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Abstract

In this paper, the authors establish the L”-mapping properties of a class of singular integral operators along
surfaces of revolution with rough kernels. The size condition on the kernels is optimal and much weaker than
that for the classical Calderon-Zygmund singular integral operators.
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1. Introduction and Main Results

Let R", n>2, be the n-dimensional Euclidean space
and S""' be the unit sphere in R" equipped with the
normalized Lebesgue measure do =do(e). Let

r, :{y,¢(|y|); y eR"} be the surface of revolution
generated by a suitable function ¢: [0,00) > R. For
nonzero points xeR", we denote x'= x/|x|. Let
Qel (S”_l) be a homogeneous function of degree zero
on R" and satisfy

Q(y')do(y')=0, (1.1)

Suppose that 4 is a radial measurable function. De-
fine the singular integral operator 7, in R™' along
I, by

Ly (/) (x:%,00)

h Q(y'
= p-V-IR,,WXf (=2, —¢(|5]))dv
for all feS"" (the Schwartz function class on R""),
where (x,x,,,)€eR"xR=R"".

Operators of the type (1.2) have been studied quite
extensively (see [1-13] and therein numerous references).
We refer the readers to see Stein-Wainger’s report [14,
15] for more background information. In 1996, Kim,
Wainger, Wright and Ziesler proved the following result.

Theorem A [10]. Let ¢ C? ([O,oo)) be convex, in-
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creasing and $(0)=0. Suppose that Qe C” (S”'l) is
a homogeneous function of degree zero on R" and sat-
isfies (1.1). Then T,, is bounded on L* (R””) for
I<p<owo.

By a minor modification of the proof in Theorem A,
one can show that the conclusion of Theorem A remains
valid if the condition Qe C” (S"‘l) is replaced by the
condition Qe L’ (S"’l) for some ¢g>1 (see [16, pp.
372-373], as well as [6]). Subsequently, this result was
improved and extended by many authors (see [1,2,5,6,
11,12] et al.). In particular, in 2001, Lu, Pan and Yang
gave the general theorem as follows.

Theorem B [11]. Let ¢: [0,00)—>Rbe a continu-
ously differentiable on [0,00) and satisfy
|¢(t)—¢(0)| <Ct* for some a and small t, where
C is a constant independent of t. Suppose that
QeHl(S"’1 and hel” ([0,00)) . Then T, 'is
bounded on L’ (R"“) for 1< p <o, provided that the
maximal operator v, defined by

V¢(f)(”):S.“g%f;fjﬂf(r—t,s—qﬁ(z))dt

is bounded on LI (R*) for p>1.
Actually, the condition heL” ([0,00)) can be weak-
ened to the case:

heA, (R*)={h; sups”' .[(:|h(t)|7 dt <o}, y>1
>0

with [1/p—1/2|<min{1/2,1/y'} (see [9]), and the size
condition on Q in Theorem B is the best one, so far,
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evenif ¢(1)=0 (see[8]).

On the other hand, for % e I* (R+ “ar ) it is known
n [17],if ¢(r)=0, that T,, is bound?/d on I”(R"
for 1< p<oo, provided QeL(log L) " (s""), which
is optimal and much weaker than that for the classical
Calderon-Zygmund singular integrzli/l2 operators. It should
be noted that the spaces L(log+ L) (S”‘l) and
H' (S”'l) do not include in each other.

Inspired by Al-Salman’s work [17], we shall establish
the following main result in this paper.

Theorem 1. Let ¢: [0,0) > R be a suitable func-
tion, which ensures that the integral in (1.2) exists in
principle-value sense when, say, f eS"" (the Schwartz
function class on R™"). Suppose that
hel’ (R+ ’ldr) Q is a homogenous function of de-
gree zero on R and satisfies (1.1). If
Qe L(log L) (5"), then

D " ’M R”” - C"f"L2 R"”
2) s (P oy < EW o

for 1< p<ow, provided that the lower dimensional
maximal operator M defined by

My (f)(rs)=sup R [ |7 (r=t.s=(0))]dr (13)

LZ

)24 Rn+1 -

is bounded on ¥ (Rz) for 1< p<w.

In Theorem 1, if ¢(7) is continuously differentiable
on (0,00) and satisfy |¢(t)—¢(0)| <Ct* for some «
and small 7, where C is a constant independent of 7,
in particular, if ¢()eC' ([O,l)), then the integral in
(1.2) exists in principle-value sense when, say, f eS""
(the Schwartz function class on R"") (see [11]).

Remark 1. The 1” Rz) boundedness of M, is
known for many ¢(t) ’s. A few prominent examples are
as follows:

1) If ¢(t) is a real-valued polynomial, then M is
bounded on L”(R2 for p>1,see[16,p.477] or[15].

2) If ¢(t)=t" with ae(0,1] , then M, is
bounded on I” (Rz) for p>1,see[13].

3) If ¢(r)eC'([0,1)) such that ¢(0)=g'(0)=
and ¢(7) is a convex increasing function for 7>0,
M,
Corollary 5.3].

B Let b(0)=(0)-g(1). 1T ¢(1)=C*([0.1) .
#(1) is convex on [0,0) with ¢(0)=¢'(0)=0, and
there exists an & >0 so that for each 7> 0,
b'(t)>eb(t)/t, then M, is bounded on L’ (Rz) for
p>1, see [4, Theorem 1.5]. In particular, if ¢(z) is
ether even or odd and there exists a 0 <C <o so that
for each >0, ¢'(Ct)>24(t), then M, is bounded
on I/ (R*) for p>1,see[3]or[4].
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is bounded on L’ (RZ) for p>1, see[13], see [7,
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In order to obtain Theorem 1, we let S, , be the op-
erator defined by

Sa g (f) (x, X1 )
it st

Clearly, if hel’ (R+,r'1dr), then
) < "h”LZ(R",r*ldr) SQ,¢ (f)(x’ Xos1 )

Therefore Theorem 1 can be deduced immediately
from the next theorem.

Theorem 2. Let ¢ and Q be as in Theorem 1.
Then

D) [Sos () < C1 ey

2) [Say (£) <C| f||LP )

2< p<w, provided that the maximal operator M,
in (1.3) is bounded on I (Rz) for 1< p<o.

Remark 2. By the similar arguments as in [1], we re-
mark that the condition QeL(log+ L) (S”’l) is op-
timal. Precisely, there exists an Q lies in
Qe L(log+ L)‘g (S"’l) forall &<1/2 and satisfies (1.1)
such that S, is unbounded on L’ (R”+1 . And it is
worth pointing out that the size condition is much weaker
than that for the classical Calderon-Zygmund singular
integral operators.

This paper is organize as follows. In Section 2 we will
give the proofs of our theorems. An extension of our
main results will be given in Section 3. We would like to
remark that the main ideas in the proofs of our results are
taken from [7,9,17].

Throughout this paper, we always use letter C to
denote positive constants that may vary at each occur-
rence but are independent of the essential variables.

17, (£) (%%,

) LZ(R”“

/4 Rn+l

2. Proofs of Main Results

Let us begin with a lemma, which will play a key role in
the proofs of our main results.

Lemma 2.1. Let QelL (S"") and satisfy (1.1). If
the maximal operator M, in (1.3) is bounded on
rr (Rz) Jfor, then the following maximal operator M, ,
defined by

MQ,¢ (f)(x’xnﬂ)

Q(y' 2.1
=sup Mx‘f(x+y,xn+l +¢(|y|))‘dy
R>0 pia<yi<R |y
is bounded on L’ (R””) with bound
Clony- 1< p <
APM
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Proof. Since

Mw(f)(x,xm)
p.[R/z.[ -1
SLH|Q (' |\sup.[R/2|f x+ry‘,xn+l+¢(r)) —rdO'(y')

r
< [y [ QW () (525, ) 40 (37)

where

o ()

7

||f X+1y, X, +(r ))|

My () (%,) = sup J 7Gx, + ()| ar
Thus by Minkowski's inequality, we have

[Mou (1) < Ln—1|9(yl)|||M¢,y'(f)

It remains to show that

LP(R”H) dO-(y,)

Lp(RnH)

"M%y’( )L[ RH _C"f"Lp ”
with C independent of »'.
Let 1=(1,0,---,0)e S"". For each fixed y'eS"",

choose a rotation p such that py’=1. Denote the in-
verse of p by p' and define the function f , by

£, (x,x,,)= f(px.x,,,). Then
f(x+mx,, +¢(r))=fp,l (px+rLx,,, +¢(r)).

This together with the L’ -bondedness of M, , and
change of variables, show that

"M¢,y' (/) < C"f"Lp(RnH) , 1< p<oo,

y74 ( R )

where C is independent of. Lemma 2.1 is proved.
Next we introduce some notations. Assume that

1/2
QeL(log+ L) (S”‘l) and satisfies (1.1). For any
leN,let £ ={y'es"": 2 <|Q(y)<2""| Also,
welet E,={y'eS"": |Q(y)2} Set

:{ZeN: O'(E,)>2_41} and for />1,

Q) =Q() 2 (V) (S" 1) l
1 Q) g (V) do (V).
and Q,(»')=Q(»)-2.,.,2 (») Then we have the
following:
L9, (y)do(y')=0, 120, 2.2)
[, <2|oxs | =24, 1e D, (2.3)
2|, < €[], < € <o, 2.4)
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Q(¥) =2 cpo 2 (V) 2.5)
ZzeDu<0}(l+1)l/2 4 < C"Q"L(log" L)I/Z(S”") ’ (2.6)

where A,:"Q;(E[ "1 for /leD and 4,=1.

Now we give the proofs of our theorems as follows.
Proof of Theorem 2. For each /e DU{0}, we let

Sﬂmb (f)(x xn+1)
> dr 12
U" QN (x=rx, = 9(3]))do () de

By (2.5) and Minkowski's inequality, we have
SQ,{I)( )( n+1) ZleDu{O} Q.4 ( )(x, Xut1 ) 2.7

For any /e DuU{0}, let’s argue as in the proof of
Theorem 2.1 in [1], choose a collection of C” function
{l//, j} _, on (0,e0) with the following properties:

S e

supp (l//l,j ) c |:2—(j+1)(1+1) ’ ==+ :| ’ 2.8)

0<y,,(t)<1, and Z/,Ez[y/,,j(t)]ﬁl, 2.9)

d“y, (t) <& (2.10)
e |77 '

where >0, aeN, and C,
ent of /.

For each jeZ and [eDu{0},
the multiplier

5. (N)(&40m)
and S/, by
Slz.j (f)(x, Xt ) =5, (S/»j (f))(x, Xt )
Then by (2.9) and Minkowski’s inequality,
Seys ()(%:%.1)

2(/+1(l+l ,
(Z/EZJ.Z/[+1 ZkeZ S”*IQI (y)
R 2 dr 12
<82, (/) (2=, —4(r))do () 7)
<Y Tl

xSijur () =1, ¢<r>)da(y'>z%)
=2 e s () (23, ),

where

is a constant independ-

denote by S,

‘//1,(|§|) 5 §n+1

21+I
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21+l

L (w5 =(2,0],

.[S" !
s drjl/z

XS,%hk (f)(x— Py X, —¢(r))d0'(y') 7
This together with (2.7) implies

"Sﬂﬁ( ZIEDU ZkeZ lk( ) ( )

() in the following

@.11)

LpR+l

Now we estimate "I,,k (N (e
cases:

Case 1. For p =2, we claim that there exists 6 >0
such that for /e DU{0},

|, (1)

<C27M(1+1)" 4 A (eny> @12

2(r)

where C is independent of / and .
Indeed, by Plancheral’s theorem and Fubini’s theorem,

<3 L 7] 2 (©)dede, .

(2.13)

s (P,

1, j+k

where

A, v {5 c R o Uk |§| < p-Ui+k= I)UH)}XR,

ol - /(Hl)r”. . 2 dr
5 &)= [ o ()]

In order to prove (2.12), we first estimate J,;(&).
Obviously, we have

g, (&)< (r+)o ] sc(1+1) 42
By (2.2), a straightforward computing shows that
j+1 l+1)§‘2
U#)(E) 5‘2

(2.14)

J,

L (6)s

a0l s

<C(1+1)4

>

Using interpolation between (2.14) and (2.15), we get
2/(1+1)
J;(E)sC(i+1)4] .

On the other hand, we have

AUl g 2.16)

21+l

=) @

e—izf(“ )r(y'

()2, ()
dr

v '5d0'(y')d0'(u')—

=l 2 012 ()

X ,.'12“1 o2 e % do(y")do(u')

And by integration by parts,

Copyright © 2011 SciRes.
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sz e’izj(1+l) Hy'—u)eg z
! r

s
-1

<C>I+1)2" 0 (' —u')e &

with the easy fact

oM ) dr
_[1 e T <y 4,

r

we obtain

I - o2 dr
1

r
-1/4

<C(I+)2" (' -u')ee

Thus, by Holder’s inequality

J (&)sC(l+1)

{US”"xs"’l | §|
o \ i

Note that ||Q ||2 <C=C4,, andfor leD,
A4 <C2o(E)<C2™, wehave

o], <c2"o(5)* <2

2/ \ ],
1/2 dG(u')}m

<C(Z+1)

Consequently,
-1/4

J, (&) C(i+1) 4220 /N g

This together with (2.14) and an interpolation implies

—1/4(1+1)

20/ g (2.17)

J(E)<C(1+1)4

Then by the fact that A, NA, ., =& whenever
j'e{j-1j,j+1}, (2.12) follows from (2.13), (2.16)
and (2.17).

Case 2. For p>2, we shall show that there exists
6>0 suchthatfor /e DU{0},

1.4 ()

<C2M(141)" 4| Hisfpey @:18)

)7 (R'Hl)

where C is independent of / and 4.
Indeed, choose g e 17'?) (R””) such that

”g”LP/Z)Rm) 1 and
-[R *'Z/ezj _[

s ()
XSlz,ch (f)(x - ZNH) Y, X,,, — ¢(2‘/.(1Jrl r))da(y’)

)74 Rn+l

2

By Holder’s inequality, we get
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2/+l

1 (O, < [pwnsopsea [ fo 2 ()
x g(x+2"(1+1)ry',xn+1 +¢(2j (1) r))

ij'ez Slz.j+k (f)(x’ xn+1)

Note that

da(y')ﬂ

7

],

n+1

21+l

sup oz [, o | ()
g (x +2704) ', X, + ¢(2j(”” r))

< (l+1)MQh¢ (g)(x,xm,).

Applying Holder’s inequality again, it follows from
Lemma 2.1 and the Littlewood-Paley theory (see [18,
Chapter 4]) that

s ()], <€

(22, cafS2 s ()
N alst o ()

<c(r+nlfFlrt, < c+n 4L,

da(y')ﬂ

7

-+l lel|

p/2

1/2
X

1/2

This together with (2.12) and an interpolation implies
(2.18).
Therefore, by (2.11), (2.12) and (2.6), we get

||SQ¢ LZ( n+l _CZIEDU(O}ZkEZ(Z+1)]/2

<42 f]

L2 Rn+1
< CZI DU{0 l+1 " A "f"L2 R" *1
<C|ef

1(tog* L) (s”*l) "f"LZ(R"“) :

This prove 1) of Theorem 2.
If M, is bounded on L (R2) for 1< p<oo, then
by (2.11), (2.18) and (2.6), we obtain that for p>2,

6.6 (/)

sy <€l
which completes the proof of Theorem 2.
Proof of Theorem 1. By the fact

) S"h||L2(R*,r"dr) SQ,(I) (f)(x’xnﬂ)’

and Theorem 2, it follows that 7, is bounded on
I’ (R"“) for 2< p<o. On the other hand, by duality
we can obtain that 7, is bounded on L’ (R"”) for
1< p<2.Theorem 1 is proved.

L(log+ L)I/Z(S"’l) "f"Lp(Rn-H) s

| ¢h x xn+1

Copyright © 2011 SciRes.

3. Further Results

In this section, we will extend the definition of T, to
higher dimensional cases. Let @(£)=(#(?), -, @.(?)) be a
curve on R", m>2, where each ¢(¢) is a real-valued
continuous function. For x, yeR", and x*eR", we define

Ty (f)(x,x*):p.v. Rﬂh(|y|) Q(y')

4.1
xf(x—y,x*—(l)(|y|))dy.
Also, we define the operator Sq ¢ by
SQ"D (f)(x’x*) - (I: IS"" Q(y,)
2 dr 4.2)
xf(x—ry',x*—CD(r))dO'(y') Tj ,
and the lower dimensional maximal function My by
M, (f)(xl,x*)
4.3)

s, r—lj':/2|f(xl —4x —CI)(t))| dr.

In [10], Fan and Zheng extended the result of Theorem
B to the operator Ty, for heAy(R+) for y > 1. Here, we
will obtain the following results.

Theorem 3. Suppose that heL*(R",
L(log"'L)"*(S"™"). Then

[oN/] (f) LZ(Rn+n1 < C”f"Lz Rn+m .

2) s (D) W fgomy 1< 2 <22

provided that the maxzmal operator M, defined in (4.3)
is bounded on ¥ R'"”) forall p>1.
Theorem 4. Let ® and Q be as in Theorem 3. Then

1) ||SQ,(I) (f) LZ(R”+”’) < C"f”LZ(R’”"”)

2) [Sa0 (/) < Cllpn)s 2< P <0,

provided that the maximal operator M, defined in (4.3)
is bounded on ¥ R'"”) forall p>1.

Clearly, if m = 1 then Theorem 3 and 4 are reduced to
Theorem 1 and 2. For m > 2, by the same arguments as in
the proof of Lemma 2.1, we can obtain the following
lemma.

Lemma 4.1. Let QeL'(S"") and satisfy (1.1). If the
maximal operator My in (4.3) is bounded on LF(R™") for
p > 1, then the following maximal operator Mg, o defined
by

r'dr) and Qe

LPR+

)7 (Rm-m)

MQ,(I) (f)(xa x*)
Q(y' 4.4
=sup,._, J' H_):)X (x+y,x*+(1)(|y|))‘dy (4.4)
ri2<lylsr |V

is bounded on I’ (R"“”) with bound C”Q"LI(SH) ,
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I<p<ow.

Then Theorem 3 and 4 follow from this lemma with
the arguments and the estimates similar to those in the
proofs of our theorems in Section 2. The details are
omitted.
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