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Abstract 
Human 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) catalyzes the 
biosynthesis of the most potent natural estrogen 17β-estradiol (E2) from es-
trone (E1) in the ovary and peripheral tissues, playing a pivotal role in the 
progression of estrogen-dependent diseases. N-n-Butyl-N-methyl-ll-(16'α-chloro- 
3',17'β-dihydroxyestra-1',3',5'(10')-trien-7'α-yl)undecanamide (EM-139) was 
previously described as a dual-site inhibitor that can inhibit 17β-HSD1 
transforming E1 into E2 and also inhibit estrogen receptor. In the present 
report, we describe the co-crystallization of EM-139 with 17β-HSD1 as well as 
the analysis of the three-dimensional structure of the enzyme/inhibitor com-
plex. The crystal is grown under similar condition as native crystals, whereas 
the space group is changed to I121 never observed in other 17β-HSD1 crystals 
before. The steroidal moiety of the bound EM-139 molecule has shown a 
binding pattern similar to E2 in the E2 binary complex. The O-3 of the inhi-
bitor develops hydrogen bonds with residues His221 and Glu282, whereas the 
O-17 makes hydrogen bonds with Ser142 and Tyr155. The bulky 7α-alkyl moie-
ty of the inhibitor, which is essential for its anti-estrogenic activity but cannot 
be defined in the electron density, may compromise the inhibitory effect of 
EM-139 to 17β-HSD1. Moreover, the 16α-Cl atom shows no obvious interac-
tion with surrounding residues. The atomic level understanding of the inhi-
bitory mechanism of EM-139 provides important information for the inhibi-
tor design of 17β-HSD1, which will facilitate future development of more po-
tent and selective inhibitors of the enzyme for therapeutic purposes. 
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1. Introduction 

Seventeen β-hydroxysteroid dehydrogenase type 1 (17β-HSD1, EC. 1.1.1.62) cat-
alyzes the NAD(P)H dependent conversion of estrone (E1) to the most potent 
estrogen, 17β-estradiol (E2) [1]. E2 is well known to play a crucial role in the 
progression and development of several estrogen-dependent diseases (EDD). 
Increased E2 levels as well as up-regulated 17β-HSD1 expression indicate the 
involvement of the enzyme in EDDs, such as breast cancer [2] [3], endometrial 
cancer [4] [5], endometriosis [6] [7] [8], and ovarian cancer [9]. Moreover, pa-
tients with tumors that have high mRNA levels of 17β-HSD1 have significantly 
shortened disease-free and overall survival [10] [11] [12]. Therefore, blocking 
the production of E2 through the specific inhibition of 17β-HSD1 activity is 
considered to be of therapeutic benefit in the treatment of EDDs. 

Over the past decades, major efforts from many different laboratories have 
been devoted to developing highly selective inhibitors of the key steroidogenic 
enzyme 17β-HSD1, yielding several lead compounds with significant inhibitory 
activity [13] [14]. However, due to the lack of specificity, especially for the pres-
ence of undesired estrogenic activity, no inhibitor has yet reached the stage of 
clinical trials [15] [16] [17] [18]. N-n-Butyl-N-methyl-ll-(16'α-chloro-3',17'β- 
dihydroxyes-tra-1',3',5'(10')-trien-7'α-yl) undecanamide (EM-139) is a 7α-alkyl, 
16α-halo estradiol derivative which was first synthesized as a pure antiestrogen 
(Figure 1) [19]. Following experiments demonstrated its inhibitory effect on 
17β-HSD1 activity with a Ki of 6 μM [20]. Thus the compound was defined as a 
dual-site inhibitor which possesses inhibitory effect on estrogen receptor and 
on the estrogen formation [21]. Although this compound was proven to be a 
non-selective inhibitor of the 17β-HSD family members [22], study of the 
EM-139/17β-HSD1 complex structure should help us to better understand the 
inhibitory mechanism of the dual-site inhibitor, thus facilitating further inhibi-
tor design of the enzyme. 

Previously, we have reported the crystallization of the 17β-HSD1/EM-139 
complex using both co-crystallization and soaking methods [23]. The crystals 
obtained were isomorphous to the native crystals with a monoclinic space group 
C2 [23]. After careful analysis of the structures, the inhibitor couldn’t be identi-
fied at the binding site of the enzyme due to poor electron density. In the present 
study, we optimized the co-crystallization procedure and successfully obtained 
complex crystals with a unique space group never observed in 17β-HSD1 com-
plexes before. The clear electron density at the binding site indicated the pres-
ence of the dual-site inhibitor in the enzyme complex. 

2. Materials and Methods 
2.1. Protein Preparation and Co-Crystallization 

The 17β-HSD1 enzyme was expressed in Sf9 insect cells and purified as de-
scribed previously [24]. After the measurement of specific activity [25], the puri-
fied enzyme was concentrated to a final concentration of 15 mg/ml in the pres-
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ence of 0.06% β-octyl glucoside (β-OG), and then subjected to a buffer change 
procedure [26] via centricon (Emdmillipore, USA) to saturate the enzyme with 
the inhibitor EM-139. The co-crystallization experiment was carried out using 
the vapor diffusion method at room temperature. Crystals were obtained under 
conditions containing 22% - 26% (w/v) polyethyleneglycol (PEG) 4000, 0.15 M 
magnesium chloride, and 0.1 M HEPES buffered to pH 7.5. 

2.2. Data Collection and Structure Determination 

The X-ray diffraction data of the 17β-HSD1-EM-139 crystals were collected at 
100 K using synchrotron radiation at Advanced Photon Source (APS) beamline 
31-LRL-CAT (Chicago, USA) equipped with a MAR CCD 165 mm detector at a 
wavelength of 0.9793 Å. The dataset was indexed and intergraded using 
MOSFLM [27], and scaled with SCALA [28] from the CCP4 suite [29]. The 
structure was solved by molecular replacement with Molrep [30] using a re-
ported 17β-HSD1 coordinate (PDB code 1JTV) [31] as search model. The initial 
model was subjected to multiple rounds of auto-refinement using Refmac [32] 
and manual rebuild using Coot [33]. Missing portions of the models, inhibitor 
EM-139, glycerol, polyethylene glycol, and water molecules were progressively 
added with great caution during the refinement procedure. The final model was 
verified with PROCHECK [34]. Molecular graphics were presented using the 
Pymol software (version 2.0 Schrödinger, LLC). 

3. Results 

Crystal utilized in this study belonged to space group I121 and each asymmetric 
unit contained a dimer, which is known to be the functional unit of the enzyme 
[25]. The complex structure was refined at 2 Å with good stereochemistries [35], 
and the quality of the final model can be assessed in Table 1. Similar to most 
previously reported 17β-HSD1 structures, the highly flexible βFαG’-loop (amino 
acids Phe192 to Leu197) as well as the C-terminal end of the protein (amino acids 
286 to 327) cannot be defined in the electron density (Figure 2) [36] [37] [38] 
[39]. 

In the binary complex structure, EM-139 has definable electron density in the 
A subunit of the dimeric enzyme. However, the ligand density in the B subunit is 
poorly defined, similar to previously described complex with equilin [40]. Ac-
cordingly the ligand was not included in the B subunit of the final model. Even 
for the A subunit, only the steroid moiety of EM-139 can be defined but with a 
high average B-factor (97.5 Å2), whereas the 7α-alkyl side chain of the inhibitor 
cannot be defined in the electron density (Figure 3). This high flexibility of the 
inhibitor is in accordance with its relatively low affinity for the enzyme [20]. 

4. Discussion 

The space group of 17β-HSD1 crystals can be affected by the presence of cations 
in the crystallization conditions [41]. The space group of crystals obtained in the  
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Table 1. Data collection and refinement statistics. 

Parameter 17β-HSD1-EM-139 

Data Collection  

Space group I121 

Unit cell  

a,b,c (Å) 120.76, 42.19, 122.67 

α, β, γ (˚) 90, 102.07, 90 

Resolution range (Å) 35.67 - 2.00 (2.11 - 2.00)a 

Number of reflections 138,222 (20,278) 

Unique reflections 38,108 (5536) 

Completeness (%) 92.7 (92.5) 

I/σ(I) 8.5 (2.8) 

Rmeansb 0.086 (0.315) 

Multiplicity 3.6 (3.7) 

Wilson B-factor (Å2) 30.5 

Refinement  

R-workc 0.20 

R-freed 0.24 

r.m.s.d  

Bond lengths (Å) 0.010 

Bond angles (˚) 1.483 

Ramachandran plote (%)  

Most favored regions 94.4 

Additional allowed regions 5.6 

Generously allowed regions 0.0 

Disallowed regions 0.0 

Average B, all atoms (Å2) 42.0 

PDB ID 6DTP 

a. Data statistics for the outer shell are given in parentheses. b. The redundancy-independent Rmerge/Rsym, 

, ,11
n

means hkl i hkl hkl ihkl i hkl i

nR I I I
n =

= −
−∑ ∑ ∑ ∑  c. ( ) ( ) ( )work obs calc obshkl hkl

R F hkl F hkl F hkl= −∑ ∑ . d. 

Rfree = the cross-validation R factor for 5% of reflections against which the model was not refined. e. Calcu-
lated with PROCHECK. 
 
presence of Mg2+ and Mn2+ belong to C2, whereas crystals grown under condi-
tions with Li+ and Na+ had a space group of P212121 [41]. Despite the presence of 
Mg2+, the space group of the co-crystallized EM-139 complex crystals has been 
changed to I121, not observed in any other reported 17β-HSD1 structures. The 
change in space group may be due to the long alkyl side chain at the C7 of 
EM-139, which may affect the packing during crystal growth. 

When the EM-139 binary and E2 binary (PDB ID 1IOL [37]) complexes as  
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Figure 1. Structure of dual-site inhibitor N-n-Butyl-N-methyl-ll-(16'α-chloro-3',17'β-  
dihydroxyestra-1',3',5'(10')-trien-7'α-yl)undecanamide (EM-139). 
 

 
Figure 2. Stereo representation of the overall structure of A subunit of 17β-HSD1-EM- 
139 complex. The protein molecule is shown in cartoon and colored in pink. The bound 
EM-139 molecule is depicted as stick and colored in blue. The N-terminus and the 
C-terminus of the protein molecule are indicated. Segment of residues 190-197, which 
unable to be defined in the electron density, is represented as dash line. 
 
well as the apo structure of 17β-HSD1 (PDB ID 1BHS [42]) are superimposed, a 
similar conformation is observed at the steroid binding site of the enzyme 
(Figure 4(a)). The root-mean-square deviation (RMSD) for all paired Cα atoms 
obtained between EM-139 complex and apo structure is 0.456 Å, similar to the 
value obtained between EM-139 and E2 complexes (0.508 Å). It is worth men-
tioning that the position observed for the steroidal moiety of EM-139 has 
roughly 9˚ rotation around the axis at the C-3 atom and perpendicular to its 
β-face, when compared with the position of E2. This leads to the shifting of the 
O-17 by 1.4 Å as compared with the position of its counterpart in the E2 com-
plex (Figure 4(b) and Figure 4(c)). As a result, the bifurcated hydrogen bonds 
between the O-17 of EM-139 with Ser142 and Tyr155 (3.5 and 3.2 Å, respectively) 
are established, although the bond distances differ from their counterparts ob-
served in the E2 complex (3.1 and 3.5 Å, respectively) [37]. Moreover, the bifur-
cated hydrogen bond between the 3-hydroxyl group of EM-139 with His221 and  
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Figure 3. Front and side views of the electron density of EM-139 in the 17β-HSD1-EM- 
139 complex structure. EM-139 (ligand ID EM9) was shown in the omit Fo-Fc and 
2Fo-Fc electron density. 2Fo-Fc map draw in gray and contoured at 0.8σ; Fo-Fc map 
draw in green and contoured at 1.5σ. The occupancy of the inhibitor was refined to 1. No 
significant negative density features were present in the region of binding site. 
 
Glu282 (3.2 and 3.5 Å, respectively) at the recognition end of the steroid binding 
cleft is conserved. Although much weaker as compared to their counterparts in 
the E2 complex (3.1 and 2.7 Å, respectively) [37], these hydrogen bonds are es-
sential for stabilizing the inhibitor in the steroid binding cavity together with the 
hydrogen bonds at the O-3 of EM-139. 

The 7α-alkyl moiety of EM-139 is facing toward the outside of the steroid 
binding cavity which is apparently accommodated by the βFαG’-loop. However, 
both the 7α-alkyl side chain of the inhibitor and the βFαG’-loop of the enzyme 
are unable to be defined by electron density due to their high degree of flexibili-
ty. This bulky 7α-alkyl side chain is essential for the inhibitor to possess an-
ti-estrogenic activity [43]. It is also safe to conclude that the α conformation of 
the C-7 is essential for this compound to be able to bind with 17β-HSD1. Similar 
results can also be observed at the C-16 of the inhibitor where a 16β halogen 
atom may have steric hindrance with Tyr155. However, no obvious interaction is 
observed between the 16α-Cl atom and surrounding residues (Figure 4(b) and 
Figure 4(c)). 

5. Conclusion 

The present work was aimed at investigating the molecular basis of the inhibito-
ry mechanism of the dual-site inhibitor EM-139 in 17β-HSD1. We successfully 
co-crystallized and solved the crystal structure of 17β-HSD1 in complex with the 
inhibitor. Through comparative analyses of EM-139 binary complexes and pre-
viously reported E2 binary complex as well as the apo structure, we observed a 
similar binding pattern of the inhibitor to the enzyme. The bifurcated hydrogen 
bonds between the O-3 of the inhibitor and the recognition end (His221 and 
Glu282) of the binding site as well as the O-17 of the inhibitor and the catalytic  
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Figure 4. Superposition of A subunit of EM-139 (EM9) binary complex (pink) and E2 
binary complex (cyan) along with 17β-HSD1 apo structure (orange), showing the steroid 
ligand binding sites. (a) General view of the active sites within the A subunit of EM-139 
and E2 complex structures as well as the apo structure; (b) Top and (c) side view of the 
steroid binding sites in the superposed structures. Residues Ser142, Leu149, Tyr155, His221, 
and Glu282 are labeled and shown in sticks. Hydrogen bonds between EM-139 and sur-
rounding residues are drawn in green dash lines and labeled. Chloride atom is colored in 
green. 
 
end (Ser142 and Tyr155) of the binding site are critical in stabilizing the bound in-
hibitor molecule. However, the introduction of a bulky side chain at the C-7 of 
the steroid core, which contributes to the anti-estrogenic activity of the dual-site 
inhibitor, may negatively affect the binding of inhibitor to 17β-HSD1. These re-
sults will contribute to the design of more potent and selective inhibitors of 
17β-HSD1 for clinical purposes. 
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