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Abstract 
Purpose: To investigate a genetic algorithm approach to automatic treatment 
planning. Methods: A Python script based on genetic algorithm (GA) was 
implemented for VMAT treatment planning of prostate tumor. The script 
was implemented in RayStation treatment planning system using Python 
code. Two different clinical prescriptions were considered: 78 Gy prescribed 
to planning target volume in 39 fractions (GROUP 1) and simultaneous inte-
grated boost (70.2 Gy to prostate bed and 61.1 Gy to seminal vesicles) in 26 
fractions (GROUP 2). The script automatically optimizes doses to PTV and 
OARs according to GA. A comparison with corresponding plans created with 
Monaco TPS (M) and Auto-Planning module of Pinnacle3 (AP) was carried 
out. The plans were evaluated with a total score (TS) of PlanIQ software in 
terms of target coverage and sparing of OARs as well as clinical score (CS) 
performed by a Radiation Oncologist. Results: In GROUP 1, mean value of 
TS were 150.6 ± 30.7, 146.3 ± 36.1 and 137.4 ± 35.7 for AP, GA and M re-
spectively. For GROUP 2, mean value for TS were 163.5 ± 16.8, 163.4 ± 24.7 
and 162.9 ± 16.6 for AP, GA and M respectively with no significance differ-
ences. In terms of CS, the highest value has been attributed to GA in four pa-
tients out of five for both GROUP 1 and 2. Conclusions: Genetic approach is 
practicable for prostate VMAT plan generation and studies are underway in 
other anatomical sites such as Head and Neck and Rectum. 
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1. Introduction 

Plan generation is generally a manual procedure in which the planner tries to 
guide the treatment planning system (TPS) towards a favorable plan; but treat-
ment planning has become increasingly complex over the years, particularly re-
garding the number of organs at risk (OARs) that are included in the optimiza-
tion of Volumetric Modulated Arc Therapy (VMAT) treatment plans. VMAT 
planning is complex as it involves a number of dynamic delivery parameters that 
need to be sequenced with each other. Several VMAT optimization algorithms 
are in use [1] [2] [3] to choose the most suitable dose distribution. These algo-
rithms employ cost functions to measure the plan quality and to select a good 
solution. However, the quality of the final plan depends on the planner’s skills 
and experience [4] [5] [6] and on the time allotted. It is therefore essential to 
develop automatic planning tools in order to reduce the workload, to make more 
consistent plans and to optimize plan quality. 

Various approaches have been developed for automatic generation of optimal 
treatment plans such as lexicographic inspired approach [7] in the Plan Explorer 
module based on fulfillment of prioritized clinical goals already implemented in 
Ray Station (Ray Search Laboratories AB, Stockholm, Sweden), atlas-based 
planning [8] [9], ideal dose distribution estimation [10] [11] and progressive op-
timization algorithm as used in Pinnacle3 Auto-Planning (Philips Medical Sys-
tem, Fitchburg, WI) [12] [13] [14] [15]. 

Genetic algorithms [16] [17] (GAs) are commonly used to generate high-quality 
solutions for optimization and search problems by relying on bio-inspired oper-
ators such as mutation, crossover and selection. In the radiotherapy treatment 
planning GAs were used to optimize both beam weights and importance factors 
for three-dimensional forward planning [18] [19] or to find an optimal solution 
in the inverse planning in terms of selecting optimal plan or beam orientation 
[20] [21] [22]. The aim of this work was to develop a script using GA to create a 
good quality treatment plan with RayStation TPS. The script was retrospectively 
applied to a sample of 10 VMAT prostate patients and compared both with a 
commercial automatic planning solution and with a manual one. 

2. Materials and Methods 
2.1. Genetic Algorithms 

Genetic algorithms are heuristic optimization algorithms inspired by the prin-
ciple of natural selection and biological evolution. GAs are local and stochastic 
research methods based on the biological metaphor working on a population of 
potential solutions by applying the principle of survival of the fittest, evolving 
into a most suitable solution to the problem. A fitness function (FF) is defined to 
evaluate the solutions. New sets of solutions are created applying the genetic op-
erators (mutation, recombination by crossover) to a subset of selected member 
of the population at each generation. The process leads to an evolution that best 
fits the environment and to the most suitable set of solutions for solving the un-
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derlying problem. 
In this study a genetic algorithm-based script was developed for prostate tu-

mor plans. The script was implemented in RayStation treatment planning sys-
tem (r.v.5.99) using Python code. Two different clinical prescriptions were con-
sidered: 78 Gy prescribed to planning target volume (PTV) in 39 fractions 
(GROUP 1) and simultaneous integrated boost (SIB) (70.2 Gy to prostate bed 
and 61.1 Gy to seminal vesicles) in 26 fractions (GROUP 2). The script automat-
ically creates beams, prescription doses, auxiliary regions of interest (ROIs) and 
optimizes doses to PTV and OARs according to genetic algorithm. All plans 
were generated with the volumetric modulated arc therapy (VMAT) technique 
and planned for ElektaAxesseTM linear accelerator (4 mm leaf width at isocen-
ter). 

The chromosomes of the algorithm were the max equivalent uniform dose 
(MaxEUD) functions, which were applied to the ROIs created by subtraction 
between rectum and PTV (Rectum1) and between bladder and PTV (Bladder1). 

Figure 1 shows the workflow of genetic algorithm; an initial value of Max-
EUD was selected by a 3rd degree polynomial function of two variables (volume 
of ROI and percentage of overlapping volume between original ROI and PTV). 
The function coefficients were derived from a baseline dataset of 50 patients al-
ready planned at the University of Turin radiotherapy clinic. Starting from these 
values, the range of MaxEUD was created by adding/subtracting 10 Gy ([Max-
EUD ± 10 Gy]) (initial range). Ten couples of Rectum1 and Bladder1 MaxEUD 
were generated randomly ([Rectum1 MaxEUD; Bladder1 MaxEUD]). For each 
couple, a plan was generated with 20 optimization iterations and scored by FF; 
coverage of the PTV was assured by a series of optimization parameters with the 
highest weight inside the objective function. The fitness function was defined as 

( )
2 2 2 2

22 4 2

10

rAD bAD lfAD rfADCI
PD PD PD PDFF

       + + + +       
       =      (1) 

where CI and PD are respectively the conformity index (calculated as the ratio 
between the ROI volume covered by the isodose and the total isodose volume) 
and the prescribed dose to PTV while rAD, bAD, lfAD and rfAD are the average 
dose of rectum, bladder and femoral heads (left and right) respectively. The plan 
with the best FF (the lowest value) was saved and archived. Eight couples were 
then randomly selected from these initial ten; a randomly selected gender (fe-
male or male) and a number (n) between [0; 1] were then assigned to each of 
them. If n is inferior to 0.1 (mutation probability value), one of the two elements 
of the couple was randomly changed within the initial range established. The 
eight couples evolved by crossover action and new eight couples were created. 
Two new random couples were added to the eight (making a total of ten) and 
ten more plans were generated from these new couples. This workflow was re-
peated four times (for a total of 5 cycles). At the end, five plans were selected 
from the best couples ([Rectum1 MaxEUD; Bladder1 MaxEUD]). The best plan  
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Figure 1. Workflow of the genetic algorithm of the script. 

 
in terms of FF was selected and the final plan was calculated (0.3 cm dose grid 
and 40 optimization iterations). 

We selected ten initial couples and 5 cycles to compromise between total cal-
culation time (more or less half an hour on a PC Intel Xeon, CPU E5-2630 v3 
@2.4 GHz equipped with 64 GB ram) and quality of the plan. 

2.2. Plans Evaluation and Comparison 

Ten patients were selected (five patients for GROUP 1 and five patients for 
GROUP 2, Table 1) and three plans were generated: the first automatic plan was 
created by GA, the second automatic plan by Auto-Planning module (AP) of 
Pinnacle3and the third manual plan by the Monaco treatment planning system 
(M) (v.5.0, Elekta AB, Stockholm, Sweden). 

The plans were evaluated with a total score (TS) generated by PlanIQ software 
(Sun Nuclear Corp, Melbourne, FL) that measures treatment plan quality with  
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Table 1. Demographic and clinical characteristics of the patients involved in the study. 

Patients characteristics N (%) 

Age  

Mean (yrs) 71.7 

Range (yrs) 66-81 

z-PSA  

<10 ng/ml 4 (40) 

10.1 - 19.9 ng/ml 5 (50) 

≥20 ng/ml 1 (10) 

Clinical Stage  

cT1c 5 (50) 

cT2a 1 (10) 

cT2b 1 (10) 

cT2c 1 (10) 

cT3a 1 (10) 

cT3b 1 (10) 

Previous prostate surgery  

TURP 2 (20) 

Open adenectomy 1 (10) 

Androgen deprivation therapy  

Yes 6 (60) 

No 4 (40) 

 
metrics that reflect clinical goals in terms of CI of the PTV and clinical con-
straints of OARs, by means of quantitative Plan Quality Metric (PQM) formal-
ism described in [6] [14]. Table 2 reports the objectives for the target and OARs 
and the total maximum achievable score for both groups; these scores derive 
from an adaptation of prostate protocol proposal of PlanIQ and our clinical 
constraints. All plans were loaded on the same platform (RayStation) and a clin-
ical score (CS) ranging from 0 to 5 was asked to a well-trained Radiation Oncol-
ogist for each plan; a score of at least 3 was requested to consider a single plan 
acceptable for delivering. Three evaluations for each plan were performed at a 
different time taking the average value as reference, so considering the in-
tra-evaluation variability. The ANOVA test between GA, M and AP was carried 
out for all parameters. When the p-value was significant, a Fisher-Hayter test for 
paired samples (GA and M, AP and M, GA and AP) was applied (5% signific-
ance level). 

3. Results 

All plans were compared in terms of conformity index and for the different con-
straints of OARs starting from the point that target coverage and homogeneity  
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Table 2. Objectives and corresponding score of PlanIQ functions for PTV and OARs. 

GROUP 1 [PTV dose: 78 Gy (39 fractions)] 

ROI Parameter Objective Max Score 

PTV CI (isodose50%) >0.8 20 

Rectum V65Gy [%] <25% 30 

Rectum V75Gy [%] <15% 30 

Rectum Average Dose [Gy] <60 Gy 50 

Bladder V70Gy [%] <35% 30 

Bladder Average Dose [Gy] <40 Gy 50 

Left Femoral Head Average Dose [Gy] <52 Gy 10 

Right Femoral Head Average Dose [Gy] <52 Gy 10 

Penile Bulb Average Dose [Gy] <52 Gy 5 

Total Score   235 

GROUP 2 [PTV1 dose: 70.2 Gy and PTV2 dose: 61.1 Gy (26 fractions)] 

ROI Parameter Objective Max Score 

PTV1.2 CI (isodose 50%) >0.8 20 

Rectum V58Gy [%] <25% 30 

Rectum V67Gy [%] <15% 30 

Rectum Average Dose [Gy] <60 Gy 50 

Bladder V64Gy [%] <35% 30 

Bladder Average Dose [Gy] <40 Gy 50 

Left Femoral Head Average Dose [Gy] <44 Gy 30 

Right Femoral Head Average Dose [Gy] <44 Gy 30 

Penile Bulb Average Dose [Gy] <52 Gy 5 

Total Score   235 

 
was achieved by all methods as recommended by ICRU 83. Table 3 reports the 
PlanIQ scores, clinical score and statistical analysis results. Figure 2 and Figure 
3 show thePlanIQ score of some relevant “metrics” for both groups of patients. 
Figure 4 shows examples of the three distributions of axial, coronal and sagittal 
dose for one of the GROUP 2 patients. 

In GROUP 1, for four patients out of five, Auto-Planning had highest total 
score (TS) with really minimal difference with GA (less than 3%), while for the 
patient 2, GA has the highest value; mean value for TS were 150.6 ± 30.7, 146.3 ± 
36.1 and 137.4 ± 35.7 for AP, GA and M respectively with no significant differ-
ence reported. In terms of CS, the highest value has been attributed to GA in 
four patients out of five. 

For the second group of patients (GROUP 2), values of TS were higher for GA 
in three out of five patients whereas for the patient 3 GA has the lower value 
among the planning systems. In particular, we can observe the low value mainly  
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Table 3. PlanIQ scores, Clinical score and results of statistical analysis obtained for plans generated with genetic algorithm-based 
script of RayStation (GA), Monaco TPS (M) and Pinancle3 Auto-Planning module (AP) for both cases. 

GROUP 1 [PTV dose: 78 Gy (39 fractions)] 

Pts TPS 
PTV 

Conformity 
Index (/20) 

Rectum 
V65 Gy 

(/30) 

Rectum 
V75 Gy 

(/30) 

Rectum 
Average 

Dose (/50) 

Bladder 
V70 Gy 

(/30) 

Bladder 
Average 

Dose (/50) 

Left Femoral 
Head Average 

Dose (/10) 

Right Femoral 
Head Average 

Dose (/10) 

Penile Bulb 
Average 
Dose (/5) 

Total 
Score 
(/235) 

Clinical 
score 

1 

GA 13.29 30.00 30.00 31.10 30.00 25.59 10.00 10.00 0.00 179.98 5 

M 14.50 30.00 30.00 19.90 30.00 24.09 10.00 10.00 5.00 173.49 4 

AP 11.13 30.00 30.00 30.67 30.00 26.55 10.00 10.00 5.00 183.05 4.5 

2 

GA 12.95 30.00 30.00 24.32 30.00 16.96 10.00 10.00 0.00 164.23 5 

M 13.16 14.67 30.00 19.05 30.00 21.55 10.00 10.00 0.00 148.43 4 

AP 13.14 26.57 30.00 20.18 30.00 21.82 10.00 10.00 0.00 161.71 4.5 

3 

GA 12.89 0.93 0.00 16.36 30.00 9.04 10.00 10.00 0.00 89.22 4.5 

M 12.26 0.00 0.00 14.46 30.00 10.46 10.00 10.00 5.00 92.18 4 

AP 14.23 3.95 3.95 16.67 30.00 12.13 10.00 10.00 5.00 105.93 5 

4 

GA 12.75 8.24 17.28 15.42 30.00 29.72 10.00 10.00 0.00 133.41 5 

M 10.98 0.14 3.88 16.30 30.00 26.58 10.00 10.00 0.00 107.88 3.5 

AP 11.07 10.82 17.48 16.99 30.00 27.50 10.00 10.00 0.00 133.86 4.5 

5 

GA 14.36 30.00 30.00 23.88 30.00 16.27 10.00 10.00 0.00 164.51 5 

M 12.80 30.00 30.00 21.07 30.00 21.21 10.00 10.00 0.00 165.08 4.5 

AP 11.34 30.00 30.00 26.20 30.00 21.04 10.00 10.00 0.00 168.58 4 

ANOVA 
test p-value 

0.39 0.8 0.92 0.42 1 0.87 1 1 0.3 0.83 
0.003 

(GA/M) 

GROUP 2 [PTV1 dose: 70.2 Gy and PTV2 dose: 61.1 Gy (26 fractions)] 

Pts TPS 
PTV 

Conformity 
Index (/20) 

Rectum 
V58 Gy 

(/30) 

Rectum 
V67 Gy 

(/30) 

Rectum 
Average 

Dose (/50) 

Bladder 
V64 Gy 

(/30) 

Bladder 
Average 

Dose (/50) 

Left Femoral 
Head Average 

Dose (/10) 

Right Femoral 
Head Average 

Dose (/10) 

Penile Bulb 
Average 

Dose (/5) 

Total 
Score 
(/235) 

Clinical 
score 

1 

GA 12.63 30.00 30.00 30.56 30.00 27.72 10.00 10.00 0.00 180.91 5 

M 13.22 30.00 30.00 28.17 30.00 21.87 10.00 10.00 5.00 178.26 4 

AP 11.79 30.00 30.00 28.65 30.00 26.94 10.00 10.00 5.00 182.38 4.5 

2 

GA 14.01 30.00 30.00 26.04 30.00 24.70 10.00 10.00 0.00 174.75 5 

M 12.49 30.00 30.00 23.92 30.00 22.26 10.00 10.00 5.00 173.67 4.5 

AP 13.92 30.00 30.00 22.39 30.00 23.39 10.00 10.00 5.00 174.70 4 

3 

GA 14.18 0.00 18.71 16.20 30.00 16.19 10.00 10.00 5.00 120.28 4 

M 13.62 6.81 30.00 18.34 30.00 13.50 10.00 10.00 5.00 137.27 5 

AP 14.85 7.52 30.00 17.21 30.00 16.77 10.00 10.00 5.00 141.35 4.5 

4 

GA 13.84 20.52 30.00 21.43 30.00 30.07 10.00 10.00 0.00 165.86 5 

M 11.70 18.56 30.00 19.20 30.00 26.20 10.00 10.00 0.00 155.66 4 

AP 12.52 12.75 30.00 17.70 30.00 28.75 10.00 10.00 0.00 151.72 4.5 

5 

GA 14.33 30.00 30.00 25.42 30.00 25.42 10.00 10.00 0.00 175.17 5 

M 14.35 30.00 30.00 23.75 30.00 21.65 10.00 10.00 0.00 169.75 5 

AP 12.92 30.00 30.00 23.24 30.00 21.15 10.00 10.00 0.00 167.31 4.5 

ANOVA 
test p value 

0.49 0.99 0.4 0.78 1 0.5 1 1 0.39 0.99 0.308 
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Figure 2. Total Score (a), PTV conformity index (b), average dose (AD) of bladder (c) and rectum (d) for the first group of pa-
tients (GROUP 1) obtained with genetic algorithm-based script of RayStation (GA), Monaco TPS (M) and Pinancle3 Au-
to-Planning module (AP). 
 

 
Figure 3. Total Score (a), PTV conformity index (b), average dose (AD) of bladder (c) and rectum (d) for the second group of 
patients (GROUP 2) obtained with genetic algorithm-based script of RayStation (GA), Monaco TPS (M) and Pinancle3 Au-
to-Planning module (AP). 
 

due to V58Gy that is over the acceptable value. Also, in this case CS was able to 
detect the difference giving the lower value to GA. Mean value for TS were 163.5 
± 16.8, 163.4 ± 24.7 and 162.9 ± 16.6 for AP, GA and M respectively. No significant  
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Figure 4. Isodoses and DVHs representing a single SIB treatment plan for GA (a), Pinna-
cle Auto Planning (b) and Monaco (c). 

 
differences were reported from ANOVA’s test for all considered parameters in-
cluding CS for both cases. 

4. Discussion 

The automation of inverse treatment planning optimization in radiation oncol-
ogy has become an active research topic in recent years. The aim of our study 
was to develop a fully automated process for VMAT prostate treatment plan-
ning, based on a stochastic search for an optimal solution in terms of tumor 
control and sparing of normal tissue. The scripting capabilities in RayStation 
enables/facilitates the development of clinic specific approach to automatic 
planning. Python code scripts are capable of reading and entering all dosimetric 
data and thus enabling the user to produce automatic high-quality plans; how-
ever, plan quality assessment should be carried out in order to compare the 
quality of the manually generated plans with the automatic plans. 

In this study, manually plans were created and, given the seven-year expe-

https://doi.org/10.4236/ijmpcero.2018.73034


C. Fiandra et al. 
 

 

DOI: 10.4236/ijmpcero.2018.73034 423 Int. J. Medical Physics, Clinical Engineering and Radiation Oncology 

 

rience with Monaco TPS in the department, the overall quality is expected to be 
sufficiently high for carrying out a comparison. We also decided to use an evalu-
ation version of a commercial system, Pinnacle3 Auto-Planning, equipped with a 
progressive optimization algorithm. It was employed to produce the best deli-
verable treatment plan for each patient. Other authors have observed that Au-
to-Planning software appears to be a useful tool for increasing the overall quality 
of the treatments and reducing the inter-observer variation present in manual-
ly-created plans [12] [15]. It is important to note the inherent complexity of a 
plan comparison study due to the different plan optimization strategies within 
any department. With Plan IQ software, we were able to obtain an independent 
score by means of quantitative scorecards and so it is an objective evaluation 
tool. But we may obtain different results with different metrics reflecting other 
specific clinical goals; therefore, every result in terms of planning comparison 
must be evaluated taking account of the uncertainty related to the metric. We 
also add a clinical evaluation of each plan from a Radiation Oncologist to give 
more robustness to the comparison. 

GROUP 1 with high dose (78 Gy) also prescribed to seminal vesicles may be 
considered more challenging compared to GROUP 2 because lower values of TS 
are obtained. This was intentionally done to stress as much as possible the opti-
mization algorithms. TS differences between the manual and automatic plans is 
more pronounced for GROUP 1 than for GROUP 2. The patient 3 was the most 
challenging patient in terms of anatomical intersection between target and or-
gans at risk; actually, TS values are the lowest both for GROUP 1 and GROUP 2. 
It’s interesting to note the agreement of CS with TS for the best plan in the pa-
tient 3 as well as the worst plan in the patient 4, where the M solution has TS 
20% lower than AP and GA. Also, for GROUP 2, the worst performance of GA 
in the patient 3 in terms of TS (15% lower than AP and M) was detected by CS, 
so giving more robustness to the PQM evaluation. 

From statistical point of view, the plans of all involved platform didn’t present 
significance differences; the genetic algorithm, in a contest of relatively simple 
optimization problem as may be considered a prostate plan, has satisfied the “no 
difference” intent compared to two well-known robust commercial solutions 
represented by AP and M. From clinical point of view, it was considered the best 
solution in 8 patients out of 10; the involved Radiation Oncology had a very 
good impression in terms of shape of isodoses as well as visual and numerical 
inspection of DVH, that is the current way to decide the best plan in our clinical 
routine. 

However, more and more Radiation Oncologists should be involved as in the 
definition of different PQMs as well in the evaluation of the quality of the plans 
to estimate the uncertainty related to the valuation process. 

5. Conclusion 

This preliminary study shows that it is feasible to use the heuristic approach for 
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good quality plan generation in the context of VMAT prostate treatment plan-
ning with no significance difference compared to Pinnacle3 Auto-Planning that 
is a commercial solution that provides very good results in terms of plan quality 
and robust automation. Studies are underway to determine whether genetic al-
gorithms can be used in other sites, as they appear to be a promising tool for au-
tomated inverse planning. 
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