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Abstract 
This article addresses total fish Hg concentrations (THg) by variations in lake 
Sediment THg, atmospheric Hg deposition (atmHgdep), and climate, i.e., 
mean annual precipitation (ppt) and air temperature. The Fish THg data were 
taken from the 1967-to-2010 Fish Mercury Datalayer (FIMDAC). This 
compilation was standardized for 12-cm long Yellow Perch in accordance 
with the USGS National Descriptive Model for Mercury in Fish (NDMMF 
[1]), and documents Fish THg across 1936 non-contaminated lakes in 
Canada. About 40% of the standardized Fish THg variations related 
positively to increasing ppt and Sediment THg, but negatively to 
increasing mean annual July temperature (TJuly). Only 20% of the Fish THg 
variations related positively to atmHgdep alone. Increasing TJuly likely 
influences Fish Hg through increased lake and upslope Hg volatilization, 
in-fish growth dilution, and temperature-induced demethylization. FIMDAC 
Fish THg effectively did not change over time while atmHgdep decreased. 
Similarly, the above Fish Hg trends would likely not change much based on 
projecting the above observations into the future using current 2070 
climate-change projections across Canada and the continental US. Regionally, 
the projected changes in Fish Hg would mostly increase with increasing ppt. 
Additional not-yet mapped increases are expected to occur in subarctic 
regions subject to increasing permafrost decline. Locally, Fish THg would 
continue to be affected by upwind and upslope pollution sources, and by 
lake-by-lake changes in water aeration and rates of lake-water inversions. 
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1. Introduction 

There is much uncertainty about how climate and atmospheric Hg deposition 
affect Fish THg [2] [3] [4] [5]. In part, this uncertainty is due to large and yet to 
be quantified land-to-lake and in-lake variations by which Hg uptake by fish in-
creases or decreases. The primary concern is that the bioaccumulation of toxic 
methyl Hg (MeHg) in fish and other aquatic organisms may increase with in-
creasing atmospheric Hg deposition and climate warming. In principle, the 
presence and accumulation of Hg and MeHg in fish and sediments starts with 
the sequestration of atmospheric Hg deposition on land and water, and with the 
release of surface-exposed geogenic Hg minerals. A part of land-retained Hg is 
gradually released into streams and lakes through 1) direct Hg-containing litter 
inputs (detritus), 2) upslope soil and stream bank erosion, and 3) transfer of Hg 
bound by water-carried particulate and dissolved Hg-containing matter [6] [7] [8] 
[9]. With regard to detrital Hg inputs, tree foliage, twigs, branches, bark, and 
wood generally have lower Hg concentrations than mosses, fungi, and lichens 
[10] [11]. In soils, THg decreases from the organic litter layers on the surface to 
the subsoil layers below [10]. In downstream, the total amount of Hg generally 
increases with increasing organic matter transfer [12], which in turn leads to in-
creasing Hg accumulations in stream and lake sediments [13] [14] [15] [16]. Due 
to particulate Hg retention in wet areas and wetlands, first-order stream and lake 
sediments downslope from forested and wetland dominated watersheds have 
higher THg and organic matter contents than elsewhere [17]-[22]. 

Within lakes, Hg accumulation in sediments and trophic Hg bioaccumulation 
depend on many physical and chemical conditions and their combined effects 
on biological processes [17] [23] [24] [25] [26] [27]. For example, physical and 
chemical properties of water (e.g., temperature, aeration, pH, color, organic 
matter, and suspended mineralcontent) all influence the fate of Hg with regard 
to biological uptake, re-precipitation and settling, methylation, demethylation, 
and volatilization [28] [29] [30]. From a simplifying perspective, total Hg con-
centrations in water, sediments andaquatic organism are co-variants [13] [22] 
[31] [32] [33]. 

This article focuses on analyzing the extent to which standardized data for to-
tal Hg concentrations (THg) in fish—as compiled within the Fish Mercury Da-
talayer (FIMDAC [1])—co-vary with lake Sediment THg, atmospheric Hg depo-
sition (atmHgdep), mean annual precipitation (ppt), and mean annual air tem-
peratures for January (winter, TJan) and July (summer, TJuly). This analysis was 
enabled by cross-referencing the Fish THg data to the modelled and mapped Se-
diment THg, atmHgdep, ppt, TJan and TJuly variations across Canada, with special 
reference to potential climate-induced changes up to 2070. The hypothesis is 
that at least some of the Fish THg variations can be quantified in this way for 
tentative trend mapping across Canada, the continental USA, and over time. 
Data pertaining to lakes downwind and downslope from major anthropogenic 
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Hg release locations (e.g. [34]) are not part of this analysis. 

2. Methods 

The 1967 to 2010 FIMDAC Fish THg data (reported in ng∙g−1, wet-weight) were 
compiled for 1936 pristine lakes across Canada from 1967 to 2010. These data 
were standardized for one fish species (Yellow Perch) and one fork length (12 cm), 
done in accordance with USGS National Descriptive Model for Mercury in Fish 
(NDMMF [1] [35] [36] [37]). Fish sampling per lake varied from one time to 
multiple times. Total sample size used for the analysis below was n = 3179. Fish 
THg data from water bodies other than lakes were not included; also excluded: 
Fish THg ≤ 1 ug/g. 

The data for lake Sediment THg (in ng∙g−1) were obtained from the open geo-
chemical survey files of the Geological Survey of Canada [38] [39], and were 
compiled for the provinces of Quebec and Nova Scotia as well [40]. This compi-
lation produced 147,910 THg one-time sampling points per lake, all based on 
30-cm deep sediment cores collected, dried, sieved, and analyzed from 1960 to 
2008. The resulting Sediment THg data were averaged per National Topographic 
System (NTS) tile (1:50,000 scale [41]). 

The data layers for atmHgdep, ppt, TJan and TJuly (shown and contoured in Fig-
ure 1) were obtained as follows: 

1) total net wet and dry atmHgdep, in µg∙m−2∙a−1, from the Global/Regional 
Atmospheric Heavy Metals Model (GRAHM), at 25 × 25 km2 grid resolution, 
Canada only [42]. 

2) ppt (in m), and TJuly and TJan (in ˚C) for Canada and the USA, from the 
Coupled Model Intercomparison Project (CMIP5 [43]), Scenario rcp8.5, down-
loaded for 2011 and 2070  
(http://climate-scenarios.canada.ca/?page=download-intro). 

With ArcMap, cross-referencing was done by data-layer extracting the lake 
Sediment THg, atmHgdep, ppt, TJan and TJuly values for each FIMDAC Fish THg 
location, row-by-row. This was followed by multivariate regression and factor 
analysis, with Fish THg, Sediment THg, atmHgdep, ppt, TJuly and TJan as variables. 

3. Results 

Table 1 provides a basic statistical summary of the variables used in this ar-
ticle. Most notably, these variables differ across Canada in range, such that the 
lake-by-lake entries for Fish THg have a wider maximum to minimum ratio 
(i.e. 38) than the corresponding model-derived entries for Sediment THg (i.e. 
15) and for atmHgdep (i.e. 12) For mean annual precipitation, the maxi-
mum/minimum ratio is 20. Mean annual TJan is about three times more variable 
than mean annual TJuly. The longitudinal range is 4 times larger than the latitu-
dinal range. 

Using Sediment THg as dependent variable, and atmHgdep, ppt, TJan and TJuly 
as independent variables produced: 
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Figure 1. Mean annual January and July air temperature (TJan, TJuly) and mean annual precipitation (ppt) according to the Coupled 
Model Intercomparison Project (CMIP5-rcp8.5) at http://climate-scenarios.canada.ca/?page=download-intro with contours. Also 
shown: mean annual net atmospheric Hg deposition (atmHgdep), based on the Global/Regional Atmospheric Heavy Metals Model 
(GRAHM2005). Extent: across Canada (provinces and northern territories outlined except most northern parts) and the conti-
nental USA. 

 
Table 1. Basic statistics concerning the variables in Equations (1) to (8); Fish THg > 10 ppb; n = 3179. 

Variable Units Mean Std. Dev. Minimum Maximum 

Fish log10THg log10 (ng∙g−1), wet weight 1.81 0.30 1.30 2.88 

Lake log10THg (modelled) log10 (ng∙g−1), dry weight 1.76 0.15 1.54 2.72 

Precipitation m∙a−1 0.65 0.30 0.14 2.81 

atmHgdep μg∙m−2∙a−1 11.3 4.5 2.5 31.1 

TJuly ˚C 16.6 1.8 6.2 20.9 

TJan ˚C −19.6 5.8 −33.0 4.6 

Latitude Degrees 53.4 4.6 43.9 69.4 

Longitude Degrees −93.9 17.0 −138.7 −53.8 
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with ppt and atmTHgdep as significant predictor variables. 
Regressing Fish log10THg versus Sediment THg, atmHgdep, ppt, TJuly, and TJan 

per lakegenerated the following regression equation: 

( ) ( )
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     (2) 

By climate variables alone, the following was obtained: 
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1.54 0.07 0.77 0.02 ppt 0.022 0.003 T

– 0.007 0.001 , 0.38T 5R
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±

                (3) 

Using atmHgdep as only predictor accounted for only one-half of the Equation 
(2) and (3) captured fish log10THg variations: 

( ) ( )10 d
2

epFish log THg 1.47 0.01 0.030 0.001 atmHg , 0.206R= ± + =±      (4) 

Using Sediment THg and ppt each as only fish log10THg predictors yielded: 

( ) 2
10 10Fish log THg 1.02 0.03 Sediment log THg, 0.342R= ± =           (5) 

and 

( ) ( ) 2
10Fish log THg 1.42 0.01 0.60 0.01 ppt, 0.354R= ± + ± =            (6) 

thereby accounting for about 90% of the variations captured by Equations (2) 
and (3). Using atmHgdep, TJuly and TJan as predictor variables produced 

( ) ( )
( ) ( )

10

dep

2
July Jan

Fish log THg
2.67 0.06 0.025 0.001 atmHg

0.050 0.003 T 0.016 0.01 T 0, .303R

= ± + ±

− ± + ± =

              (7) 

Hence, using atmHgdep together with TJuly and TJan improved the results, but 
using Sediment log10THg or ppt with and without TJuly as additional predictor 
variables was more effective in capturing more of the Fish log10THg variations 
(Equations (2), (3), and (6), (7)). In noting that 80% of the GRAHM2005-modelled 
atmHgdep variations can also be attributed to climatic and geographic variations 
via Equation (8), i.e., 

( ) ( )
( ) ( ) ( )
( )

0.5
dep

July Jan

2

atmHg 24.7 0.8 26.8 1.0 ppt

0.80 0.06 T 0.25 0.03 T 7.7 0.7 Pacific Rim

7.5 1.0 High Arctic Coastal Areas, 0.803R

= − ± + ±

+ ± ± − ±

+ ± =

  (8) 

it follows that climate and geography affect Fish THg, Sediment THg and at-
mospheric Hg in quantitatively and quantitatively different ways. For example, 
the positive effect of increasing ppt on atmHgdep levels off with increasing ppt. 
The TJuly effect on atmHgdep is most likely a surrogate for the geographic Hg 
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emission and subsequent Hg deposition pattern, which is highest along the sou-
theastern USA-Canada border, and least for the snow- and ice-covered alpine 
and arctic areas. TJan likely accounts for increased Hg volatilities from snow-and 
ice-covered surfaces. 

The location-specific adjustments for the Pacific Rim and High-Arctic coastal 
areas in Equation (8) can be used to compensate 1) for the ppt-induced atmHgdep 
dilution, and 2) for the TJan-induced underestimation for atmHgdep along the arc-
tic coastlines, where oceanic Hg upwelling contributes to land-based and aquatic 
Hg sequestration and bioaccumulation [44] [45]. With respect to Fish THg, in-
creases in ppt and Sediment THg affect Fish log10THg in direct proportions. 
Checking the correlations among the Equation (1) to (8) variables reveals that 
TJuly only has a weak direct effect on Fish log10THg (Table 2). Nevertheless, fac-
tor analyzing this matrix revealed that TJuly is an important negative co-variant of 
Fish log10THg as per factor 2 in Table 3. 

Projecting the Equation (2) results across Canada and overlaying the Fish 
THg data produced the map in Figure 2 and the corresponding map-to-data re-
sidual conformance plot in Figure 3. According to Figure 3, about 80% of the 
standardized Fish THg variations conform to the Equation (2) projections with-
in a factor of two, 8 times out of 10. In comparison, about 90% of the recorded 
lake Sediment THg variations conform to the Equation (1) projections within a 
factor of two, 8 times out of 10. This indicates that Fish THg is somewhat less 
predictable than Sediment THg, likely due to lake-specific factors that affect Fish 
Hg uptake and retention, such as, e.g., lake-to-lake variations in biogeochemical 
composition and trophic Hg uptake dynamics [46] [47]. 

 
Table 2. Correlation coefficients for the variables in Equations (1) to (6). 

Dependent variable 
Independent 

variable 
Correlation 
coefficient 

95% Lower 95% Upper P-Value 

Fish log10THg 

Lake log10THg 0.588 0.565 0.611 <0.0001 

TJuly −0.035 −0.070 0.000 0.049 

TJanuary 0.382 0.352 0.412 <0.0001 

atmHgdep 0.454 0.426 0.481 <0.0001 

Precipitation 0.595 0.572 0.617 <0.0001 

Lake log10THg 

TJuly 0.251 0.218 0.283 <0.0001 

TJanuary 0.764 0.750 0.779 <0.0001 

atmHgdep 0.847 0.837 0.857 <.0001 

Precipitation 0.984 0.983 0.985 <0.0001 

TJuly 

TJanuary 0.462 0.434 0.489 <0.0001 

atmHgdep 0.318 0.287 0.349 <0.0001 

Precipitation 0.211 0.178 0.244 <0.0001 

Tjan 
atmHgdep 0.545 0.521 0.569 <0.0001 

Precipitation 0.788 0.775 0.801 <0.0001 

atmHgdep Precipitation 0.744 0.728 0.759 <0.0001 
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Table 3. Factor analysis of the correlations among the Equations (1) to (6) variables, with 
additional reference to latitude and longitude. 

Variable Factor 1 Factor 2 Communality 

Fish log10THg 0.64 0.47 0.63 

Lake log10THg 0.97 0.09 0.95 

Precipitation 0.95 0.11 0.92 

atmHgdep 0.84 0.00 0.70 

Tjan 0.81 −0.32 0.76 

TJuly 0.38 −0.86 0.88 

Latitude −0.92 0.25 0.91 

Longitude 0.80 0.40 0.80 

 

 
Figure 2. Overlaying FIMDAC locations and standardized Fish THg concentrations 
(Yellow Perch, wet weight basis, 12-cm long) on the corresponding Equation (2) gener-
ated map, using map-projected lake Sediment THg (ng∙g−1) and mean annual July tem-
perature (˚C) as only projection variables. Also shown: NTS tile grid. 

 

 
Figure 3. Standardized fish and lake sediment log10THg map-to-data con-
formance plot based on Equations (1) and (2); x-axis: best-fitted absolute 
residuals for fish and lake sediment log10THg (ng∙g−1); y-axis: cumulative 
frequency of the log10THg residuals. 
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Using Equations (1), (2) and (8) produced the Sediment THg, Fish THg, and 
atmHgdep projections in Figure 4 across all of Canada and the continental USA 
for current conditions. To what extent these projections require further data ca-
librations needs to be determined. This includes analyzing forthcoming total dry 
atmospheric Hg deposition and Hg in forest litter data and maps from the Mer-
cury Deposition Network (MDN; http://nadp.sws.uiuc.edu/mdn/). At this stage, 
the Equations (8)—projected pattern in Figure 4 resembles USA maps for wet 
Hg deposition in general, with highest Hg deposition occurring along the 
south-eastern States, low deposition rates for the mid-eastern States, and in-
creased deposition along the southern Pacific coast of Alaska. Currently availa-
ble data on dry deposition [48] [49] increase the wet deposition pattern by a 
factor of 2, as is the case for the GRAHM-based net atmTHdep projections via 
Equations (8). This was also the case for the earlier North American Hg deposi-
tion study by [50] and [51]. 

4. Discussion 

The above results account for about 40% of the standardized Hg concentrations 
in fish, with Sediment THg, atmTHgdep, ppt, TJuly, and TJan as significant 
co-variants in varying combinations. The co-varying influences on Fish THg are 
particularly strong for Sediment THg and ppt, likely due to direct and indirect 
precipitation-induced Hg inputs into lake water from the atmosphere and sur-
rounding land. While these inputs would have the most direct and causative 

 

 
Figure 4. Projected 2011 to 2070 changes in mean annual January and July temperature (ΔTJan, ΔTJuly), mean annual precipitation 
(Δppt), net atmospheric Hg deposition (ΔatmHgdep), Sediment THg (Δlog10Hg) and Fish THg (Δlog10Hg) including contoursas 
outlined across the Canada (except most northern parts) and the continental USA. 
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influence on Hg methylization and fish uptake in the water column, trophic Hg 
uptake may also occur along biologically active and generally muddy top por-
tions of lake sediments. However, the solid 30-cm deep cores of the GSC sedi-
ment survey represent about 100 years to sediment accumulation in northern 
lakes [52]. Hence, Sediment THg concentrations—as determined from the dried 
and ground-up sediment cores—would influence Fish Hg uptake only indirectly 
as a co-variate, with both Sediment THg and Fish THg influenced by external 
Hg lake inputs. In addition, while Equations (2) and (5) imply that Fish THg to 
Sediment THg co-vary to some extent across Canada, this is not necessarily the 
case within region-specific studies with limited range in climatic variations as 
noted for northern Ontario [53] and for the Great lakes region [54]. 

While atmospheric Hg emission and deposition rates have decreased over the 
last 25 years or so [55] [56], this is not reflected by the 1967-to-2010 FIMDAC 
data for which  

( ) ( )
10

2

Fish log THg

1.78 0.01 0.0020 0.0005 Sampling year since 1970, 0.0047R= ± + ± =
 (9) 

In part, this is due to increasing and decreasing trends by regions and lakes. In 
some areas, gradual declines in Fish THg have occurred [46]. Increases in Sedi-
ment THg with increasing atmTHgdep—as implied by Equations (4) and (5)—have 
been reported for the upper layer of non-bulked mid- to high-latitude lake sedi-
ments by [52] and [57]. Fish THg followed a straight-line downward pattern for 
Lake Ontario from 1998 to 2009. For Lake Superior and Erie, 1998-to-2009 Fish 
THg decreased and then increased again. For Lake Huron and Michigan, the 
opposite occurred [58]. 

Using Equations (1), (2), and (8) to estimate changes in atmHgdep, Sediment 
THg and Fish THg into the future based on current 2011-2070 TJan, TJuly and 
mean annual precipitation projections produced the changes mapped in Figure 
4 across Canada (except the northern most islands) and the continental USA. 
These maps suggest that—without further changes in anthropogenic Hg emis-
sion rates—Sediment THg and Fish THg would change up and down by at most 
a factor of 3 or 5, respectively. At the same time, atmHgdep would change region-
ally from 4 to 6 µg∙m−2∙a−1, which corresponds to about 10% to 15% of the cur-
rent total Hg deposition range across Canada and the USA. For the most part, 
the projected atmHgdep, Sediment THg and Fish THg changes follow the pro-
jected precipitation pattern, being generally positive along the northern Pacific 
and mid-latitude Atlantic regions. Decreasing precipitation would lower 
atmHgdep, Sediment THg and Fish THg along, e.g., the Bay of Mexico, the Prairie 
provinces of Canada (Alberta, Saskatchewan, Manitoba), and the States along 
the Bay of Mexico and along the Great Lakes. 

Together, the Equation (2) projected changes for Fish THg in Figure 4 are 
relatively small except where precipitation levels would increase by 200 mm or 
more. The corresponding lack of major Fish THg changes—as represented by 
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Equation (9) and in Figure 4—is likely due to a cancelling of positive and nega-
tive lake-by-lake trends. For example, [59] and [46] reported declining to 
non-declining levels of Fish Hg with respect to climate warming. In contrast, 
[60] 1) reported increasing Fish THg levels for Ontario, varying over the last 15 
years from 0.01 to 0.16 µg∙g−1 per decade by fish species (4321 screened data), 
and 2) extrapolated these into the future, up to 2050. 

Changing to non-changing levels in Fish THg are likely due to complex inter-
actions involving changes in trophic Hg transferences, fish predation, lake-water 
conditions (temperature, aeration, chemical composition) and reductions in at-
mospheric and terrestrial Hg inputs into lakes. The latter, as implied by Equa-
tions (3) and (4), would especially be the case in areas subject to drought (i.e., 
low ppt, high rates of Hg volatilization, low rates of Hg immobilization). On 
land, Hg retention and land-to-lake transfers are affected by upslope land use, 
extent and type of vegetation type including wetland coverage, and Hg-containing 
mineral exposures [22] [61]. Increased surface temperatures on land stimulate 1) 
Hg re-volatilization from open areas [62], 2) Hg losses due to forest fires [63], 
and 3) Hg immobilization in vegetation biomass and in soil organic matter due 
to increased warmer and longer summer growth, especially where soils remain 
moist to wet [8] [64]. 

Increasing upstream lake-to-lake wetland coverage tends to increase THg in 
water and fish through brown-water transfer of organically complexed Hg [7] 
[65] [66]. In lakes, fish uptake of Hg varies by, e.g., extent and type of lake in-
put from land and atmospheric sources, and by lake size and morphology. 
Daily, seasonal and annual water-intake and related aeration and de-aeration 
dynamics affect in-lake trophic bioaccumulation of methyl Hg directly [67]. 
For example, increased Hg uptake by fish would occur through increased net Hg 
methylization as hypolimnetic water temperatures and biological oxygen de-
mands rise from cool to warm [68]. In this regard, brown-water discharge ren-
ders small lakes warmer than clear-water lakes, thereby reduxing epi- and 
hypolimnetic aeration which would stimulate Hg methylization. Hence, Fish 
THg (small brown-water lakes) > Fish THg (clear-water lakes). In addition, Fish 
Hg increases with decreasing lake-water pH, likely due to higher levels of Hg 
solubility and increased Hg methylization rates at lower pH [68] [69]. However, 
Fish THg can also increase with increasing pH, particular where in-lake 
de-aeration trumps the pH effect on Hg methylization [70] [71]. 

Detailed studies have shown that, while increasing water temperatures in-
crease the production and uptake of methyl Hg from sediments and epilimnetic 
and anoxic hypolimnetic waters [72], there is also a concurrent temperature in-
crease in Hg demethylation [53] [73]. [71] reported that deepening the thermo-
cline and oxycline of one lake relative to a reference lake (done by way of pumping 
at about 15,000 m3∙day−1) increased epilimnetic temperature and oxygen saturation 
leading to continuing reductions in epilimnetic MeHg and Fish THg, with 
post-experiment effects lasting for at least one year. Hence, future changes in Fish 
Hg are also related to climate-induced thermocline inversions, lake-by-lake. 
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Across northern Canada, the influx of Hg and MeHg into lakes and rivers peaks 
during the snowmelt season, and is lowest during the winter season [74].  

Post-2000 Sediment THg fluxes decreased towards northern latitudes after 
showing a steady increase since about 1900. This was likely in response to the 
steadily falling of net atmospheric Hg deposition rates over the last 25 years [75] 
[76] [77]. Mercury levels in fish, birds, and mammals, however, varied, with in-
ter-annual trends remaining uncertain across arctic inland and marine waters 
[5] [67] [78] [79]. In contrast, the subarctic region is currently subject to in-
creasing permafrost decline. This decline produces water-filled collapse scars 
across peat plateaus [80], with each scar supporting algal growth, which in turn 
leads to peat-and mineral-released Hg accumulations in lakes and sediments 
[81] [82] [83]. 

Given that total Hg concentrations in retail fish should not exceed 500 ng∙g−1 
[84] (which corresponds to log10THg = 2.70), most of the standardized Fish THg 
values fell below this limit. The percentage extent to this value to be exceeded in 
2070 would mainly be limited to southern Quebec where the maximum pro-
jected change in log10THg is ≈0.1, and more strongly so along the Pacific coast, 
where the maximum projected change in log10THg is ≈0.4. 

Altogether, 60% of the Fish THg variations remain unexplained by way of the 
above trend analysis. This situation may improve by adding lake-by-lake vari-
ables such as lake size, morphology, upland watershed, topography and upslope 
wetland coverage to the analysis. 

5. Concluding Remarks 
As shown, climate affects in-lake Hg accumulations due to variations in weather, 
season, atmospheric Hg deposition, surrounding vegetation, and geological Hg 
exposure patterns. This would also include lake-by-lake variations in thermo-
cline inversion and related recovery times. As quantified above, cross-regional 
changes among the co-varying patterns of atmospheric Hg deposition, Sediment 
THg and Fish THg will likely remain small, with potential changes more likely 
related to changes in precipitation amounts, frequencies and intensities than to 
co-varying changes in atmospheric Hg deposition and temperature. A major ex-
ception to this would be occurring across the subarctic, where sustained perma-
frost losses lead to a widening incidence of peat-plateau scars followed by min-
eral- and peat-accumulated Hg release into lakes and rivers. In total, lake-by-lake 
variations in Fish THg will remain large as documented, and will require con-
tinued monitoring due to changing Hg inputs and changing in-lake dynamics. 

Whether or not future levels in sediment and Fish THg will trend as projected 
in Figure 4 remains unknown. The assumption made is that the co-dependencies 
of the variables in Table 1 are functionally linked to changing climate variations 
not only across space, but also across time, in the same way. 
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