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Abstract 
 
In this paper, the authors establish the Lp-mapping properties of a class of singular integral operators along 
surfaces of revolution with rough kernels. The size condition on the kernels is optimal and much weaker than 
that for the classical Calderon-Zygmund singular integral operators. 
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1. Introduction and Main Results 
 
Let , , be the n-dimensional Euclidean space 
and  be the unit sphere in  equipped with the 
normalized Lebesgue measure Let  
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  be the surface of revolution 
generated by a suitable function . For 
nonzero points 
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x R , we denote ' .x x x  Let 

 be a homogeneous function of degree zero 
on  and satisfy  
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Suppose that  is a radial measurable function. De-
fine the singular integral operator 
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for all  (the Schwartz function class on 1nf  1nR  ), 
where  1, n

1n nx x R R R 
    . 

Operators of the type (1.2) have been studied quite 
extensively (see [1-13] and therein numerous references). 
We refer the readers to see Stein-Wainger’s report [14, 
15] for more background information. In 1996, Kim, 
Wainger, Wright and Ziesler proved the following result. 

Theorem A [10]. Let  be convex, in-

creasing and 

 2 0,C   

 0 0  . Suppose that  1nC S 
nR

 is 
a homogeneous function of degree zero on  and sat-
isfies (1.1). Then ,1T  is bounded on  1p nL R   for 
1 p   . 

By a minor modification of the proof in Theorem A, 
one can show that the conclusion of Theorem A remains 
valid if the condition  is replaced by the 
condition 

 1nC S  
 1q nL S   for some  (see [16, pp. 

372-373], as well as [6]). Subsequently, this result was 
improved and extended by many authors (see [1,2,5,6, 
11,12] et al.). In particular, in 2001, Lu, Pan and Yang 
gave the general theorem as follows.  

1
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Theorem B [11]. Let be a continu-
ously differentiable on 

 : 0,  
 0,  and satisfy  

   0t Ct    for some   and small , where 
 is a constant independent of . Suppose that  

t
C t

 11 nH S   and   0,h L   . Then ,hT  is 
bounded on  1p nL R   for 1 , provided that the 
maximal operator 

p  
  defined by 
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is bounded on  2pL R  for  1.p 
h LActually, the condition can be weak-

ened to the case:  
 0,
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00
{ ;

s
h sup

s
h R s h




 


d }, 1t t       

with  1 1 1 2,1p 2 min     (see [9]), and the size 
condition on   in Theorem B is the best one, so far, 
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even if  (see [8]).   0t 

 t 
On the other hand, for , it is known 

in [17], if , that 
2 1,h L R r dr 

,hT0   is bounded on  1p nL R 

 1S 



 
for , provided , which 
is optimal and much weaker than that for the classical 
Calderon-Zygmund singular integral operators. It should 
be noted that the spaces  and  

 do not include in each other. 

1

1 nH S
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1

2 1,R r dr 
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Inspired by Al-Salman’s work [17], we shall establish 
the following main result in this paper. 

Theorem 1. Let  be a suitable func-
tion, which ensures that the integral in (1.2) exists in 
principle-value sense when, say,  (the Schwartz 
function class on ). Suppose that  

,  is a homogenous function of de- 
gree zero on  and satisfies (1.1).  If  

, then 

 : 0, R  

f 
1n

 

 1nS 
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R
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1)    2 12 1, nhT f  .nL RL R

f C  

2)      11, ,p np nh L RL R
T f C f    

for  provided that the lower dimensional 
maximal operator 

1 p  ,
M  defined by 

     1

/20
, sup , d

R

RR
M f r s R f r t s t t 


    (1.3) 

is bounded on  for 1 2pL R  p   . 
In Theorem 1, if  t  is continuously differentiable 

on  and satisfy 0,    0t Ct    for some   
and small , where  is a constant independent of , 
in particular, if , then the integral in 
(1.2) exists in principle-value sense when, say, 

t C
 

t

1n
 1 0,1t C 

f   
(the Schwartz function class on ) (see [11]). 1nR

 2Remark 1. The  boundedness of pL R M  is 
known for many  t ’s. A few prominent examples are 
as follows: 

1) If  t  is a real-valued polynomial, then M  is 
bounded on  for , see [16, p. 477] or [15].  2pL R

 t t
 1p 

2) If    with  0,1  , then M  is 
bounded on  for , see [13].  2pL R

  1t C 
 1p

3) If  such that  0,1    0 0  0 
0t 

 
and  is a convex increasing function for ,  t
M  is bounded on  for , see [13], see [7, 
Corollary 5.3]. 

 2pL R  1p 

4) Let  If      .b t t t t       2 0,1t C  , 
 t  is convex on   with , and 

there exists an 
0,

0
   0 0 0  

 
 

 so that for each   0,t 
  ,b t b t t  then M  is bounded on  2pL R  for 

, see [4, Theorem 1.5]. In particular, if 1p   t  is 
ether even or odd and there exists a  so that 
for each  

0 C  
0,t     2 t ,Ct   then M  is bounded 

on  for , see [3] or [4].  2pL R 1p

In order to obtain Theorem 1, we let ,S   be the op-
erator defined by 
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Clearly, if  2 1,h L R r dr  ,  then  

       2 1, 1 ,,
, ,h n nL R r dr

T f x x h S f x x    1 .  

Therefore Theorem 1 can be deduced immediately 
from the next theorem. 

Theorem 2. Let   and  be as in Theorem 1. 
Then 



1)      2 12 1, .nn L RL R
S f C f    

2)      11, ,p np n L RL R
S f C f    

2 p   , provided that the maximal operator M  
in (1.3) is bounded on  2pL R  for 1 . p  

Remark 2. By the similar arguments as in [1], we re-
mark that the condition  is op-
timal. Precisely, there exists an  lies in  

 for all 

  1/2 1log nL L S




   1log nL L S
 1 2   and satisfies (1.1) 

such that ,S   is unbounded on . And it is 
worth pointing out that the size condition is much weaker 
than that for the classical Calderón-Zygmund singular 
integral operators. 

 1p nL R  



This paper is organize as follows. In Section 2 we will 
give the proofs of our theorems. An extension of our 
main results will be given in Section 3. We would like to 
remark that the main ideas in the proofs of our results are 
taken from [7,9,17]. 

Throughout this paper, we always use letter  to 
denote positive constants that may vary at each occur-
rence but are independent of the essential variables. 

C

 
2. Proofs of Main Results 
 
Let us begin with a lemma, which will play a key role in 
the proofs of our main results. 

Lemma 2.1. Let  and satisfy (1.1). If 
the maximal operator 

1 1nL S 
M  in (1.3) is bounded on 

 2pL R  for, then the following maximal operator ,M   
defined by 
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  (2.1) 

is bounded on  1p nL R   with bound 

 1 1 , 1 .C pnL S      
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Proof. Since 
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Thus by Minkowski's inequality, we have 

           11 1, , ' d .np n p nySL R L R
M f y M f       y  

It remains to show that 

     11, p np ny L RL R
M f C f    

with  independent of . C
1

y
 1.nLet  For each fixed 1,0, ,0 S  1' ny S  , 

choose a rotation  such that y   1 . Denote the in-
verse of   by 1  and define the function f  by 

. Then     1 1, ,n nx f x x f x

     11 1, ,n nf x ry x r f x r x r


      1  . 

This together with the pL -bondedness of M , and 
change of variables, show that 

     11, ,  1 ,p np ny L RL R
M f C f p     



 

where  is independent of. Lemma 2.1 is proved. C
Next we introduce some notations. Assume that  

 and satisfies (1.1). For any    1/2 1log nL L S

l , let   1 1:  2 2n l l
lE y S y        Also,  
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Then we have the 
following: 

   1 d 0,  n lS
y y l              (2.2) 
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0 01 2
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y
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where 
1ll EA    for l D  and  0 1.A 

Now we give the proofs of our theorems as follows. 
Proof of Theorem 2. For each  0l D  , we let 
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By (2.5) and Minkowski's inequality, we have 

    , 1 ,{0}
, ,
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 1 .   (2.7) 

For any  0l D  , let’s argue as in the proof of 
Theorem 2.1 in [1], choose a collection of C  function 
 ,l j j



 on  0,  with the following properties: 
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l j       ,          (2.8) 

 ,0 1l j t ,   and    (2.9)   2

, 1,l jj
t


    

 ,d
,

d
l j t C

t t







             (2.10) 

where  0,t  ,   and C  is a constant independ-
ent of l. 
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This together with (2.7) implies 

         11, ,0
.p np n l kl D k L RL R

S f I f    
     (2.11) 

Now we estimate    1, p nl k L R
I f    in the following 
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where C is independent of l and k. 
Indeed, by Plancheral’s theorem and Fubini’s theorem, 
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In order to prove (2.12), we first estimate  ,l jJ  . 
Obviously, we have 
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, 1

1 1l j l l .J l C l A           (2.14) 

By (2.2), a straightforward computing shows that 
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Using interpolation between (2.14) and (2.15), we get 
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And by integration by parts, 
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Thus, by Holder’s inequality 
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This together with (2.14) and an interpolation implies 
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Then by the fact that , , 'l j k l j k      whenever 
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By Holder’s inequality, we get 
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Applying Holder’s inequality again, it follows from 
Lemma 2.1 and the Littlewood-Paley theory (see [18, 
Chapter 4]) that 
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This together with (2.12) and an interpolation implies 
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This prove 1) of Theorem 2. 
If M  is bounded on  2pL R  for 1 , then 

by (2.11), (2.18) and (2.6), we obtain that for , 
p  

2p 

         1/2 1 11, log
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which completes the proof of Theorem 2. 
Proof of Theorem 1. By the fact 
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and Theorem 2, it follows that ,hT  is bounded on 
 for . On the other hand, by duality 

we can obtain that ,hT
 1p nL R 

3. Further Results 
 
In this section, we will extend the definition of T,h to 
higher dimensional cases. Let Φ(t)=(1(t), ···, m(t)) be a 
curve on Rm, , where each i(t) is a real-valued 
continuous function. For x, yRn, and x*Rm, we define 
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and the lower dimensional maximal function MΦ by 
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In [10], Fan and Zheng extended the result of Theorem 
B to the operator TΦ,h for h∆γ(R+) for γ > 1. Here, we 
will obtain the following results. 

Theorem 3. Suppose that hL2(R+, r−1dr) and  
L(log+L)1/2(Sn−1). Then 

1)      22, .n mn mh L RL R
T f C f    

2)      , p n mp n mh L RL R
T f C f   ,   1 ,p  

provided that the maximal operator M  defined in (4.3) 
is bounded on  1p mL R   for all  1.p

Theorem 4. Let Φ and  be as in Theorem 3. Then 
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provided that the maximal operator M  defined in (4.3) 
is bounded on  1p mL R   for all  1.p

Clearly, if m = 1 then Theorem 3 and 4 are reduced to 
Theorem 1 and 2. For m  2, by the same arguments as in 
the proof of Lemma 2.1, we can obtain the following 
lemma. 

Lemma 4.1. Let L1(Sn−1) and satisfy (1.1). If the 
maximal operator MΦ in (4.3) is bounded on Lp(Rm+1) for 
p > 1, then the following maximal operator M,Φ defined 
by 
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 (4.4) 

 2 p  
  is bounded on  for 

. Theorem 1 is proved. 
 1p nL R  

21 p  is bounded on  p n mL R   with bound  1 1nL S
C  , 
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