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Abstract 

The paper reviews the most consequential defects and rectification of tradi-
tional mathematics and its foundations. While this work is only the tip of the 
iceberg, so to speak, it gives us a totally different picture of mathematics from 
what we have known for a long time. This journey started with two teasers 
posted in SciMath in 1997: 1) The equation 1 = 0.99… does not make sense. 2) 
The concept –1i =  does not exist. The first statement sparked a debate 
that raged over a decade. Both statements generated a series of publications 
that continues to grow to this day. Among the new findings are: 3) There does 
not exist nondenumerable set. 4) There does not exist non-measurable set. 5) 
Cantor’s diagonal method is flawed. 6) The real numbers are discrete and 
countable. 7) Formal logic does not apply to mathematics. The unfinished 
debate between logicism, intuitionism-constructivism and formalism is re-
solved. The resolution is the constructivist foundations of mathematics with a 
summary of all the rectification undertaken in 2015, 2016 and in this paper. 
The extensions of the constructivist real number system include the complex 
vector plane and transcendental functions. Two important results in the 2015 
are noted: The solution and resolution of Hilbert’s 23 problems that includes 
the resolution of Fermat’s last theorem and proof Goldbach’s conjecture. 
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1. Introduction 

Four previous papers, delineated the boundary of region of validity of the real 
number system R and its foundations and established R on the terminating de-
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cimals [1] [2] [3] [4]. The extension of R to its boundary, introduction of new 
concepts, re-definition of previously ill-defined concepts and imposition of new 
requirements to avoid ambiguity, errors and paradoxes (contradictions) ex-
tended the domain of R to the nonterminating decimals and established a new 
mathematical space called the constructivist real number system R* [5]. Even R* 
has a lot to be desired. But the extension of the definition of exponent, logarithm 
and exponential and logarithmic functions to nonterminating decimals as well as 
the introduction of the vector operators j and hφ effectively extends R* to tran-
scendental functions and the complex vector plane. 

We provide a summary of the great debate of the 20th century between the 
three philosophies or schools of thought of mathematics, namely, logicism, in-
tuitionism-constructivism and formalism represented by Bertrand Russell [6], L. 
E. J. Brouwer [7] and David Hilbert [8], respectively. Logicism attempted to 
build mathematics on symbolic logic. The issue: which one provides firm foun-
dations for mathematics? None of them won the debate but we identify their 
main contributions and add our own to resolve the debate and call the resolution 
the constructivist foundations of mathematics. The debate and its resolution 
comprise the core of this paper. The debate started when Russell sent a letter to 
Gottlob Frege [9] confounding him with the Russell Antimony (Russell’s con-
tribution) [10]: 

Let M be the set of all sets where each element does not belong to itself, i.e., 
M = {m: m ∉  m}. Either M ∈  M or M ∉  M. If M ∉  M, its defining condi-
tions hold; therefore M ∈  M. On the other hand, if M ∈  M, then M also satis-
fies its defining condition; therefore M ∈  M and M ∉  M. 

The Russell Antimony is also called the Law of Excluded Middle which is the 
basis of the indirect proof. Its rejection by Brouwer gave rise to intuition-
ism-constructivism, Brower’s contribution. Brouwer rejected his earlier contri-
bution—the fixed-point theorem—which was proved with the indirect proof 
[11]. Hilbert recognized that the concepts of individual thought are inaccessible 
to others and cannot be the subject matter of mathematics. His remedy: 
represent the concepts of individual thought by objects in the real world such as 
words, letters and figures subject to consistent basic premises or axioms. The 
axioms are neither true nor false but mathematical arguments, conclusions and 
proofs of theorems are based on and consistent with them. Any statement that 
contradicts any of the axioms or their conclusions is called a counterexample; it 
dismisses and proves the statement false. In other words, mathematics is the 
study of symbols and other objects subject to these requirements. The axioms 
define a mathematical space such as algebra, analysis and geometry. The choice 
of the axioms is arbitrary depending on what the mathematical space is intended 
for. Consequently, it is possible to construct independent contradictory mathe-
matical spaces such as Abelean and non-Abelean groups and Euclidean and 
non-Euclidean geometries. Scientists use mathematics as the language of science 
because of its precision and many mathematical spaces come from and meet the 
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needs of science. Clearly, symbolic logic is useless in mathematics because it has 
nothing to do with the axioms. Mathematics has its own logic that we call ra-
tional thought. The precision of mathematics lies not in computation and mea-
surement because they are its most imprecise aspects but in the way it establishes 
conclusions and creates new concepts.  

2. Mathematical Space 

A mathematical space consists of a set of concepts, binary or other operations 
and relations subject to consistent basic axioms. Ernst Zermelo and Abraham 
Fränkel attempted to construct set theory [12] as a mathematical space but they 
failed because one of the field axioms [13], the axiom of choice [14], is false on 
infinite set due to its inherent ambiguity [1]. Consequently, the attempt of logic-
ism to develop set theory as the universal language of mathematics did not ma-
terialize. Therefore, we use mainly the concepts of naïve set theory not its results 
but identify its defects at the same time. 

2.1. Abstract and Physical Concepts 

Both abstract and physical concepts are created by individual thought. The dif-
ference: although both of them are represented by objects in the real world such 
as word, symbol, number and figure, an abstract concept has no referent in the 
real world while a physical concept refers to an object in the real world that eve-
ryone can look at and examine. Examples of abstract concept: time, distance and 
dimension; we cannot find them in the real world. The concept time is invented 
by thought to express a relation between events that tells us which of them oc-
curred first. Distance is a relation between objects in the real world that de-
scribes their relative positions. For example, the objects in the sky called Milky 
Way and Andromeda are physical concepts; they are the physical referents of the 
physical concepts “Milky Way” and “Andromeda”. The distance between them 
can be measured and computed. Some physical concepts like the superstring, 
fundamental building block of matter, is not directly observable. They were dis-
covered only indirectly through their impact in the real world by qualitative 
mathematics, the mathematical model of rational thought [15]. 

Lack of distinction between abstract and physical concepts can lead to erro-
neous science. For example, Albert Einstein considered time a physical concept. 
He got the twin paradox, a contradiction. Of course, thought can create non-
sense. Examples: a bag half its size or the snake that swallowed itself. But it is al-
so capable of correcting them. However, uncorrected error can be tragic as the 
disastrous final flight of the Columbia Space Shuttle showed [16]. 

2.2. Ambiguity, Errors and Paradoxes (Contradictions) 

The undefined concepts or terms of traditional mathematics are examples of 
ambiguous concepts. They include vacuous and undefined concepts. An exam-
ple of undefined concept is a nonterminating decimal. An example of vacuous 
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concept is “the root of the equation x2 + 1 = 0”, denoted by –1i =  . This con-
cept is vacuous because the unary operator x  is defined only when x ≥ 0 and 
a perfect square and −1 is not. Consequently,  

1–1
–1

i i== = −                         (1) 

from which follows that  

0i =  and 1 0=                          (2) 

which collapses both the real and complex number systems. 
Another vacuous concept is “the greatest integer”. Suppose we want to find 

the greatest integer. Let N = the greatest integer. By the trichotomy axiom, one 
and only one of the following holds: N < 1, N = 1, N > 1. The left inequality is 
obviously false. It follows from the right inequality that N2 > N which contra-
dicts our assumption that N is the greatest integer. Therefore, N = 1, a contra-
diction. This is called the Perron paradox [17]. 

There are two sources of this paradox; 
• The trichotomy axiom is false in the real number system [5] but it is true and 

follows from the lexicographic ordering of the constructivist real number 
system R* [5]. 

• To avoid error constructivism requires proof of existence of solution of a 
problem before solving it. This is a common error, especially, in differential 
equations where a solution is assumed without first proving that a solution 
exists (e.g., let f(x) be the solution …). Such “solution” if found need not be a 
solution.  

2.3. Ambiguity of the Concept “Irrational” 

Since the binary operations addition and multiplication are defined only on ter-
minating decimals the nonterminating decimals are ill-defined and, therefore, 
ambiguous in the real number system. Therefore, any concept defined in terms 
of nonterminating decimals is ambiguous, ill-defined. An example of such am-
biguous concept is irrational number, i.e., nonperiodic nonterminating decimal. 
Furthermore, periodicity or non-periodicity of a nonterminating decimal is not 
verifiable because verification is an endless process. Thus, an irrational number 
has at least two layers of ambiguity—being ill-defined and having infinite de-
cimal digits. This ambiguity is illustrated by the fact that the sum 3  and 2  
cannot be computed. Moreover, not every rational number is the quotient of two 
integers; only when the divisor has no prime factor other than 2 and 5. For ex-
ample, 2/3 = 1.66… Thus, the rationals coincide with the terminating decimals 
and they are the only defined real numbers.  

2.4. Infinity  

In traditional mathematics a set is infinite if it can be put into 
one-one-correspondence with a proper subset. We modify this definition by 
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identifying the concept infinity with its essential property of inexhaustibility. We 
take inexhaustibility as the defining quality of infinity and this clearly includes 
the traditional definition. For example, if we count the digits of a nonterminat-
ing decimal and label the digits we have already counted by, say, 1 2, , , nx x x , 
then a sequence, 1 2, , , , 1, 2,nx x x n =   is generated that has no last element 
and the counting is never complete. This is an ambiguity. It is not the case with a 
terminating decimal where there is a last element so that its digits are finite. This 
is an example of countable infinity denoted by ∞. It is a concept that pervades 
mathematics and the only type of infinity that exists as we shall see later. It is 
neither a real number nor a counting number and, naturally, the binary additive 
and multiplicative operations do not apply to it and if real numbers are added to 
a given real number one at a time ∞ can never be reached. Thus, there is no 
boundary between the real numbers and infinity that can be crossed.  

2.5. The Universal and Existential Quantifier 

Let S be nonempty set and suppose we want to prove that “every element of S 
has property P”. Start with an element x1 and suppose it has this property (oth-
erwise, the statement is outright false), then take another element x2 and check if 
it has this property, etc. Then since S is inexhaustible verification of the truth of 
this statement is never complete, i.e., the statement is ambiguous. Similarly, by 
the same algorithm but starting with an element that does not have this proper-
ty, it may not be possible to prove that there exists an element of S that has this 
property which is an ambiguity. What this all means is that the application of the 
universal or existential quantifier to infinite set brings in ambiguity to a mathe-
matical space. Every infinite mathematical space is presently tainted with this 
type of ambiguity from the definition of limit of real analysis through the field 
axioms of the real number system [13]. Thus, the real number system is present-
ly ambiguous. 

2.6. Other Defects of the Real Number System and Its Foundations 

We enumerate the other defects of the real number system that have some bear-
ing on this paper: 
• The trichotomy axiom, one of the field axioms of the real number system, is 

false; a counterexample to it is constructed in [5]. 
• The axiom of choice, one of the axioms of the real number system, is false on 

infinite set [1]. 
• Only the terminating decimals, which coincide with the rational numbers, 

are defined in the real number system; in particular, the nonterminating de-
cimals are ill-defined [5]. 

• The power set of a set leads to the Russell antimony; therefore, like the uni-
versal set, it does not exist [1]. 

• Cantor’s diagonal method generates only a countably infinite set; since the 
union of countably infinite sets is countable, the real numbers are countably 
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infinite. 
• Since the cardinality of a set is defined by the power set and the power set of 

the countably infinite set does not exist then the only cardinality that exists is 
countably infinite [1]. 

• Reference [13] exhibits a non-measurable set. However, the proof uses the 
axiom of choice. Therefore, as of this time, there is no non-measurable set. 

• Since n x  is defined only when x  is a perfect nth power then the fractional 
root of x does not exist unless x  is a perfect kth power where k = the de-
nominator of the fractional root.  

Fermat’s last theorem [18] says, for n > 2, the equation, 
n n nx y z+ =                             (3) 

has no solution in integers, x, y, x ≠ 0.  
For 360 years mathematicians tried to resolve this conjecture but failed. Why? 

Since the indirect proof is not valid, one can only attempt to look for potential 
solution and show that every one of them does not satisfy Fermat’s Equation (3). 
But that is like looking for a black cat in a dark room and the cat may not even 
be there because the search cannot be completed the potential solutions being 
infinite. Therefore, we look for a counterexample to it, i.e., a solution of Fermat’s 
Equation (3). We first note that the problem is formulated in the real number 
system. But it has no solution there in view of the defects we have noted. Partial 
rectification was done in 1998 [18] which resulted in the resolution of the prob-
lem by a counterexample that proved the conjecture false and it turns out that 
there are countably infinite counterexamples to it [1] [18]. Full rectification of 
foundations is done in [1] and the rectification of the real number system is the 
constructivist real number system [5] an overview of which is presented in the 
next section. 

3. The Constructivist Real Number System  

The rectification of the real number system R lies in the replacement of the field 
axioms by three simple consistent axioms below to build the constructivist real 
number system R*.  

3.1. The Axioms of R*  

Axiom 1. 0, 1 ∈ R*. 
Axiom 2. The addition table. 
Axiom 3. The multiplication table. 
Axiom 1 says that 0 and 1 are the additive and multiplicative identities defined 

by Table 1 and Table 2. 
The rest of the digits are generated by or sums of 1. Thus, 2 = 1 + 1, 3 = 2 + 

1, 4 = 3 + 1, 5 = 4 + 1, 6 = 5 + 1, 7 = 8 + 1 and 9 = 8 + 1. The base is 10 = 9 + 1. 
Both tables are extended to large numbers and small numbers using the scien-

tific notation (metric system or base 10 numerals). Associativity, commutativity 
and distributivity of multiplication with respect to addition are shown by the 
tables and need not be taken as axioms.  
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Table 1. The addition table. 

+ 0 1 2 3 4 5 6 7 8 9 

0 1 2 3 4 5 6 7 8 9  

1 2 3 4 5 6 7 8 9   

2 3 4 5 6 7 8 9    

3 4 5 6 7 8 9     

4 5 6 7 8 9      

5 6 7 8 9       

6 7 8 9        

7 8 9         

8 9          

 
Table 2. The multiplication table. 

+ 0 1 2 3 4 5 6 7 8 9 

0 0 0 0 0 0 0 0 0 0 0 

1 0 1 2 3 4 5 6 7 8 9 

2 0 2 4 6 8      

3 0 3 6 9       

4 0 4 8        

5 0 5         

6 0 6         

7 0 7         

8 0 8         

3.2. The Inverses and Terminating Decimals 

The additive inverse of an integer x, denoted by −x, satisfies the equation, 

0x x+ − =                              (4) 

We write the product of integers a and b as a(b) or ab. The multiplicative in-
verse of a nonzero integer x, denoted by 1/x, satisfies, 

( )1 1x x =                              (5) 

provided x does not have a prime factor other than 2 and 5. The quotient of two 
integers x by y, denoted by x/y satisfies,  

x yz=                                (6) 

In scientific notation we write an integer N as follows: 
1

1 1 1 110 10n n
n n n nN a a a a a a−

− −= = + + + 

              (7) 

where the aj’s, 1, 2, ,j n=  , are digits. A terminating decimal in the metric sys-
tem or scientific notation (base 10 place-value numerals) is written as follows:  
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( ) ( ) ( )

1 1 1 1
–1 2

1 1 1 2
2–1

1 1 1 2

. .

10 10 10 10 10

10 10 0.1 0.1 0.1 ,

n n k k
n n k

n n k
kn n

n n k

N a a a b b b

a a a b b b

a a a b b b

− −

−

−

= + + + + + + +

= + + + + + + +

 

 

 

      (8) 

where –1 1n na a a  is the integral part, 1 2 kb b b  the decimal part which is 
well-defined since 10 has only the factors 2 and 5 and its reciprocal, 1/10 = 0.1, is 
a terminating decimal. Thus, a terminating decimal is defined.  

What happens to x/y if x and y are relatively prime, i.e., they have no common 
factor? In this case continued division does not yield a terminating decimal and 
therefore, the quotient is ill-defined. We extend the real number system to in-
clude not only the nonterminating decimals but also its closure in a suitable 
norm that we will introduce later. In R only division by 0 is disallowed. In R* di-
vision by a prime other than 2 and 5 yields a nonterminating decimal which is 
defined but should be disallowed in R. 

3.3. Basic Concepts 

In scientific notation we write an integer N as follows: 
1

1 1 1 110 10n n
n n n nN a a a a a a−

− −= = + + + 

,               (9) 

where the aj’s, 1, 2, ,j n=  , are digits. A terminating decimal in the metric sys-
tem or scientific notation (base 10 place-value numerals) is written as follows:  

( ) ( ) ( )

1 1 1 1
–1 2

1 1 1 2
2–1

1 1 1 2

. .

10 10 10 10 10

10 10 0.1 0.1 0.1 ,

n n k k
n n k

n n k
kn n

n n k

N a a a b b b

a a a b b b

a a a b b b

− −

−

−

= + + + + + + +

= + + + + + + +

 

 

 

       (10) 

where –1 1n na a a  is the integral part, 1 2 kb b b , the decimal part which is de-
fined since 10 has only the factors 2 and 5 and its reciprocal, 1/10 = 0.1, is a ter-
minating decimal. Thus, a terminating decimal is defined. A decimal is defined if 
all of its digits are defined or there is an algorithm for finding any digit.  

3.4. The Nonterminating Decimals 

A sequence of terminating decimals of the form,  

1 1 2 1 2. , . , , . , ,nN a N a a N a a a                        (11) 

where N is an integer, an a digit and there is a rule for choosing each an, is called 
standard generating sequence or g-sequence. A nonterminating decimal is the 
g-limit (g-lim) of its nth g-term, 

1 2. nN a a a                              (12) 

as n  ∞, i.e., ( )1 2 1 2g-lim . .n nN a a a N a a a=   

. Note that the g-limit of a 
nonterminating decimal is obtained by simply writing down is digits. This defi-
nition applies to terminating decimals. It also defines the natural g-norm or 
natural norm for R*, i.e., 1 2 1 2. .n nNN a a a N a a a=    . Thus, the g-norm of 
a decimal, terminating or nonterminating, is the decimal itself. The decimal in 
(12) is terminating when there exists an integer k > n such that  
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1 20k k ka a a+ += = = =                         (13) 

For the first time (12) defines a nonterminating decimal [5]. The nth g-term 
of (11) approximates the nonterminating decimal (12) at maximum margin of 
error of 10−n provided each nth g-term is computable, i.e., there is some algo-
rithm or rule for determining or computing the digits. The scientific calculator 
has this algorithm for every decimal. The g-limit of (11) is the nonterminating 
decimal (12) provided the nth digits are not all 0 beyond a value of n. In this 
case, we say that the g-sequence (11) converges to the nonterminating decimal 
(12) in the g-norm. Otherwise, it is terminating. A decimal consists of the 
integral part, the integer left of the decimal point; the decimal part is the se-
quence of digits to the right of the decimal point. The integers are ill-defined by 
the field axioms of the real number system but defined in the constructivist real 
number system by Axioms 1, 2 and 3 [5] as the integral parts of the decimals. 

It would be an appropriate special problem for undergraduate mathematics 
major to study a class of nonterminating decimals with a given algorithm for 
computing its digits, e.g., normal decimal. Every digit in a normal decimal is 
taken at random from the ten digits 0, 1, 2, ···, 9. To stimulate creativity, the stu-
dent may think of a certain algorithm and derive the properties of the decimal 
generated by it. In the real number system the rationals coincide with the termi-
nating decimals which are periodic. Since the concept “irrational” is ill-defined 
there are only two types of real numbers—terminating and nonterminating. The 
scientific calculator which has the algorithm for approximating all decimals by 
truncation at desired margin of error. Ramanujan’s continued fraction is equiv-
alent to a nonterminating decimal when the denominator has prime factor other 
than 2 or 5.  

We define the nth distance rn between two decimals a, b as the numerical val-
ue of the difference between their nth g-terms, an, bn, i.e., n n nr a b= − , and their 
g-distance is the g-limit of rn. The nth g-term of a nonterminating decimal re-
peats every preceding g-term so that if finite initial g-terms are deleted the 
g-terms and g-limit of the remaining g-sequence are unaltered. Thus, a nonter-
minating decimal has many g-sequences belonging to the equivalence class of its 
g-limits. 

Since addition and multiplication and their inverse operations, subtraction 
and division, are defined only on terminating decimals computing nontermi-
nating decimals is done by approximating each term or factor by its nth g-term 
(n-truncation) which is a terminating decimal and using their approximation to 
find the nth g-term of its sum or product. The same approximation holds for the 
difference and quotient (if defined). Thus, we have retained standard computa-
tion but avoided the ambiguity and contradictions of the real number system. 
We have also avoided vacuous approximation because nonterminating decimals 
are g-limits of their g-sequences which exist and belong to R*. Moreover, we 
have contained the ambiguity of nonterminating decimals by approximating 
them by their nth g-terms. This is called truncation at the nth g-term. Approxi-
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mation makes sense only when what is being approximated is known.  
As we raise n in (12), the tail digits of the nth g-term of any decimal recedes to 

the right indefinitely, i.e., it becomes steadily smaller until it is indistinguishable 
from the tail digits of the rest of the decimals. Although it tends to 0 in the stan-
dard norm it never reaches 0 in the g-norm since the tail digits are never all 
equal to 0; it is also not a decimal since the digits are not fixed. We refer to it as 
an algebraic continuum distinct from the topological continuum. 

At present the natural numbers are defined as 0; its successor, 1; 2, the suc-
cessor of 1; 3, the successor of 2; etc. There is no axiom defining them. We take a 
surjection of the natural numbers onto the integers, n ↔  N, N the integral 
part of a decimal and 0,1,N =  , which makes them equivalent mathematical 
spaces since they have exactly the same properties with respect to the binary oper-
ations + and × [19]. We define a natural number as the integral part of some de-
cimal. 

The g-norm simplifies computation considerably [5] since the result is ob-
tained digit by digit and avoids radicals which are ill-defined.  

3.5. The Dark Number d* 

Consider the iterated product or power, 

( )0.1 , 1,2,n n =  ;                        (14) 

it defines the sequence 

0.1,0.01,0.001,                         (15) 

This is not a g-sequence since the g-terms do not repeat; we call it d-sequence. 
Each term moves towards 0 but does not reach 0. The d-sequence defines the 
d-limit of the d-sequence (15) called the principal d-limit dp because every 
d-limit is derivable from it. For each x ∈ R*,  

0 d x< <                              (16) 

Consider the sequence,  

( ) 0 10.1 , 1, 2, ; 0,1, 2, ,9n
ka a a n k− = =                  (17) 

where ak is any of the decimals, 0,0.1,0.2,0.3, ,0.9  and 1, , ka a  decimal 
digits in the sequence not all 0 simultaneously. For any x ∈ R*, 0 < d < x. There 
are countably infinite d-sequences and d-limits in (17) all of which share the 
same properties. The set of g-limits is not empty; we call it the dark number d* 
so that d* has countably infinite elements each of which satisfies, 

*0 , , 1, 2,kd x x k< < ∈ =R                      (18) 

The standard limit of (17) is 0 but its d-limit d* is greater than 0 according to 
(18). Therefore, they differ by d*. The d-limit has special properties not shared 
by other elements of R*. In fact, it has a different arithmetic.  

If x is a nonzero decimal, terminating or nonterminating, there is no differ-
ence between (0.1)n and x(0.1)n, as n  ∞, because they become indistinguisha-
bly small. This is analogous to the sandwich theorem of calculus that says, 
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lim(x/sinx) = 1, as x  0; in the proof, it uses the fact that sin tanx x x< <  or 
1 sin secx x x< <  where both extremes tend to 1 so that the middle term tends 
to 1 also. In our case, if 0 1x< < , ( ) ( )0 0.1 0.1n nx< <  and both extremes tend 
to 0; so must the middle term and they become indistinguishably small as n → ∞. 
The middle term, however, reaches d*. In this sense, computation in R* is more 
precise. 

If x > 1, we simply reverse the inequality and obtain the same conclusion. 
Therefore, we may write, xdp = dp (where dp is the principal element of d*) and 
since the elements of d* share this property we may write xd* = d*, meaning, 
that xd = d for every element d of d*. We consider d* the equivalence class of its 
elements. In the case of x + (0.1)n and x, we look at the nth g-terms of each and, 
as n  ∞, x + (0.1)n and x become indistinguishable. Now, since  
( ) ( )( )0.1 0.1 0

nn m> >  and the extreme terms both tend to 0 as n  ∞, so must 
the middle term tend to 0 so that they become indistinguishably small (the rea-
son d* is called dark since it is indistinguishable from 0 but d* > 0). 

(The dark number d* models the superstring mathematically. The superstring 
is the fundamental building block of matter. It comprises dark matter, one of the 
two fundamental states of matter, the other ordinary or visible matter. Dark be-
cause it is not detectable. When agitated the superstring becomes a primum, unit 
of visible matter, e.g., electron, +quark, –quark. They are called basic prima be-
cause they comprise every atom [20]).  

In R*, the natural norm is the g-norm, i.e., if x ∈ R*, g-norm(x) = x. The nth 
g-term differs from x by the tail end in the truncation of x at the nth digit. The 
standard limit of the tail end differs from the g-limit by d*. Every mathematical 
space has its natural norm that facilitates computation and enhances research. 

3.6. Samples of Digital or g-Computation  

Approximation makes sense only when we know the number we are approx-
imating and the error is bounded above by a desired number. 
• Let x = 4.57628… The truncation (Tr) of x at the 3rd g-term is 4.576. The dis-

tance from x or error in the truncation is 0.00028 and d* < 0.00028.  
• The standard distance between points ( )2.3517 ,5.9372x =    and 

( )1.1213 ,2.8432y =    in the plane is approximated by the difference 
between their truncations at say, the 3rd g-term: 

( ) ( ) 3.094 1.123 1.971Tr y Tr x− = − =                 (19) 

• We have no problem with the nth root of a perfect nth power, say, a1/3 where 
a = k2, k an integer since it is defined. But how do we compute, say, 3 7  
since 7 is not a perfect square? 

Step 1. Divide the interval [0, 10] as follows: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. 
Among the digits, find the largest digit whose cube does not exceed 7. Obviously, 
it is 1 since 13 < 7 and 23 > 7. Thus, the integral part of 3 7  is 1. 

Step 2. To compute the first decimal digit divide the interval [0.1, 1] as fol-
lows: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]. Among these decimal digits, find 
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the largest digit, say, b such that the (1.b)3 does not exceed 7. Clearly, it is 8 since 
(1.8)3 = 5.832 < 7 and 9 does not satisfy this inequality. Thus, the closest trunca-
tion of 3 7  at the first decimal digit is 1.8.  

Step 3. To find the next decimal digit divide the interval [0.01, 0.1] as follows: 
[0.01, 0.02, 0.03, 0.04, 0.04, 0.05, 0.06, 0.07, 0.08, 0.08, 0.1] and find the largest 
digit, say, b such that (1.8b)3 < 7. In case, it is 5 since (1.85)3 = 6.33 < 7, etc. 

We can repeat the calculation to find as many decimal digits as we wish in 
evaluating 3 7 . The scientific calculator can do this in split second because it 
has this algorithm for it. The computation avoids radicals which are ill-defined.  

For purposes of computation we denote the nth g-term of a decimal by the 
functional notation n-ξ(x) called n-truncation. Since a g-sequence defines or ge-
nerates a decimal we call the latter its g-limit. Since nonterminating decimals 
cannot be added, subtracted, multiplied or divided, they must be n-truncated 
first to carry out the operations on them. The margin of error at each step in the 
computation must be consistent (analogous to the requirement of number of 
significant figures in physics, the rationale being that the result of computation 
cannot be more accurate than any of the approximations of the terms). While we 
can start division by terminating decimal since it starts on the left digits the quo-
tient does not exist when the divisor has a prime factor other than 2 or 5. 

Let 1. nx N a a=    and 1. ny M b b=   , then 

( )
( )
( ) ( ) ( )

1

1

- . ,

- . ,

- - - ,

n

n

n x N a a

n y M b b

n x y n x n y

ξ

ξ

ξ ξ ξ

=

=

+ = +



                    (20) 

( ) ( ) ( )
( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

- - - ,

- - - ,

- - - ,

n x y n x n y

n xy n x n y

n x y n x n y

ξ ξ ξ

ξ ξ ξ

ξ ξ ξ

− = −

=

=

                   (21) 

provided n-ξ(y) ≠ 0 as divisor. Consider the function ( )1, , kf x x  of several 
variables; we n-truncate f as follows:  

( )( ) ( ) ( )( )1 1- , , - , ,  - .k kn f x x f n x n xξ ξ ξ=               (22) 

If f is a composite function of several variables,  
( ) ( )( )1 1 1, , , , , ,t s uf g x x g y y    then 

( ) ( )( )( )
( )( ) ( )( ) ( )( ) ( )( )( )

1 1 1

1 1 1

- , , , , , ,

- - , , - , , - - , , - .

t s u

t s u

n f g x x g y y

f n g n x n x n g n y n y

ξ

ξ ξ ξ ξ ξ ξ=

  

  

 (23) 

This formalizes standard computation now based on the new real numbers. 
The computation itself uses the g-terms of the decimals involved and provides 
the result directly, digit by digit; it approximates the result to within any d-term 
of d*, the closest approximation one can ever get to is d*. Computation using the 
g-norm applies to monotone increasing function since the g-terms of a decimal 
is monotone increasing. However, a monotone decreasing function can be con-
verted to a monotone increasing one and g-norm computation applies to the 

https://doi.org/10.4236/apm.2018.88044


E. E. Escultura 
 

 

DOI: 10.4236/apm.2018.88044 732 Advances in Pure Mathematics 

 

latter. 

4. Theorems of R* 

The following theorems follow from (5) and (6) of Section 3 and the ensuing 
discussion. 

Theorem. The d-limit of the indefinitely receding to the right nth d-terms of 
d* coincides with the g-limits of the tail digits of the nonterminating decimals 
traced by them as the ajs vary along the digits. 

Corollary. The tip of the tail end of a decimal is d*. 
This means that that we cannot insert a decimal between 0 and d* (the inter-

val is full). This is true of every interval of R*, i.e., the whole R* is an algebraic 
continuum (no gap). A decimal integer has the form N.99…; we shall prove later 
that they are isomorphic to the integers, i.e., the integral parts of the decimals.  

Theorem. If x is an integer, *x d x+ = ; if x is the decimal integer 
.99 , 0,1,N N =   then,  

( )
( )

* *

* * *

* * *

*

.99 .99 1 0.99 0.99 1 0.99 1,

; if 0, ;

, 1, 2, ;1 0.99 ;

1 .99 1 0.99 .

n

x d N d N N N
x d x x xd d

d d n d

N N d

+ = + = + − = + + − = +

− = ≠ =

= = − =

− − = − =

    

 

 

 (24) 

The equation *x d x+ =  in the theorem says that d* cannot be separated 
from an integer. Note that x + d* ∈ R*. It also shows that every element of R* 
has the dark component d*. Recall that the g-closure of R, i.e., its closure in the 
g-norm, is R*. This is true of the additive inverses, the defined multiplicative in-
verses and d*. The reciprocal of d* is u* and the reciprocal of u* is d*. The the 
upper bounds of divergent sequences of terminating decimals and integers (a 
sequence is divergent if the nth terms are unbounded as n  ∞, e.g., the se-
quence 8, 88, …). This unbounded number u* is countably infinite since the 
countable union of countable sequences is. Like d* it is set-valued. We follow the 
same convention for u*: whenever we have a statement “u has property P for 
every element u of u*” we can simply say “u* has property P”. Then u* satisfies 
these dual properties: for all x, 

* * * *; for 0, .x u u x xu u+ = ≠ =                      (25) 

Note the duality of the statements x + d* = x and xd* = d* from Equation (25) 
and the statements x + u* = u* and xu* = u*. Neither d* nor u* is a decimal; their 
properties are solely determined by their sequences. Then d* and u* have the 
following dual or reciprocal properties and relationship:  

* * * * * * * *0 0, 0 0, 0 0, 0 0, 1 , 1 .d d u u d u u d= = = = = =          (26) 

Numbers like u* − u*, d*/d* and u*/u* are still indeterminate but indetermi-
nacy is avoided by computation with the g- or d-terms. Thus, standard 
g-computation applies to these non-standard elements. Moreover, we now have 
a defined arithmetic of infinitesimal and infinity of the traditional real number 
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system and calculus where d* and u* are their counterparts in R*.  
The decimals are linearly ordered by the lexicographic ordering “<” defined as 

follows: two elements of R* are equal if corresponding digits are equal. Let  

1 2 1 2. , .N a a M b b ∈  R                        (27) 

Then,  

1 2 1 2 1 1 1 1 2. . if or if , ; if , ; ,N a a M b b N M N M a b a b a b< < = < = <      (28) 

and, if x is any decimal we have,  
* *0 d x u< < < .                          (29) 

The trichotomy axiom follows from the lexicographic ordering of the R* 
which is linear since there is no gap. This is the natural ordering mathematicians 
sought among the real numbers but it does not hold in R because there is no li-
near ordering of the real numbers since d* is missing. This is what the counte-
rexample to the trichotomy axiom [5] says. By inserting d* in these gaps (d* lies 
between predecessor and successor elements of R) we obtain the closure R*. 
Then we have the following theorem.  

Theorem. The closure of R in the g-norm is R*. 
An open problem is whether R can be well-ordered by <. The answer is no 

since there are gaps in R. However, R* is well-ordered.  

4.1. Decimal Integers 

Decimal integers are elements of R* form .99 , 0,1,2,N N = 

 is called a de-
cimal integer. We show the isomorphism between the integers and the decimal 
integers to justify the name in the sense of [19]. However, before doing so we 
first note that 1 + 0.99… is not defined in R since 0.99… is nonterminating but 
we can write *0.99 1 d= −  so that * *1 0.99 1 1 2 1.99d d+ = + − = − =  ; we 
now define 1 0.99 1.99+ = 

 or, in general, ( )* 1 .99N d N− = −  . Twin in-
tegers are pairs ( )( ), 1 .99 , 1,2,N N N− =  ; the first and second components 
are isomorphic.  

Let f be the mapping ( )1 .99N N→ − 

 and extend it to the mapping d* → 0 
even if d* is not a decimal; then we show that f is an isomorphism between the 
integers and decimal integers: 

( ) ( )

( ) ( ) ( ) ( )

1 .99 1 0.99
1 1 1.99 1 0.99 1 0.99
1 .99 1 .99

f N M N M N M
N M N M
N M f N f M

+ = + − = + − +

= − + − + = − + + − +

= − + − = +

 

  

 

   (30) 

Thus, addition of decimal integers is the same as addition of integers. Next, we 
show that multiplication is also an isomorphism.  

( ) ( )

( ) ( ) ( )( )
( ) ( )( )

( ) ( )( )

1 .999 1 0.99
1 1 1 0.99
1 1 .99 1 .99 1 0.99

1 0.99 1 0.99

0.99 1 0.99 0.99

f NM NM NM
NM N M N M
NM N M N M

NM N M N

M

= − = − +

= − − + + − + − +

= − − + + − + − + −

= − − + + + −

+ + − +

 



  

 

  

    (31) 
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( )( ) ( )( ) ( )( ) ( )
( )( ) ( )( )( )
( )( ) ( )( )
( )( ) ( )( )

21 1 1 0.99 1 0.99 0.99

1 0.99 1 0.99

1 .99 1 .99

N M N M

N M

N M

f N f M

= − − + − + − +

= − + − +

= − −

=

  

 

 

  

We include in the isomorphism the map d* → 0, so that its kernel is the set 
{d*, 1} from which follows,  

( ) ( )* * and 0.99 0.99 , 1,2,
n nd d n= = =                 (32) 

If 0 < x < 1, there is no difference between C and x(0.1)n since (0.1)n tend to d* 
in the g-norm; it follows that x(d*) = d*. Intuitively, this means that as the d- 
and g-terms of x(0.1)n and x(0.1)n move to the right towards 0 indefinitely they 
become indistinguishable from each other but remain greater than zero. 

Theorem. Let x = N.99…; then 

( ) ( )

* * * * *

* * *

,  1,  ;  if 0,  

,  1, 2, ,  1 0.99 ;  1 .99 1.99
n

x d x x d N x d x x xd d

d d n d N N

+ = + = + − = ≠ =

= = − = − − =   

     (33) 

Note that among the nonterminating decimals, d* and 0.99… serve as the ad-
ditive and multiplicative identities, respectively. This means that R* has two 
multiplicative identity elements, namely, 1 and 0.99… We exhibit other proper-
ties of 0.99…. Let K be an integer, M.99… and N.99… decimal integers. Then 

( )
( ) ( ) ( )

( )

.99 .99 ,

.99 0.99 0.99 ,

.99 .99 1 .99 .

K M K M

K M K M KM K

M N M N

+ = +

= + = +

+ = + +

 

  

  

           (34) 

To verify that 2(0.999...) = 1.99…, we note that (1.99…)/2 = 0.99…  

( )( ) ( )( )
( ) ( ) ( )

( ) ( )
( )
( ) ( )

2

.99 .99 0.99 0.99

0.99 0.99 0.99
1 .999 1 .99 0.99

2 .99 0.99
1 .99 1 .99

M N M N

MN M N
MN M N
MN M N
MN M N MN M N

= + +

= + + +
= + − + − +
= + + − +
= + + − = + + −

   

  

  

 

 

           (35) 

( )0.99 0.99 2 0.99 1.99+ = =                     (36) 

4.2. Adjacent Decimals and Recurring 9s 

Two decimals are adjacent if they differ by d*. Predecessor-successor pairs and 
twin integers are adjacent. In particular, 74.5700… and 74.5699… are adjacent. 
Since the decimals have the form 1 2. , , 0,1, 2,nN a a a N =   , the digits are 
identifiable and, in fact, countably infinite and linearly ordered by the lexico-
graphic ordering. Therefore, they are discrete or digital and the adjacent pairs 
are also countably infinite. However, since their tail digits form a continuum, R* 
is a continuum with the decimals its countably infinite discrete subspace. 

A decimal is called recurring 9 if its tail decimal digits are all equal to 9. For 
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example, 4.3299… and 299.99… are recurring 9s; so are the decimal integers. (In 
an isomorphism between two algebraic systems, their operations are interchan-
geable, i.e., they have the same algebraic structure and differ only in notation). 

The recurring 9s have interesting properties. For instance,  
( ) *1 .99N N d− − = ; such pairs are adjacent because there is no decimal be-

tween them. In the lexicographic ordering the smaller of the pair of adjacent de-
cimals is the predecessor and the larger the successor. The average between them 
is the predecessor. Thus, the average between 1 and 0.99… is 0.99… since 
(1.99…)/2 = 0.99…; this is true of any recurring 9, say, 34.5799… whose succes-
sor is 34.5800… Conversely, the g-limit of the iterated or successive averages 
between a fixed decimal and another decimal of the same integral part is the 
predecessor of the former. 

Since adjacent decimals differ by d* and there is no decimal between them, 
i.e., we cannot split d* into nonempty disjoint sets, we have another proof that 
d* is a continuum. This is equivalent to the topological continuum. The counte-
rexample to the trichotomy axiom debunks the idea that a terminating can be 
expressed as the limit of sequence of rationals since the closest it can get to it is 
some rational interval containing rationals whose relationship to it is unknown.  

The g-sequence of a nonterminating decimal reaches its g-limit, digit by digit. 
This is one of the advantages of computation in the g-norm. Moreover, a non-
terminating decimal is an infinite series of its digits:  

1 2 1 2. 0. 0.0 0.00 0 ; 0.99n nN a a a N a a a= + + + + +            (37) 

5. R* and Its Subspaces 

We add the following results to the information we now have about the various 
subspaces of R* to provide a full picture of the structure R*. The next theorem is 
a definitive result about the continuum R*. 

Theorem. In the lexicographic ordering R* consists of adjacent predeces-
sor-successor pairs (each joined by d*); hence, the g-closure R* of R is a conti-
nuum. 

Proof. For each , 0,1,N N = 

, consider the set of decimals with integral part 
N. Take any decimal in the set, say, 1 2.N a a  , and another decimal in it. With-
out loss of generality, let 1 2.N a a   be fixed and let it be the larger decimal. We 
take the average of the nth g-terms of 1 2.N a a   and the second decimal; then 
take the average of the nth g-terms of this average and 1 2.N a a  ; continue. We 
obtain the d-sequence with nth d-term, ( ) 1 20.5 n

n ka a a−
+ , which is a 

d-sequence of d*. Therefore, the g-limit of this sequence of averages is the pre-
decessor of 1 2.N a a   and we have proved that this g-limit and 1 2.N a a   are 
predecessor-successor pair, differ by d* and forms a continuum. Since the choice 
of 1 2.N a a   is arbitrary then by taking the union of these predecessor-successor 
pairs of decimals in R* (each joined by the continuum d*) for all integral parts 
N, 0,1,N =  , we establish that R* is a continuum. � 

However, the decimals form countably infinite discrete subspace of R* since 
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there is a scheme for labeling them by integers and the integers are discrete and 
countably infinite. We can imagine them as forming a right triangle with one 
edge horizontal and the vertical one extending without bounds. The integral 
parts are lined up on the vertical edge and joined together by their branching di-
gits between the hypotenuse and the horizontal that extend to d* which is adja-
cent to 0 (i.e., differs from 0 by a dark number) at the vertex of the horizontal 
edge.  

Corollary. R* is non-Archimedean but Hausdorff in both the standard and 
the g-norm and the subspace R of decimals is countably infinite, hence, discrete 
but Archimedean and Hausdorff. Clearly, R or the set of decimals is a subspace 
of the constructivist real number system R*. 

The following theorem is true in R (standard norm). Therefore, we do not 
bring in d* in the proof so that this is really a theorem about the decimals in the 
standard norm but not so in the g-norm where the decimals merge into a conti-
nuum at their tail digits and cannot be separated. 

Theorem. Every real number is isolated from the rest [20]. 
Proof. Let p ∈ R be a nonterminating decimal and {qn} a sequence of rationals 

converging to p from the left. Let dn be the distance from qn to p and take an 
open ball of radius dn/10n, with center at qn. Note that qn tends to p but distinct 
from it for any n. Take an open ball of radius dn/10n, centered at p and take the 
union of open balls, centered at qn, as n  ∞ and call it U. If r is any decimal to 
the left of p, then r is separated from p by at least d* which is isolated from the 
rest of the real numbers. The same result holds for any r distinct from and to the 
right of p. � 

Here is another surprise that contradicts a theorem in the real number system. 
Theorem. The rationals and nonterminating decimals are separated, i.e., they 

are not dense in their union (the first indication of discreteness of the decimals 
[21]). 

Proof. Let p ∈ R* be a nonterminating decimal, and let , 1, 2,nq n =   be a 
sequence of rationals towards and left of p, i.e., n > m implies qn > qm; let rn be 
the distance from qn to p and take an open ball of radius rn/10n, center at qn. 
Note that qn tends to p but distinct from it for any n. Let nU U=



, as n  ∞, 
then U is open and if q is any real number, rational or nonterminating to the left 
of p then q is separated from p by disjoint open balls, one in U, center at q and 
the other in the complement of U, center at p. Since the rationals are countable 
union of open sets U for all the rationals, the nonterminating decimal p is sepa-
rated from all the rationals.  

We use the same argument if p were rational and since the reals has countable 
basis we take qn a nonterminating decimal, for each n, at center of open ball of 
radius dn/10n. Take U to be the union of such open balls. Using the same argu-
ment, a real number in U, rational or nonterminating, is separated by disjoint 
open balls centered at p. � 

Thus, every decimal is separated from the rest of R, the terminating decimals 
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from the nonterminating decimals and from each other. Clearly, the last two 
theorems do not hold in R*. We state a theorem that is true in R*. 

Theorem. The largest and smallest elements of the open interval (0,1) are 
0.99… and d*, respectively [21]. 

Proof. Let Cn be the nth term of the g-sequence of 0.99… For each n, let In be 
open segment (segment that excludes its endpoints) of radius 10−2n centered at 
Cn. Since Cn lies in In for each n, Cn lies in (0,1) as n increases indefinitely. 
Therefore, the decimal 0.99… lies in the open interval (0,1) and never reaches 1. 
To prove that 0.99… is the largest decimal in the open interval (0,1) let x be any 
point in (0,1). Then x is less than 1. Since Cn is strictly increasing n can be cho-
sen so that x is less than Cn and this is so for all subsequent values of n. There-
fore, x is less than 0.99… and since x is any decimal in the open interval (0,1) 
then 0.99… is, indeed, the largest decimal in the interval and is itself less than 1. 

To prove that 1 − 0.99… is the smallest element of R, we note that the 
g-sequence of 1 − 0.99… is steadily decreasing. Let Kn be the nth term of its 
g-sequence. For each n, let Bn be an open interval with radius 10−2n centered at 
kn. Then Kn lies in Bn for each n and all the Bns lie in the open set in (0,1). If y is 
any point of (0,1), then y is greater than 0 and since the generating sequence 1 − 
0.99… is steadily decreasing n can be chosen large enough such that y > Kn and 
this is so for all subsequent values of n. Therefore, y > 1 − 0.99… and since the 
choice of y is arbitrary, 1 − 0.99… is the smallest number in the open interval 
(0,1) greater than 0. � 

This is not true in R* since 1 − 0.99… and 0.99… are not defined. Most text-
book in college algebra have these errors. 

Goldbach’s Conjecture. An even number greater than 2 is the sum of two 
primes. 

The original proof of this 250-year-old conjecture is in [20] but we reproduce 
it here for completeness. Like Fermat’s equation the conjecture is indeterminate 
and need not have a solution in R. It has, however, solutions in R*. 

We note first that an integer is a prime if it leaves a positive remainder when 
divided by another integer other than 1. We retain this definition of a prime in 
R* but the remainder is d* which is not a real number. 

Proof. The conjecture is not vacuous since it is true when p = q = 2. In fact, it 
is true when n < 10. Let n be an even number greater than 10. Then there is 
some prime number p greater than 3 and another number q such that p + q = n. 
If q is prime then the theorem is proved; otherwise, it must be divisible by some 
integer (0 remainder) other than 1 and q. Then we add to q the dark number 
d* > 0 and we have q + d* = q and division of q by any nonzero integer yields 
nonzero remainder d*, i.e., q is prime. �  

It follows from the proof that every element of R* greater than 3 is a prime. In 
R with all its defects, every real number is composite since if x ∈ R, x x x= , 
where x  is some decimal. In this sense R and R* are dual. For example, 

( )( )4 3 3 3= . Of, course, this is still true with the corrections except that it 
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can be approximated only when the number under the operator 4  is not a 
perfect fourth power.  

5.1. The Structure of R* 

We now have a sense of how the decimals are arranged by the lexicographic or-
dering. Below is a sequence of successor-predecessor pairs at the boundaries of a 
rational and nonterminating decimals. 

.4999100

.4998999

.4999999

.499999899

N
N
N
N









                          (38) 

The ellipses after the first and second rows are filled with d* alone. The el-
lipses between the third and fourth rows are filled with d* and nonterminating 
decimals. The largest decimal in the open interval (N.49100, N.49999899…) is 
the decimal integer N.49100… and the smallest is the nonterminating decimal 
N.49999899… Starting from the bottom going up, the decimals with integral 
part N are arranged as predecessor-successor pairs each joined by d*. Each gap 
(represented by ellipses) is filled by countably infinite adjacent predeces-
sor-successor pairs also joined by d* so that their union is a continuum. Clearly, 
R* is linearly ordered by <, the lexicographic ordering; d* joins every decimal to 
its successor and d* cannot be split from either. 

5.2. Resolution of a Paradox and Other Important Results 

Every convergent sequence has a g-subsequence defining a decimal adjacent to 
its standard limit [5]. 

If a decimal is terminating it is the standard limit itself. We express this as a 
theorem: 

Theorem. The difference between the standard limit and the g-limit is d*. 
(2) It follows from (1) that the standard limit of a sequence of terminating de-

cimals can be found by evaluating the g-limit of its g-subsequence which is ad-
jacent to it. This is an alternative way of computing the limit of ordinary se-
quence.  

(3) In [22] several counterexamples to the generalized Jourdan curve theorem 
for n-sphere are shown where a continuous curve has points in both the interior 
and exterior of the n-sphere, 2,3,n =  , without crossing the n-sphere. Our ex-
planation is: the functions cross the n-sphere at dark numbers. 

(4) Given two decimals and their g-sequences and respective nth g-terms An, 
Bn we define the nth g-distance as the g-norm n nA B−  of the difference be-
tween their nth g-terms. Their g-distance is the g-lim n nA B− , as n  ∞, which 
is adjacent to the standard norm of the difference. Advantage: the g-distance is 
the g-norm of their decimal difference; the difference between nonterminating 
decimals cannot be evaluated otherwise. Moreover, this notion of distance can 
be extended to n-space, 2,3,n >  , and the distance between two points can be 
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evaluated digit by digit in terms of their components without the need for eva-
luating roots. In fact, any computation in the g-norm yields the results directly, 
digit by digit, without the need for intermediate computation such as evaluation 
of roots in standard computation. (The decimals are “glued” together by d* to 
form the continuum R*) 

(5) We know from [1] that the celebrated Banach-Tarski paradox is vacuous, 
does not exist.  

(6) Well-ordering Theorem. Every sequence R* bounded below has a great-
est lower bound and every sequence in R* bounded above has a least upper 
bound (the bound in either case is a decimal, terminating or nonterminating). 

Proof. If the sequence has a lower bound it has standard limit S. Then S + d* = 
S is the greatest lower bound because any number to the right of S will not be a 
lower bound. The proof is similar for the least upper bound. 

The proof of this theorem in R is flawed because it uses a variant of the axiom 
of choice. It also involves vacuous concepts. 

(7) If the standard limit of a sequence of decimals exists then it is constructible 
since it is adjacent to the g-limit of some g-sequence.  

We have clearly identified the ambiguous concepts of R, defined some of them 
in R* and discarded some that cannot be fixed, e.g., the irrationals. We have also 
identified certain theorems in R that are false in R*. All theorems in real analysis 
that relies on the axiom of choice are not true, e.g. the Heine-Borel theorem and 
the existence of non-measurable set [13].  

5.3. Advantages of the G-Norm  

• Avoids indeterminate forms.  
• In computation, the g-norm yields the answer directly, digit by digit, and 

avoids intermediate computation.  
• Since the standard limit is adjacent to the g-limit of some g-sequence, eva-

luating it reduces to finding some nonterminating decimal adjacent to it. A 
decimal is approximated by the appropriate nth g-term (n-truncation).  

• Calculation of distance between two decimals with the g-norm is direct, digit 
by digit, and involves no root.  

• In computation, taking root of a prime is avoided by using n-truncation; the 
error < 10−n. 

• The g-norm is the natural norm for R*. It simplifies computation and pro-
vides the best approximation. 

• Most of all, while the standard norm brings in the nonexistent radicals the 
g-norm does not. Thus, the g-norm is the natural norm for R*. 

Every mathematical space has its natural norm that simplifies computation 
and enhances discovery. Gadgets for computation are designed based on the 
natural norm. For example, in computation the scientific calculator gives the 
result in decimal. This means that the calculator works in such a way that the di-
gits are given in the metric system (scientific notation). In other words, the cal-
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culator has the algorithm for computing the g-sequence of a decimal and, natu-
rally, the g-limit as well. This is true of the computer. The algorithm defines an 
exponential function directly and without a flaw. Extension to fractional expo-
nent is easy since the calculator approximates the g-limits of roots. 

We conclude this section with the resolution of Fermat’s last theorem. 

6. The Counterexamples to FLT 

Given the contradiction in negative statement, we use Fermat’s equation in place 
of Fermat’s last theorem; its solutions are counterexamples to FLT. We sum-
marize the properties of the digit 9. 

1) A finite string of 9 s differs from its nearest power of 10 by 1, e.g., 
10010 99 9 1− = .  
2) If N is an integer, then ( )0.99 0.99N =   and, naturally, both sides of 

this equation have the same g-sequence. Therefore, for any integer N, 
( )( ) ( )0.99 10 9.99 10

N N=  . 
3) ( ) ( )( )* * *; 0.99 10 10 , 1,2,

N N Nd d d N= + = =   
Then the exact solutions of Fermat’s equation are given by the triples 

( ) ( )( )*, , 0.99 10 , ,10T Tx y z d=  , 1,2,T =  , that clearly satisfies Fermat’s equ-
ation,  

n n nx y z+ = ,                            (39) 

for n = NT > 2. Moreover, for 1, 2,k =  , the triples (kx, ky, kz) also satisfy 
Fermat’s equation. They are the countably infinite counterexamples to FLT that 
prove the conjecture false. This is the original resolution of FLT in [18]. (One 
counterexample is, of course, sufficient to disprove the conjecture) 

7. Transcendental Functions 

Algebraic functions are defined only when their domains are terminating de-
cimals. Those that are undefined we include them under transcendental func-
tions where the argument ranges through R*. There are special functions which 
do not presently belong to the class of transcendental functions. They will be 
treated in a sequel part of under the mathematics of the grand unified theory 
[23]. 

If y = f(x) is a transcendental function we define ( ) ( )( )g-limf x f s=  as s → 
x. The limiting process is taken along a g-sequence. There are, of course, func-
tions which do not have g-sequences. They are special functions which require a 
different treatment. This will be discussed in a different paper. Consider the ex-
ponential function.  

Let 1 2.x N x x=  , then 1 2.e eN x xx =  ; if we replace x by y = f(x) then, 
( ) ( )( )g-lime e f sf x =  as s → x.                     (40) 

It follows from (2) that 

( ) ( )( )e elog log g-limf x f s= , as s → x.              (41) 

The approach to exponential and logarithmic functions base 10 is the same:  
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( ) ( )( )g-lim10 10 f sf x =  as s → x.                    (42) 

Let logf(x) be a logarithmic function base 10. Then we have this definition: 

( ) ( )( )log log g-limf x f s= , as s → x.              (43) 

Equations (2)-(5) define the exponential and logarithmic functions for the 
first time (without flaw). They are inverse functions of each other. The circular 
functions and their inverses are treated in the same way. 

Since the exponential and logarithmic functions base e are convertible to ex-
ponential and logarithmic functions base 10, we have now defined transcenden-
tal functions. 

We can approximate sums and products of these functions at a given point by 
suitable truncations. For example: 
• To compute ex at x = a, we calculate the g-limit(f(x)), as x → a; ex is approx-

imated by suitable truncation. 
• To evaluate π up to the 5th decimal digit, we use the infinite series expansion 

of π which is π = 3.14159… Then we truncate it at the 5th digit and the error 
will be less than (0.1)5. The standard decimal expansion of π is the closest 
approximation of its g-limit and differs from the g-limit by d*. Of course, the 
scientific calculator can calculate π quickly by its algorithm.  

• We illustrate the algorithm for calculating the nth root of a decimal using 
3 .  

Step 1. The largest integer n such that such that n2 < 3 is 1. Therefore, the 
integral part of 3  is 1. 

Step 2. Divide the interval [0,1] into subintervals at the following points: 0, 
0.1, 0.2, 0.3, 0.4, 0.5, 0.5, 0.6, 0.7, 0.8, 0.9, 1. The largest division point n such that 
(1.n)2 < 3 is n = 0.7. Therefore, the truncation of 3  at the first decimal digit is 
1.7. 

We continue the calculation and find that 1.7320 83 5080=  . This is ex-
actly how the scientific calculator computes nth roots. Then calculation with 
fractional exponents, terminating or nonterminating, is known. The only re-
quirements for valid approximation is: what is being approximated is known 
and the error is bounded away from 0 by d*. 

Theorem. The decimals are ordered by the lexicographic ordering in R* and 
the trichotomy axiom is true in R* and follows from the lexicographic ordering. 

Proof. The closure of R in the g-norm which is R* fills in the gaps in R with 
d* that allows the linear ordering of R* by the lexicographic ordering. � 

Theorem. Let K be an integer, M.99··· and N.99··· decimal integers. Then  
( ).99 0.99 .99K M K M K M+ = + + = +   , 

( ) ( ) ( ).99 0.99 0.99K M K M KM K KM K= + = + = +     

(since ( )0.99K K= ), 

( ).99 .99 1 .99M N M N+ = + +   .               (44) 

Theorem. In the lexicographic ordering R* consists of adjacent predeces-
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sor-successor pairs (each joined by d*); therefore, the g-closure R* of R is a con-
tinuum.  

Corollary. The average between the predecessor and its successor is the suc-
cessor. 

Corollary. R* is non-Archimedean but Hausdorff in both the standard and 
the g-norm and the subspace R of decimals is countably infinite, hence, discrete 
but Archimedean and Hausdorff. 

Theorem. R* is a continuous linear array of predecessor-successor pairs with 
d* inserted between them.  

8. The Complex Vector Plane 

The complex vector plane C* is the rectification of the complex number system 
C. It the circular functions as a subspace.  

8.1. The Element j as Operator on Plane Vectors 

The rectification of C involves the replacement of the vacuous concept i by the 
left-right plane vector operator j, rotation of the clockwise or positive rotation 
(x,0) about the origin by π/2. Then the coordinate axes are generated by applying 
j on the x-axis, i.e., j(x,0) = jy (rotation of the x-axis by π/2), applying j on the 
jy-axis, i.e., jj(y,0) = (−x,0) (rotation of the −x-axis by π/2) to obtain the negative 
x-axis, and j on the –x-axis, i.e., jjj(−x,0) = j(−y,0) (rotation of the negative 
x-axis by π/2) to obtain the −y-axis and applying j on the negative y-axis, i.e. 
jjjj(−x,0) = (x,0) (rotation of the negative y-axis by π/2) to obtain the x-axis. 
Thus, we have the cyclic values of the composites of j with itself:  

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 3 3 4, , , .= = = − = − = − = =j 1 j jj 1 j 1 j jj 1 j 1 j jj 1 j 1 1       (45) 

The complex vector plane is generated by applying j on (x,0) through θ, 0 ≤ θ 
≤ 2π. We define the operator −j as inverse operator of j, i.e., when applied on a 
vector v we rotate it clockwise by π/2 so that −j(1) = j(−1). Applying composite 
mappings on the unit vector 1 along the x-axis successively, we have the four 
cyclic images of 1 in (1) in reverse order. For n > 4, the cycle is repeated and we 
obtain jn = j(jn−1), n = 1, 2, ···, where we define j0= 1.  

8.2. Scalar and Vector Operations  

For completeness, we introduce scalar multiplication. If α is an element of R* 
(scalar), αj is a vector of modulus α along the y-axis. Note that scalar multiplica-
tion commutes with j. If β is another scalar, 

( ) ( ) ( ) ( ) ( )αβ αβ α β β α βα= = = =j j j j j ,               (46) 

which follows from j being left-right operator and the commutativity of multip-
lication in R*. From commutativity and associativity of multiplication we have, 
for α, β, γ ∈ R*, 

( ) ( ) ( )( ) ( ) ( ) ( )αβγ α βγ αβ γ βα γ γβα γβα= = = = =j j j j j j .        (47) 
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Also, from distributivity of multiplication in R* with respect to addition we 
have,  

( ) ( ) ( ) ( )α β γ αβ αγ αβ αγ+ = + = +j j j j .                (48) 

Thus, we have retrieved the basic properties of the complex plane. We call j 
the complex vector operator. Every vector in the complex vector number system 
has new real and complex components; conversely, a vector is the vector sum of 
its new real and complex components. Thus, a vector z in it has standard form,  

( ) *or , , ,α β α β α β= + = ∈z j z j R .                  (49) 

The arithmetic of the complex plane holds provided that whenever 1 appears 
as a factor we interpret it as a unitary vector operator so that 1α = α, the vector 
of modulus 1 along the x-axis. Thus, we retain in the complex vector plane and 
the vector algebra of the complex plane, the latter isomorphic to the former. All 
concepts of the complex plane except i which is replaced by j carry over to the 
complex vector plane. For example, the norm or modulus of the complex vector 
v = α + βj, denoted by |v|, is given by,  

( )1 22 2  α β= +v ,                           (50) 

the square root of the product of z and its conjugate, α− βj. The dot product of 
vectors u and v is given by  

cos if , , 0 if orθ⋅ = ≠ ≠ ⋅ = = =u v u v u 0 v 0 u v u 0 v 0 ,         (51) 

where θ ∈ R*.  
Two parallel vectors with the same norm are equivalent. Therefore, a vector 

can be translated to a standard vector with initial point at the origin.  
The vector additive and multiplicative identities are the vectors 0 and 1, re-

spectively, where the latter called the unit vector coincides with its real compo-
nent 1. The scalars are subject to the operations in R* and scalar multiplication 
on vectors which are both commutative and associative. With the complex vec-
tor arithmetic now defined we have verified that the operator j applies to any 
vector in the complex vector plane. Applying j on the vector z of (5), we have,  

( ) ( )α β β α= + = − +j z j j j ,                      (52) 

a positive rotation of vector z by π/2.  

8.3. The Operator hθ  

We introduce the more general complex left-right operator hθ on the complex 
vector plane appropriate for analytical work:  

( ) ( )e cos sina b θ
θ θ θ+ = = +jh j r r j ,                  (53) 

where a, b ∈ R*, r is the radius vector of rejθ represented by an arrow with initial 
point at the origin forming an angle φ with the x-axis and using the calculator 
algorithm for square root 2 2a b= +r  is the modulus, a decimal, terminating 
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or nonterminating; ejθ is the unit circle with center at the terminal point of r and 
forming an angle φ with the x-axis, 0 ≤ φ ≤ 2π, 0 ≤ θ ≤ 2π. Clearly, rejθ covers the 
entire complex vector plane.  

The unit circle ejθ is the well defined counterpart of eiθ. If we vary α and β 
along R* and θ in [0,2π] the terminal point of z covers the entire complex vector 
plane. Geometrically, r varies in [0,∞) and rotates around the origin from 0 to 2π 
as the unit circle with center at the terminal point of α + jβ rotates from θ = 0 to 
θ = 2π. Then a point z0 is given by  

( ) ( ) [ ]0 0 0 0 0 0 0r cos sin , 0, 2π .θ α β θ θ θ= + = + ∈z h j j             (54) 

If r0 = 1, (1) reduces to the equation of the unit circle with center at the origin. 
This operator applied on a vector along the x-axis rotates it by θ, reducing to 
operator j when θ = π/2.  

In the solution of the gravitational n-body problem [24], the operator that ge-
nerates the spiral covering of a vortex is a variant of hθ and has the form,  

( )e ta tλ η=z ,                            (55) 

where η is given by the expression,  

( ) cos e sinttλ λ λ−= +h j ,                      (56) 

depending on the specific cases and phases of the evolving boundary conditions 
of the problem; here λ is the constant of integration in the solution of the con-
straint equation of the associated optimal control formulation of this problem 
[25].  

Suppose vector z has initial and terminal points (α,jβ) and (γ,jζ), respectively. 
Then,  

( ) ( )1 2 , ,α β γ ζ= − = −z z z j j .                    (57) 

Therefore,  

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )1 2 α γβ γ ζ α γ ζ β ζ β α γ= − = + − + = − + − = − + −j z j z z j j j j j , 

(58) 

is a counterclockwise rotation of z by π/2. In general, a polygon of n edges 

1, , ne e  may be represented as the vector sum 1 n+ +e e  or its resultant r. 
Then ( ) ( )1 n+ + =j e e j r  is a counterclockwise rotation of the polygon by 
π/2.  

The operator j is an automorphism of the complex vector plane. Its additive 
inverse −j is clockwise rotation about the origin by π/2. There is, however, a new 
vector operation in the complex vector plane that may not have counterpart in 
other vector spaces: the product of two vectors. Let u = α + jβ, v = γ + jζ. Their 
product is given by  

( )( ) ( ) ( )α β γ ζ αγ βζ αζ βγ= + + = − + +uv j j j ,           (59) 

which, restricted to the complex plane, reduces to standard complex vector mul-
tiplication with j replaced by i. This is a particularity of the complex vector plane 
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not shared by other vectors spaces. Consider vectors,  

( ) ( )1 2,α β γ ζ= + = +z j z j ;                    (60) 

then,  

( ) ( ) ( ) ( )( )1 2 1 2 cos sinθ φα β γ ζ θ ϕ θ ϕ= + + = + + +z z h j h j r r j ,      (61) 

where r1, r2 are the respective moduli of the vectors of z1, z2 and θ, ϕ their argu-
ments. Note that this product of complex vectors is distinct from both the dot 
and vector products in a vector space. It is an extension of multiplication of 
complex numbers. Since the product of two complex vectors is a complex vector 
the product vector can be extended to any number of factors.  

The additive inverse of a complex vector is quite obvious. For the multiplica-
tive inverse we reduce its reciprocal to standard form. For instance, if z = α + jβ 
then its multiplicative inverse z−1 is given by  

( ) ( ) ( ) ( ) ( )( )1 2 2 11 j 1 cos sina b rα β α β θ θ− −= + = − + = = −z j h z j j     (62) 

where 1/r = mod(z−1) and θ = arg(z−1). Then division of complex vector by 
another reduces to its multiplication by the inverse of the other. In general, if 

( )1 1 cos sinr θ θ= +z j , ( )2 2 cos sinr ϕ ϕ= +z j , then  
( )( )1 2 1 2 cos sinr r θ φ= −z z . Note that the operator hθ is really equivalent to the 

old notation eiθ and the latter may be used in place of hθ when convenient.  
Again, the operator j played a crucial role in solving the gravitational n-body 

problem [26] by generating the spiral covering of the underlying vortex by the 
gravitational flux streamlines as solutions of the conjugate equations obtained by 
the integrated Pontrjagin maximum principle [24] from the optimal control 
formulation of this problem. The n bodies and their rotating trajectories were 
obtained along specific spiral streamlines by the fractal-reverse-fractal algorithm 
[25] using a body at the core of the cosmological vortex as fractal generator. El-
liptical orbit in the underlying spinning vortex is attained when the gravitational 
flux pressure balances the centrifugal force, its ellipticity being due to radial 
fluctuation of this balance by virtue of the oscillation universality principle [27], 
another expression of perfect balance being unstable which accounts for the fact 
that orbits of cosmological bodies are elliptical. 

The extension to n-space using the orthogonal unit vectors 1, , ne e  as bases 
is quite obvious. This section establishes the complex vector plane as extension 
of R*. 

9. Introduction to Discrete Calculus 

With the g-norm we set up the mechanism for discrete differentiation and inte-
gration since both involve limits. We introduce some concepts of discrete diffe-
rentiation and integration. Discrete the domain is R*.  

To find the derivative at x = s, where s is terminating decimal, we find the nth 
g-term of ∆f/∆x, as ∆x  0, where x  s, ∆x = x – s and ∆x ≠ 0. This is simply 
done by steady division to generate the g-sequence of the derivative and its 
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g-limit. Then for computation purposes we only need its truncation. We take 
values of the g-terms at successive points x0, x1, etc., and ∆0 = x0 − s, ∆x1 = x1 − s, 
etc. The g-term is either increasing or decreasing and truncated from above or 
from below accordingly. If the derivative of f(x) exists in the sense of calculus it 
also exists in discrete calculus and the differentiation rules of calculus applies. 
We have here a simpler technique for optimization. Moreover, even function 
having no derivative in calculus such as set-valued function or function having 
set-valued derivative may have an optimum. Ref. [26] discuss set-valued func-
tions and derivatives including wild oscillation of the form  
( ) ( )2sin 1 , 1,2,nf x x n= =  . When ∆x  0 in the standard norm but ∆f tends 

to a nonzero decimal then ∆f/∆x diverges. 
The extension of our computational technique to composite function of sev-

eral functions of several variables is straight forward and similar to the tech-
niques of traditional calculus. The only innovation here is the use of truncation 
for finding g-sequences. The graphs of well-behaved functions in R* × R* and R × 
R are the same since every missing element is a dark number squeezed between 
adjacent decimals which is not detectable. The functions of discrete calculus are 
defined on the decimals. They are discrete-valued. N-space is now constructed as 

1 2 , 1, 2, ,n n N∗ ∗ ∗× × × =R R R  . Incidentally the Lorentz transformation reduces 
the space of the theory of relativity to 3-space. That is why it leads to strange 
consequences. 

Consider the function y = f(x) in the interval [a,b] and subdivide [a,b] by the 
finite set of points (decimals) { }, 1, 2, ,kx k s=  , where a = x1, b = xs. We further 
subdivide the set by the finite set of points { }, 1, 2, ,mx m t=  , take 
{ } { } { }, 1, ,k m nx x x n w s t∪ = = = + , and call it { }, 1, 2, ,nx n w=  , where we 
relabel the points of the union of the two sets, preserving their lexicographic or-
dering and taking a = x1, b = xt, a refinement of both {xk} and {xm}. For a 
well-behaved function, except at points where it is undefined, there is no signifi-
cant difference for purposes of evaluating its value or limit in taking midpoints 
of the subsegments determined by each refinement of the subdivision of the in-
terval [a,b]. 

One advantage of discrete function is: we need not differentiate it to find a 
maximum or minimum; naturally, problems of optimization unsolvable in cal-
culus may be solved here. This technique applies to some functions with 
set-valued derivatives such as the schizoid or curve with cusp. It is also applica-
ble to set-valued functions. We call an ordinary function well behaved function. 
An example of a function that is not well behaved is the wild oscillation 
( ) sin 1 , 1, 2, ,nf x x n k= =  . Such function is raw material for building the ge-

neralized integral and derivative [28].  
Consider the arc of the function y = f(x) over the interval [a,b] and let the set 

of points { }, 1, 2, ,kx k s=  , subdivide the interval [a,b] suitably so that each 
local maximum or minimum is isolated in some interval. This is possible since 
the values of f(x) over the decimals are countably infinite and discrete. Unless 
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the maximum or minimum lies at an end point, its neighborhood will contain 
interval on which f(x) is increasing on one side and decreasing on the other. At 
the same time, the end point of a function in an interval is either minimum or 
maximum. In fact, every closed interval in the range of a function contains its 
maximum or minimum. Without loss of generality, consider interval [c,d] con-
taining a maximum. Subdivide the interval [c,d] and take successive refinements 
{xm} of {xk} ({xm} relabeled suitably) until the values of f(xm), tapers to a constant 
α along { }, 1, 2, ,mx m w=  . In this new setting the values of a function, being 
discrete, is no different from a sequence of numbers. As the values become close 
to each other they contain a d-sequence with a set of digits in its terms receding 
to the right and forming a d-sequence of d* and another set of values that re-
main fixed. The latter defines a decimal, a local maximum in this interval. By 
suitable translation of the function the minimum can be similarly obtained (the 
end point is either a maximum or minimum). Then the absolute maximum of 
f(x) is the maximum of , 1, 2, ,kM k m=  . In this algorithm for finding the 
g-limit of a function there will be, in general, several inequivalent g-sequences 
each a g-sequence of a local maximum. A single g-sequence may split into dis-
tinct g-sequences in further computation of the nth g-terms when their limits 
are close to each other. Some functions have countably infinite maxima, e.g., in-
finitesimal zigzag and wild oscillation [24] [27].  

By suitable linear transformation the minimum can be found in a similar way. 
This approach is both intuitive and computational. A more sophisticated version 
of it for discrete function is approximation of continuous function by a polygon-
al line developed in [29] [30]. 

We extend our method to the calculation of the length of an arc of a curve. 
Consider the function y = f(x) over the interval [a,b]. Let the set of points 
{ }, 1, 2, ,kx k s=  , subdivide the interval [a,b] and form the sum, 

( ) ( )( )1 22 2
1 1 ,  1, 2, ,k k k k kL x x f x x k s+ += ∑ − + − =             (63) 

where a = x1, b = xs. Take refinements of {xm} of {xk} ({xm} relabeled suitably) un-
til the values of Lm tapers to a constant Γ; we call Γ the length of the curve of y = 
f(x) over [a,b]. 

In calculus the right derivative of a curve at point P is obtained by drawing a 
line from P to a point Q nearby and moving Q towards P from the right along 
the curve, the derivative being the limit of the slope of the line PQ as Q moves 
towards P (actually, Q moves along discrete points, i.e., approximation of “con-
tinuous” curve by polygonal line). We find the right discrete derivative similarly 
by taking Q to move along discrete set of points, the advantage being that this is 
discrete computation. The right discrete derivative is found in the same manner 
by taking the limit of the quotient Δf(x)/Δx, as Δx  0+, along suitable refine-
ment. When the right and left derivatives at a point are equal then we say that 
the curve is discretely regular there. To find the left discrete derivative of the 
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function y = f(x) at the point P(b,f(b)] on the interval [a,b], we assume f(x) > 0 
and increasing. Subdivide the interval [a,b] by the set of points 
{ }, 1, 2, ,kx k s=  , where a = x1, b = xs, and form the quotient, 

( )( ) ( )( ) ( )1 1L k k k kD f b f x x x x+ += − − .                 (64) 

We take successive refinements of {xk} to obtain the g-sequence of a decimal. 
Then DL is either terminating, nonterminating or zero taking approximation in 
each case. The right derivative DR can be computed similarly. When the function 
is discretely regular at x we denote its discrete derivative at x by Dx. Here we can 
find the left minimum and right minimum which need not be equal. The same is 
true of the left maximum and right maximum, left minimum and right maxi-
mum and left maximum, right minimum. Thus, the optimization applies to 
functions that have no optimum in the traditional sense including non-smooth 
functions.  

 We introduce the notion of locally approximating the shape of a monotone 
increasing function on [a,b] at a point by its derivative at P, as P traces the arc 
over [a,b] obtained by finding the limit of the minimum of the maximum hori-
zontal distance between the derivative function and the function itself as P traces 
the arc [27]. Computation is straight forward for well-behaved functions. The 
limit gives the shape of the curve in a small neighborhood of P expressed by the 
following theorem for smooth curves that applies as well to discrete curves since 
the gaps are dark. 

The Minimax Principle. When the minimum of the maximum horizontal 
distance between two simple smooth arcs with no inflection point can be made 
arbitrarily small then an element of arc and variation of derivative at a point on 
one approximates the other [27]. 

We define the integral of f(x) over the interval [a,b] as the limit of the sums of 
the areas of the trapezoidal areas under the curve through successive refinements 
determined by the midpoints of the subsegments at each refinement as we do in 
calculus except that it is simpler here since the upper and lower sums coincide. 
This is another advantage with discrete function. The indefinite integral of f(x) is 
simply the area under f(x) over the interval [a,x]. Note that the integral of f(x) is 
independent of the derivative. To evaluate it we divide the interval [a,b] into 
subintervals by the points { }, 1, 2, ,kx k s=  , a = x1, b = xs, form the sum, 

[ ] ( ) ( ) ( ) ( )( )1 1,  2k k k ka b f x x x f x f x+ +∑ = ∑ − + ,             (65) 

from k = 1 to k = s, and find its limit through successive refinements of {xm}, as 
m  ∞. 

From these examples, we find that computation in the standard norm reduces 
to finding the nonterminating decimal adjacent to the result and, therefore, ap-
proximable to any desired margin of error. 

This is just a framework for building discrete calculus appropriate for compu-
ting and simulation. Simulation is important for finding ballpark estimate of 

https://doi.org/10.4236/apm.2018.88044


E. E. Escultura 
 

 

DOI: 10.4236/apm.2018.88044 749 Advances in Pure Mathematics 

 

hidden forces (attractive or repulsive). For example, distortion of the orbit of a 
planet reveals the presence of some cosmological body whose gravity impinges 
on the planetary orbit. 

10. Conclusions 

It would appear that the rectification of R only offered mathematical peace of 
mind. There is a universe of difference between R and R*. For example, the 
360-year-old Fermat’s last theorem [18] has no solution in R since R is inconsis-
tent. However, R* has countably infinite counterexamples to it proving that FLT 
is false [18]. We list some of the major achievements.  
• The 250-year-old Goldbach’s conjecture [31] has no proof in R for the same 

reason but it has a proof in R*.  
• Many fields of traditional mathematics, aside from R, e.g., number theory, set 

theory and symbolic logic, are dead or almost dead because there is practi-
cally no research going on and, naturally, there is paucity of publications in 
those fields. They share most of the defects of R and its foundations and the 
fields of their applications application inherit their defects. For example, 
since mathematics is the language of science, traditional physics, especially, 
quantum physics, is near the point of stagnation according to Lee Smolin 
[32]. This is due to the fact that most of modern physics, particularly, quan-
tum physics, is still framed by Einstein’s theory of relativity.  

• The theory is at the point of extinction. In fact, it is difficult to find a paper 
on relativity during the last 100 years beyond the early work of Einstein and 
Hawking.  

• Consequently, physicists are still looking for the fundamental building block 
of matter at CERN [33] unaware of the fact that it was discovered in 1997 and 
was the key to the solution of the gravitational n-body problem.  

• It was the discovery of the superstring that launched the development of the 
grand unified theory (GUT) which was completed in 2008 [23].  

• Discovery of an error and its rectification becomes a milestone in the devel-
opment of a field. We have seen this in mathematics. In physics, the weak-
ness of Einstein’s special and general theory of relativity, particularly, the lack 
of adequate method and, in general relativity, ambiguity of physical concepts 
such as black hole and curvature of space pushed them towards extinction.  

• The introduction of qualitative mathematics and modelling [34] led to the 
development of GUT. Its development was proposed by Einstein to unify 
gravity with the weak and strong forces of quantum physics through GUT 
but it fell through because the theory is anchored on the wrong premise that 
there was no absolute frame of reference for our universe. There is—dark 
matter. 

• The discovery of the stable and indestructible dark matter debunks Relativi-
ty’s premise of absence of matter in space and returns the ether, which was 
vanished by Einstein’s theory of relativity, with a new name—the super-
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string— fundamental building block of matter [23].  
• The theoretical and practical applications of GUT range through computer 

science [2] [3] [4], physics [16] [23] [35]-[41], astrophysics [23] [25] [26] 
[28] [36] [40] [42] [43] [44] [45], cosmology [45] [46], neuroscience [15] [47] 
[48], genetics [49] [50], biology [51] [52], global geology and oceanography 
[53] [54] [55], atmospheric and climatic sciences [53] [54] [56], engineering 
[57], development sciences [57] [58] and medicine [49] [50] [59] [60]. All 
told over 70 papers and books have been published in these fields by the au-
thor since the application of qualitative mathematics and modeling to sole 
the gravitational n-body problem n 1997.   

• The most significant achievement of qualitative mathematics is the resolution 
of Hilbert’s 23 problems in mathematics [61]. The solution of Problem 6 is 
GUT [23].  

• L C. Young did not simply extend the methods of the calculus of variations 
required by Problem 23, he introduced the generalized curves and surfaces 
and a new norm now called the Young Measure [24] [62] [63] that he applied 
to functional analysis and optimal control theory in Rn, n ≥ 3, and solved the 
calculus of variations problem using constructivist method. 

The good news here is that every new field that opens up in the rectification 
yields a robust and fertile field for research. Analysis alone has hundreds of ac-
tive fields. R* and the complex vector field are only an introduction to real and 
complex analysis. Complex analysis is an endangered species but turning it into 
a constructivist mathematical space, rewriting the correctportion, discovering 
new theorems and sorting and discarding erroneous ones would require gradu-
ate students in the tens of thousands. 

Finally, one might ask: With all those defects, how come we have built such 
giant and indispensable discipline as mathematics? The reason: mathematicians 
are smart enough to induce its offspring—approximation, perturbation and op-
timization to remedy or contain its defects so that they do not restrain the de-
velopment of mathematics and science. 

Note. What used to be called dynamic modeling in the references is now qua-
litative modeling. 
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