equations. The expan-
sion by the full set of eigenfunctions of the linear harmonic oscillator is used. 
The quantum mechanical perturbation theory can be utilized to compute the 
energy levels. Generally, the perturbation theory for degenerate energy levels 
should be used. 
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1. Introduction 

Investigations of the electron spectra of low-dimensional and highly doped 
structures are important to many nanotechnology applications including na-
noscale transistors, sensors and modern plasmonics [1]-[6]. Quantum structures 
based on silicon are used in nanoscale transistors, quantum logic devices, and as 
building blocks in nanostructures [1] [2] [3] [5]. The optical transitions between 
electron levels within δ-doped quantum structures are utilized as infrared and 
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terahertz modulators, detectors and lasers [4] [5]. 
The combined Schrödinger-Poisson method is widely used to compute spec-

tra of low-dimensional structures [4]. Namely, the Schrödinger equation for the 
electron spectrum is utilized jointly with the Poisson equation for the electron 
potential energy; the density of the electric charge, or the electron concentration, 
is expressed through the computed wave functions. The many-body corrections 
are expressed through the electron concentration and are added to the electron 
potential energy. But there are some lacks when using this method directly. This 
method needs the calculations of the whole spectrum i.e. energy levels and wave 
functions, and the electron potential energy simultaneously, so the initial values 
of the electron spectrum should be determined quite accurately. Otherwise, the 
convergence may be poor or even absent. Moreover, in two-dimensional (2D) 
and 3D quantum structures, or quantum wires and dots, the degeneration of 
energy levels may occur; this fact also can affect the convergence. 

Investigations of δ-doped quantum structures are possible with a simpler ap-
proach based on the statistical Thomas-Fermi (TF) method [7] [8] with the 
many-body corrections. The preference of TF method is a sequential calculation 
of the electron potential energy and the electron concentration; only then the 
electron spectrum is under simulations. While this method provides quite exact 
calculations itself, the final results can be specified then with the Schrödin-
ger-Poisson method. 

In this paper, it is used the TF method to calculate the electron spectrum in 
highly doped n-Si quantum wires under finite temperatures T, where the 
many-body effects like exchange-correlations are taken into account [8]. The 2D 
shape of the doping profile is arbitrary. It differs from [8]. An effective iteration 
algorithm is proposed for solving the 2D equation for the electron potential 
energy. This algorithm can be used also for 3D problems like quantum dots. 
Then the electron eigenvalues and eigenfunctions of the quantum wire are cal-
culated with an expansion by the harmonic oscillator functions. In a general case 
of 2D and 3D problems, the perturbation theory should be developed for dege-
nerate energy levels. 

2. Thomas-Fermi Method to Compute Electron  
Potential Energy  

Consider a single δ-doped electron quantum wire of n-Si. The arbitrary high 
doping profile is considered in the plane x, y perpendicular to the axis of the 
wire OZ. The atomic units are used for distances ( )* 2 2

0 ca m eε=   and for 
energies ( )* 2 *

02Ry e aε= , where ( )1 32 3 2 271.06 10 gc em m m mν −
⊥= ≈ ≈



, ν = 6 is 
the number of the lowest electron valleys in Si [9]. In n-Si the lowest valleys are 
lateral, and the effective mass is anisotropic m||, m⊥.  

At the first stage the electrostatic electron energy V is calculated by the TF 
method. The single equation for δ-doped electron quantum wire with dimen-
sionless variables is [8]: 
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Here n is the total electron concentration; N1d and Nd0 are 1D and bulk donor 
concentrations respectively. Φ1/2(v) is the Fermi integral that has been approx-
imated from [5]. The donor levels are assumed shallow and single charged. The 
concentration of 1D donors is high N1d0 ≥ 1020 cm−3; they are fully ionized. The 
1D doping is localized at the distances x0, y0 ≈ 1 - 5 nm and depends on two 
coordinates x, y. The value of Vxc is the many-body correction to the electron 
energy due to exchange-correlations [4] [7]. Results of simulations do not depend 
on the value of the critical electron concentration in the case of nc ≤ 1018 cm−3.  

Because in n-Si the achievable doping concentrations are N1d ≤ 3 × 1021 cm−3, 
the exchange term is dominating in the many-body corrections in n-Si. When 
neglecting the correlation term with the logarithm in (2), the error is < 10%. 
Therefore, below a simpler correction term due to the exchange only is used, Vx = 
−2n1/3 × f(n).  

The position of the Fermi level μ has been obtained from the condition of the 
total neutrality [4] [5]: 

[ ]
1

00 2exp 1 .d
d

En V N
T

µ
−

 −  = = ⋅ +  
  

               (3) 

Here Ed is the donor energy with respect to the bottom of the conduction 
band. 

In [8] the axially symmetric case was considered only. The method of solving 
Equation (1) used there cannot be used for a multidimensional case. Here Equa-
tion (1) has been solved by the general iteration method [10] [11] [12]. The sta-
tionary problem has been replaced by a nonstationary one: 

[ ] ( )
1

0 18π 2exp 1 , 0.d
d d

E VV V n V N N x y
u T

µ
−

⊥

  − − ∂   − ∆ + − + × + + =   ∂     
 (4) 
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The solving of Equation (4) should be realized till establishing stationary solu-
tion. Here the iterations have been applied based on the factorization, or Doug-
las-Rachford, method [11] [12]. It is analogous to the classical Gummel’s one 
known in electronics: 
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where s is the number of the iteration.  
The iteration algorithm with two fractional steps is used to compute χ and 

then V(s+1): 
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The iteration scheme Equation (6) approximates Equation (4) at all the frac-
tional steps. The rapid convergence of the method has been demonstrated even 
when the exchange energy has been taken into account. To obtain the accuracy < 
0.1%, the number of iterations should be ~50, when the iteration parameter u is 
u = 0.1 - 1. Note that a similar approach based on the Douglas-Rachford, or fac-
torization, method can be applied for general multidimensional structures, whe-
reas in 2D case also the iteration scheme based on the Peaceman-Rachford, or 
alternate directions, algorithm can be used. While the Peaceman-Rachford me-
thod sometimes results in a more rapid convergence, it is not applicable to 3D 
problems [11] [12]. The summarized approximation method is not practically 
applicable for the establishing method [11] [12] [13]. 

3. Calculations of Electron Spectrum  

After calculations of the electron potential energy V(x,y) and the exchange 
energy Vx(x,y), the energy levels Ej, the wave functions Ψj(x,y) of the discrete 
spectrum of the quantum well, and the electron concentration n in each electron 
level have been computed from the Schrödinger equations [14] [15]: 

( ) ( ) ( )
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j j
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There are two different orientations of electron valleys, as seen from Equa-
tions (7). 

The main attention is paid here to the solving of more complicated Equation 
(7b). The preference of the proposed method is in the sequential realization of 
the finding of the electron potential energy and only then the solving of the 
Schrödinger equations. The second problem can be solved separately for in-
stance by the standard finite element approach using COMSOL Multiphysics 
[16]. But attention should be paid there to an approximation of boundary condi-
tions and to selection of true wave functions. 

Below a simple approximate solution method is realized, which is based on 
the parabolic approximation of the total potential energy with the exchange cor-
rection and the expansion of the wave function by the full set of the eigenfunc-
tions of the linear harmonic oscillator. Then the standard quantum mechanical 
perturbation theory is applied. The discrete Fourier transform is unsatisfactory, 
because as the result a non-sparse matrix is formed, as our investigations have 
been demonstrated. Moreover, there is a problem how to select the functions of 
the discrete spectrum there; those functions should tend to zero at the infinity. 

To solve Equation (7b), the following transformations of variables x, y have 
been applied: 

, .
c c

x xx y
x y

= =                             (8) 

As a result, Equation (7b) takes the form: 
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A solution of Equation (9) is searched as a series [14]: 
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A x yϕ ϕΨ =∑   .                      (10) 

An arbitrary complete set of the functions can be used. Here an expansion 
with the orthonormal Hermite functions φm(x) is applied [14] [15]: 
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Hm(x) are the Hermite polynomials [14]. 
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Below the following notation is used: 

( ) ( ) 2 2
0, , .P x y W x y x y Wα β≡ − − −                     (12) 

For lowest energy levels it is rather better to use the values of xc, yc that result 
in P ≈ 0 near the minimum point x = y = 0, see Figure 1, curve 2. 

The approximate expression for the total electron potential energy near the 
minimum x = y = 0 is, see Figure 1, curve 2, where the cross-section y = 0 is 
shown: 

( ) ( ) ( )
2 2
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Therefore, to compute the minimum energy levels, the values of xc, yc are 
suitable: 

1 41 4

2 2
1 2

2 2

2 1 2 1, ;c cx y
M MW W

x y

  
  
  = =
 ∂ ∂ 

   ∂ ∂   

                (14) 

To get higher energy levels more accurately, it is possible to increase the val-
ues of xc, yc, to get a better approximation of the electron potential energy spe-
cifically near these energy values, see Figure 1, curves 3, 4, where the values of xc 
are bigger than those in Equation (14). 

Equation (9) is equivalent to the following matrix equation: 

( ) , 0
,

0,m n mn mn kl kl
k l

A P A E Wαε βεΕ − − − = Ε ≡ −∑ .           (15) 

Here 0Ε >  is the electron energy measured from the bottom of the electron 
potential energy with the exchange correction. The corresponding matrix ele-
ments are: 

( ) ( ) ( ) ( ) ( ), , d d .mn kl m k n lP x x y y P x y x yϕ ϕ ϕ ϕ
+∞ +∞

−∞ −∞

= ∫ ∫                   (16) 

 

 
Figure 1. Different parabolic ap-
proximations of the electron potential 
energy V(x). Curve 1 is V(x), 2, 3, 4 
are parabolic approximations at dif-
ferent values of xc. The curve 2 cor-
responds to approximation near the 
minimum of V(x), Equation (14), 
curves 3, 4 are at bigger values of xc. 
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The numerical integration has been done by means of the Gauss quadrature 
formula [10]: 

( ) ( ) ( )2

1
exp d

N

j j
j

x F x x w F x
+∞

=−∞

− ≈∑∫ .                (17) 

When it has been used the renumbering (m,n)  p, Equation (15) can be re-
written: 

( )0 00, .p pp p pq q p m n
q p

P A P A αε βε
≠

Ε −Ε − − = Ε ≡ +∑           (18) 

The full spectrum of the quantum well can be obtained from Equation (18). 
The eigenvalues can be obtained directly or with using the iterations for the in-
verse matrix [8]. Below the quantum mechanical perturbation theory [14] [15] is 
applied for this purpose. 

Because 2D problem is investigated, a possible degeneration of energy levels 
may occur. Consider a situation when there are several close levels [14] 

0 j j jp p pP constΕ + ≈ , the numbers of the energy levels are 1, , Njp p . As usually,  
a few 2 - 5 close energy levels, or resonant ones, take place. Let us rewrite Equa-
tion (18) for these resonant levels: 
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≠ ≠

Ε −Ε − − =∑ ∑             (19) 

For another, or nonresonant, levels Ε0q Equation (18) is simplified: 
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As a result, the following secular equation has been derived: 

.
j k k j

k
p p p p

p
M A A= Ε ⋅∑ ,                       (21) 

Here the matrix elements are 

( )0
0 0

.j k k
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k k k k
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P P
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∑          (22) 

Thus, to find the eigenvalues and eigenfunctions, the problem of seeking the 
eigenvalues of the relatively small matrix Mpjpk should be solved. Really for high-
er energy levels it is no more than 6 × 6. 

In the nondegenerate case for lower energy levels, the standard perturbation 
method for the eigenvalue of the energy with the number p0 is: 

0
0 0 0

0 0 0 0

2

0
0 0

.
p q

p p p
q p p p p q qq

P
P

P P≠

Ε ≈ Ε + +
Ε + −Ε −∑              (23) 

Also the variation methods can be used to estimate the eigenvalues [8] [12]. 
They are effective for several lowest energy values. 
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4. Simulations 

The following parameters are used: the uniform doping concentration is Nd0 = 
1016 cm−3, the maximum values of 1D doping are N1d0 = 5 × 1020 - 3 × 1021 cm−3, 
the temperature interval is T = 10 - 300 K. The donor energy is Ed = −0.045 eV. 
Thus, at lower temperatures not all the donor levels are ionized. The results of 
simulations of the total electron potential energy W ≡ V(x,y) + Vx(x,y), the ex-
change energy Vx(x,y), and the total electron concentration n(x,y) are presented 
in Figures 2-4. The energy unit is Ry* ≈ 0.12 eV, the unit for distances x, y is  
 

 
Figure 2. The dependencies of the total electron concentration n, cm−3, left columns, the 
exchange electron energy Vx, Ry* units, central columns, and total electron potential 
energy W, Ry*, right columns, on the coordinates x, y when the exchange is taken into 
account. Part (a) is at T = 20 K, (b) is at T = 50 K, (c) is at T = 100 K, (d) is at T = 200 K, 
(e) is at T = 300 K. The maximum doping is N1d0 = 5 × 1020 cm−3, 0 05 2.6 nmx a∗= ≈ , 

0 03 1.56 nmy a∗= ≈ . 
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Figure 3. The same as in Figure 2, but the maximum doping is N1d0 = 1021 cm−3. 
 

0 0.52a∗ =  nm. The exchange correction is important for the doping levels N1d ≥ 
1021 cm−3. But the total electron potential energy W and the electron concentra-
tion n is practically the same as without this many-body correction. 

The potential energy depends on temperature T, as seen in Figures 2-4, right 
columns. This result takes place due to the partial ionization of the volume do-
nors at low temperatures, as seen from Equation (3). But the total electron  
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Figure 4. The same as in Figure 2, but the maximum doping is N1d0 = 3 × 1021 cm−3. 
 
concentration n does not depend practically on T, see Figures 2-4, left columns, 
as well as the exchange energy correction, central columns. 

After calculating the electron potential energy it is possible to simulate the 
electron levels of the well and the wave functions from Equation (15). The pro-
files of three lowest wave functions symmetrical with respect to x and y are pre-
sented in Figure 5 and Figure 6. The wave function of the lowest, or fundamental,  
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Figure 5. Three lowest wave functions related to Figure 2. Parts (a) are at T = 20 K, parts 
(b) are at T = 300 K. 
 

 
Figure 6. Three lowest wave functions related to Figure 4. Parts (a) are at T = 20 K, parts 
(b) are at T = 300 K. 
 
level can be obtained from the perturbation theory without degeneration, see 
Equation (23). But the general case of the perturbation theory with a possible 
degeneration should be used to compute higher energy levels, Equations (21), 
(22). A direct using of the perturbation theory without an account of a possible 
degeneration may lead to essential errors. An additional possibility to decrease 
the errors is the using of optimal values of approximation parameters xc, yc, see 
Figure 1. For higher energy levels these values should be 1.3 - 2 times bigger 
than those computed from Equation (14). 

A preference of the Thomas-Fermi method is a possible choice of the func-
tions of a preferred symmetry only. In the Schrödinger-Poisson method all the 
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wave functions should be simulated simultaneously. 
The dependencies of the corresponding values of the energy on temperature 

are given in Figure 5. It is seen that there is no dependence on temperature of 
the difference of the energies of several lowest levels. It is important for practical 
needs. In the deep well, when the doping level is high, the difference of lowest 
energy levels does not depend on the temperature within the interval from 20 to 
300 K. When considering the higher energy levels, this is valid only approx-
imately. 

Also the simulations are presented in Figure 7 for the doping profile different 
from those in Figures 2-6, Figure 8. The results of the simulations are tolerant 
to changes of parameters of semiconductor within a wide range of parameters. 

5. Conclusions 

The Thomas-Fermi method with many-body corrections has been applied to 
calculate the electron spectrum in highly doped n-Si quantum wires of an arbi-
trary doping profile under finite temperatures T. An effective iteration algorithm 
is proposed for solving the two-dimensional equation for the electron potential 
energy. This iteration method can be used for arbitrary orientations of the axes 
of the quantum wire and for other multidimensional structures like quantum 
dots. The preference of the proposed method is in the sequential realization of  
 

 
Figure 7. Part (a) is the dependencies of the total electron concentration n, cm−3, left 
columns, the exchange electron energy Vx, Ry*, central columns, and total electron poten-
tial energy W, Ry*, right columns, on the coordinates x, y at the temperature T = 300 K. 
Part (b) is the dependencies of the energy levels on the temperature. The maximum dop-
ing is N1d0 = 3 × 1021 cm−3, but another doping profiles: 0 03 1.56 nmx a∗= ≈ , 

0 05 2.6 nmy a∗= ≈ , compared with Figures 2-6, Figure 8. 
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Figure 8. The dependencies of energy levels on temperature. Part (a) is for the maximum 
doping level N1d0 = 5 × 1021 cm−3, see Figure 2; part (b) is for N1d0 = 1021 cm−3, Figure 4; 
part (c) is for N1d0 = 3 × 1021 cm−3, see Figure 5. 
 
the finding of the electron potential energy and only then the solving of the 
Schrödinger equations for electron energy levels and wave functions. The elec-
tron eigenvalues and eigenfunctions are calculated then with using an expansion 
by the full set of the linear harmonic oscillator functions. The perturbation 
theory with possible degeneration can be applied to compute the eigenvalues and 
eigenfunctions. 
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