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Abstract 
In this paper, we obtained a kind of lump solutions of the Kadomtsev- 
Petviashvili-Benjamin-Bona-Mahony (KP-BBM) equation with the assistance 
of Mathematica. Some contour plots with different determinant values are 
sequentially made to show that the corresponding lump solutions tend to 

zero when 2 2x y+ →∞ . Particularly, lump solutions with specific values of 
the include parameters are plotted, as illustrative examples. Finally, a 
combination of stripe soliton and lump soliton is discussed to the KP-BBM 
equation, in which such a solution presents two different interesting 
phenomena: lump-kink and lump-soliton. Simultaneously, breather rational 
soliton solutions are displayed. 
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1. Introduction 

Soliton, rogue waves, lump solutions, breather waves and interaction solutions 
of nonlinear evolution equations (NLEEs) have attracted more and more atten-
tion [1] [2] [3] [4], and lump solutions are a kind of rational function and loca-
lized in all directions of space. Lump-soliton solutions have the meromorphic 
structures which can guarantee their stability [5]. Furthermore, lump solutions 
can be regarded as the localized wave configurations which decay rationally to 
the asymptotic values, and lump solitons move with the uniform velocities [6]. 
Lump solution may not be able to maintain its amplitude and shape through the 
interaction of the soliton solution. This interaction is inelastic [7]. Lump solu-
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tions have been found for kinds of integrable equation [8] [9] [10]. Lump solu-
tions emerge the non-linear patterns, such as optic media, plasma, shallow water 
wave, and Bose-Einstein condensate [11]. 

Recently Ma W. X. found out that the approach to solving the lump solutions 
of NLEEs use the Hirota bilinear form [12]. The study of lump solution has been 
lack of development because of the complexity in the process that the lump solu-
tion of NLEEs can be solved. He successfully proved form of the solution and its 
existence [13]. By using this method, some researchers perfectly constructed the 
lump solutions and the interaction solutions [14]-[38] and breather waves [11], 
[39] of NLEEs.  

In the following, we consider the Kadomtsev-Petviashvili-Benjamin-Bona-Mahony 
(KP-BBM) equation  

( )2 0.xt xx xxxt yyxx
u u u u uα β γ+ + + + =                 (1) 

The KP-BBM equation is formulated using the KP equation, derived from the 
standard BBM equation [40]. Some of the previous studies have been done [41] 
[42] [43] [44]. 

In the present paper, we would like to focus on KP-BBM equation. It has a 
Hirota bilinear form, and so, we will do a search for the positive quadratic 
function solutions to the corresponding bilinear KP-BBM equation. Firstly, we 
will obtain five different classes of positive quadratic function solutions. Secondly, 
the interaction solution constructed through symbolic computations beginning 
with a linear combination ansatz, in which such solution presents two different 
interesting phenomena: lump-kink and lump-soliton. Thirdly, breather rational 
soliton solutions are derived. Finally, some conclusions will be drawn at the end 
of this article. 

2. Lump Solution 

Under the bilinear transformation  

( )2 ln .xxu f=                          (2) 

Equation (1) is turned into the following Hirota bilinear form:  

( ) ( )( )
( )

( ) ( ) ( )

2 3 2 2

2

2 2

KP-BBM : 3

2 3 3

3 0,

x t x x t y x x t

xt t x xx x xxxt x xxt xx xt t xxx

yy y xx x xt t x

f D D D D D D D D D f f

ff f f f f f ff f f f f f f

f f f f f f f f f f

β γ α β

β

γ α β

+ + + + − ⋅

= − + − + − + −
+ − + − − − =

    (3) 

where the operator D is defined:  

( )

( )

, ,

, , | , , .

nl k
l k n
t x yD D D f g f x y t

t t x x y y
g x y t x x y y t t

 ∂ ∂ ∂ ∂ ∂ ∂   ⋅ = − − −    ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂     
′ ′ ′ ′ ′ ′⋅ = = =

 

To search for the quadratic function solution of the bilinear KP-BBM 
equation, we suppose  
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2 2
9 1 2 3 4 5 6 7 8, , ,f g h a g a x a y a t a h a x a y a t a= + + = + + + = + + +      (4) 

where ( )1, ,9ia i =   are real parameters to be determined later. To figure out a 
set of algebraic equations in ( )1, ,9ia i =  , we substitute (4) into (3) and equate 
all the coefficients of different polynomials of , ,x y t  to zero. We obtain a set of 
algebraic equations in ( )1, ,9ia i =  . Solving the set of algebraic equations, we 
can find the following sets of solutions. 

Case 1:  

( ) ( )
4 6 6 84 5 6 8

1 2 3 4 4 52 2
8 4 4 4

3
, , , , ,

3 3 3

a a a aa a a aa a a a a a
a a a a

α γ β γ

β α β α β
= = − = = =

+ +
 

( )
( )
( )

2 2 2 2
6 4 86 8

6 6 7 8 8 9 222
44

9
, , , ,

33 3

a a aa a
a a a a a a

aa

αβ γα γ
α ββ α β

+
= = = = −

++
 

where 4 6 7 8, , ,a a a a  are arbitrary constants, and all these constants are satisfied 
with the condition as follows:  

( )4 8 3 0, 0.a a β α β αγ+ ≠ <                     (5) 

This set leads to a kind of positive quadratic function solutions to the bilinear 
KP-BBM equation in (3)  

( )

( ) ( )

( )
( )

2

4 64 5 6 8
42

8 4 4

2

6 8 6 8
6 82 2

4 4

2 2 2 2
6 4 8

22
4

3 3

3

3 3 3

9

3

a aa a a af x y t a
a a a

a a a a
x a y t a

a a

a a a

a

α γ

β α β

β γ α γ

α β β α β

αβ γ

α β

 
 = − + +
 + 

 
 + + + +
 + + 

+
−

+

        (6) 

and the resulting is a kind of positive quadratic function solutions. In turn, we 
gain the lump solution to the KP-BBM Equation in (1) by using the 
transformation (2)  

( )
( ) ( )22 2

1 5 1 5
1 2

4 8
, , ,

a a f a g a h
u x y t

f

+ − +
=               (7) 

where the function f is defined by (6), and the functions g and h are given as 
follows:  

( )

( ) ( )

4 64 5 6 8
42

8 4 4

6 8 6 8
6 82 2

4 4

,
3 3

3
.

3 3 3

a aa a a ag x y t a
a a a

a a a a
h x a y t a

a a

α γ

β α β

β γ α γ

α β β α β

= − + +
+

= + + +
+ +

         (8) 

Figure 1 show the profile of 1u  and its density plots. 
Note that the lump solution in (7) are analytic if the parameter satisfy 
( )4 3 0a β α β+ ≠  and 0αγ < . We find that at any given time t, the above lump  
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Figure 1. The profiles of ( )1 , ,u x y t  with 0t = , density plot and x,y-curves with 4 6 81, 1, 1, 2, 1, 1.a a a α β γ= = = = − = =  

 
solutions 0u →  if the corresponding sum of squares 2 2g h+ →∞ .  

Case 2:  

63 6 5
1 2 3 4 4 5 5 6 6

3

3
, , , , , ,

3 3 3
aa a aa a a a a a a a a

a
α γβ α

α β β α β
= = − = − = = =

+
 

( )( )
( )

2 22 2
5 61 5 1 3

7 8 8 9 2
5

3 3 33
, , ,

3 3

a aa a a aa a a a
a

αβ α β βγα α β
β α β

+ ++ −
= = = −

+
 

where 4 5 6 8, , ,a a a a  are arbitrary constants, and all these constants are satisfied 
with the condition as follows:  

( )( )2 2
5 60, 3 0,3 3 3 0.a aγβ α β αβ α β βγ≠ + ≠ + + <  

This set leads to a kind of positive quadratic function solutions to the bilinear 
KP-BBM equation in (3)  

( )( )
( )

( ) ( ) ( )
( )

2 2 2
5 6

8 6 5 2

2

5 4 6

3 3 3

3 3

3 3 3 3 3 3
.

9 3

a atf a a y a x

a y a a t x

αβ α β βγα
β α β

α β βγ α β α β γ

βγ α β

+ +  
= + + + −  

+  

 + + + − + +
+

     (9) 

Analogously, we obtain the following lump solution to Equation (1)  
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( )

( ) ( )( ) ( ) ( )

( )

2

23
2 22

5 8 5 4 6 6

22 2

2
2 6
5

, ,

8 3 3 3 3 3 3 3 3 3

9 3

3 14 ,
3

u x y t

a a a t x a a a t x

f

aa
f

β α β α β α β β α β γ β α β γ

β α β

βγ
α β

  
 + + + + − + + +    = − 

+ 
 
 
  

+ +  
+   

(10) 

where the function f is defined by (9). 
Case 3:  

( )

14 6 1
1 1 2 3 4 4 5 5 6

8

2 2
1 55 1 4

7 8 9
5

3
, , , , , ,

3 3

3
, , ,

3 3

aa a aa a a a a a a a a
a

a aa a aa a a
a

α βα
β γ β

αβα
β α β

+
= = = = = =

+
= = − = −

+

 

where 1 4 5, ,a a a  are arbitrary constants, and all these constants are satisfied 

with 5 8 0a a βγ ≠ , 2 2
2 5 1 2 6 6 52 0a a a a a a a− − ≠  and 0

3
αβ

α β
<

+
. 

This leads to  

( )

2

5
1 4

2 2 2
1 51 5 1 4

5
5

3
3 3

33
.

3 33

a ytf a x a

a aa y a t a aa x
a

α βα
β βγ

αβα β α
β α βγ β

 + 
= + − +  
   

+ +
+ + + − −   + 

      (11) 

Analogously, we obtain the following lump solution to Equation (1)  

( )
( ) ( ) ( ) ( )

( ) ( ) ( )

3 3
2 2 2 2 22 25 4 5 4 5

3 3 3
2 2 22 24 5 4 5

36 3 6 3 3 9 3 3
, , ,

6 3 3 9 3 3

a a a y a a p q
u x y t

a a y a a p q

β α β γ β γ α β β α β γ

β α β γ β α β γ

 
+ + − + + − + 

 = −
− + + + + +

(12) 

where  

( )
( ) ( ) ( )

22

2 2 2 2

3 ,

3 6 3 9 3 3 .

p y

q t tx x

β α β

α α β αβ α β β αβ α β γ

= +

 = + + + + − + + 
   (13) 

Case 4:  

( )
( )

2 2
6 7 1 5 5 7 2 8 7

1 2 2 3 4 5
2 1 6

2 2 2
2 62

6 6 7 8 8 9 2

3 3 3
, , , , ,

3

9
, , , ,

3 3 3

a a a a a a a a aa a a a a a
a a a

a aa
a a a a a a

β α α β β
α β α

αβ γα γ
β α β α β

+ −
= − = = = =

+
= = = = −

+ +

  (14) 

where 2 6 8, ,a a a  are arbitrary constants, and all these constants are satisfied 
with 0γα <  and ( )1 2 6 3 0a a a α β αβ+ ≠ . 

This leads to  
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( ) ( )( )
( )

2 2 2 22 2
2 6 8 2 62 2 8

8 2 2
66

2 3
.

3 3

a a a y a a p qa af a
aa β α β

+ + + 
= + + + 

+ 
       (15) 

Analogously, we obtain the following lump solution to Equation (1)  

( )
( ) ( ) ( ) ( )

( ) ( ) ( )

4

2 22 2 2 2
6 8 6 8 6

22 22 2
8 6 8 6

, ,

36 3 3 3 6 3 3
,

3 3 6 3 3

u x y t

a a a a y a p q

a a a y a p q

β α β γ β α β β α β

β α β β α β

 + − + − + + − + = −
 + + + + + 

(16) 

where the functions ,p q  is defined by (13). 
Figure 2 show the profile of 4u  and its density plots. 
Case 5:  

( )2
7 85 7 8 7 8 7

1 2 3 4 4 52
4 5 4 7 44 6

3 33 3
, , , , ,

2 3
a aa a a a a aa a a a a a

a a a a aa a
β α ββ β

α β αα γ
+

= = − = = =
−

 

( )
( )

2 2 2 3
7 4 87 8

6 7 7 8 8 9 2
44

273 3
, , , ,

3

a a aa a
a a a a a a

aa

ββ α β
α α βα γ

++
= = = = −

+
 

where 4 7 8, ,a a a  are arbitrary constants, and all these constants are satisfied 

with ( ) 4 63 0a aβ α γα+ ≠ , 4 5 4 72 3 0a a a aα β− ≠  and 
3

2 0
3

β
α αβ

<
+

,  

( )
( )

( )
2

2 4 7
4 7 82 2 2 3

7 4 8
2 2 2
4 4

2

7 8
8 7

4

3 33
27

3

3 33 .

a a ya a a t x
a a a

f
a a

a a yxa a t
a

β α β
α α β

β γ
α α β α

β α ββ
α α γ

 +
+ + − +   = − +

+

 + + + + +  
   

(17) 

Analogously, we obtain the following lump solution to Equation (1)  

( )

( ) ( )( ) ( )( )
5

22 2 2 2 2 2 2
7 7 8 4 8 7 7 4 4 8

2 4 2
4

, ,

36 2 3 2 3
,

u x y t

a a a t x a a a t a x a a a f

a f

β α β α α β α

α

− + + + + + +
=

(18) 

where the function f is defined by (17). 

3. Interaction Solutions 
3.1. Lump-Kink Solutions 

In this section, we will study the interaction between a lump and a stripe of the 
KP-BBM Equation (1). For search the interaction between rational solution and 
solitary wave solution, we turn the above function ( ), ,f x y t  into the following 
new form  

( ) ( )
( )

2 2
1 2 3 4 5 6 7 8

9 10 11 12 13exp ,

f a x a y a t a a x a y a t a

a x a y a t a a

= + + + + + + +

+ + + + +
          (19) 
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Figure 2. The profiles of ( )4 , ,u x y t  with 0t = , density plot and x-curves with 2 6 81, 1, 5, 1, 1.a a a γ β γ= = = = = = −  

 
where ( )1, ,13ia i =   are real constants to be determined and 13 0a > . 

For Equation (1), substituting (19) into the corresponding bilinear form (3), 
direct Mathematica symbolic computations generate the following set of solutions 
for the parameters:  

( )

5 7
1 9

3

2, 0, 0, , 2,
3

2,3, 4,5,6,7,8,10,11,12,13 ,i i

a a
a a

a
a a i

γ β α= − = = = = −

= =

              (20) 

where 3 0a ≠ . Then the exact interaction solution of u is expressed as follows:  

( )

( ) ( ) ( )( )
( ) ( )( )
( )

( )

1

2
9 12 11 9 10 1 4 3 1 2 5 8 7 5 6

22 2
13 12 11 9 10 4 3 1 2 8 7 5 6

2 2 2
1 5 9 12 11 9 10

13 12 11 9 10 4 3

2 ln

exp 2 2
2

exp( )

2 2 exp

exp

xxu f

a a a t a x a y a a a t a x a y a a a t a x a y

a a a t a x a y a a t a x a y a a t a x a y

a a a a a t a x a y

a a a t a x a y a a t

=


+ + + + + + + + + + += −

+ + + + + + + + + + + +

+ + + + +
+

+ + + + + +( ) ( )2 2
1 2 8 7 5 6

.
a x a y a a t a x a y



+ + + + + + 

(21) 

To obtain the collision phenomenon, 2 2 2
3 7 11 0a a a+ + ≠  is necessary. So the 

asymptotic behavior of u can be obtained, when  

( )lim , , 0.
t

u x t y
→∞

=  

The asymptotic behavior shows that the lump is finally submerged drowned 
or swallowed up by the stripe along with the change of time. Figure 3 exhibit the 
interaction between the lump soliton and kink soliton. The interaction between 
two solitary waves is inelastic.  
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Figure 3. The interaction solution Equation (21) for ( )1 , ,u x y t  with 2 1a = − , 3 2a = , 4 0a = , 5
5
2

a = − , 6 1a = − , 7 2a = , 

8 0a = , 10 3a = − , 11
1
3

a = − , 12 5a = , 13 1a =  when 3t =  (a)(d), 0t =  (b)(e), 3t = −  (c)(f). 

3.2. Lump-Soliton Solutions 

In the following, we compute interaction solutions between lumps and solitons 
to the KP-BBM Equation (1). It is combined functions of positive quadratic 
functions and hyperbolic cosine, and then we explored nonlinear phenomenon. 
We suppose  

( ) ( )
( )

2 2
1 2 3 4 5 6 7 8

9 10 11 12 13cosh ,

f a x a y a t a a x a y a t a

a x a y a t a a

= + + + + + + +

+ + + + +
         (22) 

where ( )1, ,13ia i =   are real constants to be determined and 13 0a > . 
Substituting (22) into the Hirota bilinear form (3), direct symbol calculation 
results in a kind of solutions:  

( )

( )

2 6 3 6 7
1 2 3

7 7

4 5 6 6 7 7 8 8

9 10 11

4 2
6

12 12 13 32
7

4
, , ,

2 3 3
0, 0, , , ,

2 3
, 0, 0, 2,

2

64
, .

3 2 3

a a a a a
a a a

a a
a a a a a a a a

a a a

a
a a a

a

γ
β

β
α

β

βγ

β

= = − =
− +

= = = = =

− +
= = = = −

= =
− +

             (23) 

Then we can obtain the soliton-lump soliton to Equation (1) with the 
transformation ( )2 2 ln xxu f= , where  
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( )
( )

( ) ( )
( )

4 2
2 6

8 7 6 32
7

22 2
6 7 7 6

1222
7

64
3 2 3

2 3 2 3 4 2 3
cosh .

23 2 3

a
f a a t a y

a

a a y a t a x x
a

a

βγ

β

β β γ β
ββ

= + + +
− +

 − + − + −  − + + + + 
−   

(24) 

According to the Ref. [45], we can calculate the general formula of the original 
coordinates of lumps.  

2 9 4 7 5 7 1 9 4 6 5 6

1 7 2 6 1 7 2 6

,
a a t a a t a a a a t a a t a a

a a a a a a a a
 − − − −

− 
− − 

            (25) 

where 1 7 2 6 0a a a a− ≠ . Then, substituting 5 0a =  into formula (25). From 
formula (23), we know that the initial velocities in x direction and y direction of  

lump are 4 7 2 9

1 7 2 6
x

a a a av
a a a a

−
= −

−
 and 1 9 4 6

1 7 2 6
y

a a a av
a a a a

−
= −

−
. But in the collision, the 

lump and the solitary wave will exchange the energy, which will result in that the 
lump and the solitary wave will not be moving in the original trajectories or 
moving at the same speeds [46]. 

To illustrate the interaction phenomena between a lump and a stripe, we 
select the following parameters:  

6 7 8 12
1 33, 5, , , 2, 1.
2 5

a a a a β γ= − = = = = =              (26) 

Figure 4 and Figure 5 show the profile of ( )2 , ,u x y t  and its contour plot 
with the parameters (26). 

4. Breather-Wave Solutions 

To construct the breather-wave solutions [47] [48], we assume that 

( ) ( ) ( )1 1 2 1

1 1

2 2

exp cos exp ,
,
.

f p p p
x a y b t
x a y b t

µ δ ψ δ µ
µ
ψ

= − + +
 = + +
 = + +

            (27) 

where µ  and ψ  are the linear functions of , ,x y t , while , ,  ( =1,2)i ip a b i  
and 1p  are real constants to be determined. To get the following results, we 
substitute the expression (27) into Bilinear Form (3) and eliminate the 
coefficients of ( ) ( ) ( )1 1exp ,exp ,cosp p pµ µ ψ− . 
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Figure 4. Profiles of ( )2 , ,u x y t  with the parameters (26) at times 0t =  (a), 2t =  (b), 4t =  (c), 7t =  (d), 10t =  (e), 

12t =  (f).  
 

 

Figure 5. Contour plot of the ( )2 , ,u x y t  with the parameters 6 3a = − , 7 5a = , 8
1
2

a = , 12
3
5

a = , 2β = , 1γ =  when 0t =  

(a), 2t =  (b), 4t =  (c), 7t =  (d), 10t =  (e), 12t =  (f). 
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Then, we get the following restricted condition: 

( )( )

2 2
1 2

1 2 1 22 2
1

2
1 1

2 2 2 2 2
2 1 1 2 1

1 1, , ,
1 3 4 1 3 4

1 3 1
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β β β β

β α γ

α αβ γ β γ γ γ

+ + + +
= − = =

− + − + +

− + + +
=

+ − + + − − + − +

     (28) 

and the expression (27) can be rewritten as  

( )

( )

2
1

2 1 2 22
1

2
2

1 2 2
1

1 1, , 2 cosh ln
21 3 4

1
cos .

1 3 4

af x y t p x a y
p

t a
p x a y

p

α γ
δ δ

β β

α γ
δ

β β

  + +
= + − +  

− +   
  + +
  + + −
  − −  

    (29) 

When we take 1p p= , lead to  

( )
( )

2
1 1 2

2

2 1 2 1 1

12 sinh ln
2, ,

12 cosh ln cos .
2

p p
u x y t

p p

µ δ

δ µ δ δ ψ

 + 
 =

  + +    

       (30) 

5. Conclusions 

In this paper, through Hirota transformation and Mathematica symbolic 
computation, we have presented five kinds of lump solutions and two classes of 
interaction phenomena to the KP-BBM Equation (1). Firstly, the analyticity and 
localization of the resulting solutions are ensured by some determinant 
conditions, and a sub-class of abundant lump solution includes different choices 
of the parameters and coefficient. Secondly, some contour plots with different 
determinant values which are sequentially made to show that the corresponding 
lump solutions tend to zero when 2 2x y+ →∞ . Thirdly, we explored two 
classes of interaction phenomenon in the literature. It showed in this work 
illustrate that the exponential-algebraic wave solution is unstable. At last, we 
obtain the breather-wave. 

Solitons always have a connection between amplitude and width, so that it is 
independent. It is a different shape or profile. As we can see from the picture, 
lump solutions don’t have such connection between amplitude and widths, and 
the profile shape can be quite random. Therefore, in the shape and formation 
lump solution process, the three-dimensional solitons solutions are more free 
than one-dimensional ones. 
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