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Abstract 
This paper discusses the Bayesian approach to estimation and prediction of the 
reliability of software systems during the testing process. A Non-Homogeneous 
Poisson Process (NHPP) arising from the Musa-Okumoto (1984) software re-
liability model is proposed for the software failures. The Musa-Okumoto 
NHPP reliability model consists of two components—the execution time 
component and the calendar time component, and is a popular model in 
software reliability analysis. The predictive analyses of software reliability 
model are of great importance for modifying, debugging and determining 
when to terminate software development testing process. However, Bayesian 
and Classical predictive analyses on the Musa-Okumoto (1984) NHPP model 
is missing on the literature. This paper addresses four software reliability is-
sues in single-sample prediction associated closely with development testing 
program. Bayesian approach based on non-informative prior was adopted to 
develop explicit solutions to these problems. Examples based on both real and 
simulated data are presented to illustrate the developed theoretical prediction 
results. 
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1. Introduction 

Software has become a driver for everything in the 21st century from elementary 

How to cite this paper: Cheruiyot, N., 
Orawo, L.A. and Islam, A.S. (2018) Bayesian 
Predictive Analyses for Logarithmic Non- 
Homogeneous Poisson Process in Software 
Reliability. Open Access Library Journal, 5: 
e4767. 
https://doi.org/10.4236/oalib.1104767  
 
Received: July 10, 2018 
Accepted: August 12, 2018 
Published: August 15, 2018 
 
Copyright © 2018 by authors and Open 
Access Library Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/ 

  Open Access

https://doi.org/10.4236/oalib.1104767
http://www.oalib.com/journal
https://doi.org/10.4236/oalib.1104767
http://creativecommons.org/licenses/by/4.0/


N. Cheruiyot et al. 
 

 

DOI: 10.4236/oalib.1104767 2 Open Access Library Journal 
 

education to genetic engineering. Thus due to high dependency, the size and 
complexity of computer systems have grown and these pose a great problem in 
their reliability as failures are prone to happen during their operations. To avoid 
the failures and faults, reliability of software needs to be studied during devel-
opment of software so as to come up with reliable software. Reliability of soft-
ware is of a lot of concern to the developers. 

Software reliability is defined as the probability of failure free software opera-
tions for a specified period of time in a specified environment [1]. With the in-
creasing need of software with zero defects, predicting reliability of software sys-
tems is gaining more and more importance [2]. Software reliability is achieved 
through testing during the software development stage [3]. Software Reliability 
modeling is done to estimate the form of the curve of the failure rate by statisti-
cally estimating the parameters associated with the selected model. In most cas-
es, the reliability development of a complex system often take place by testing a 
system until it fails, then making repairs and design changes and testing it again. 
This process continues until a desired level of reliability is achieved [4]. The 
purpose of this measure is to estimate the extra execution time during test re-
quired to meet a specified reliability objective and to identify the expected relia-
bility of the software when the product is released. During reliability modeling, 
the software systems are tested in an environment that resembles to the opera-
tional environment [5]. 

Over the past decades many software reliability models that can be used for 
predictive analyses have been proposed by different authors [6] [7]. The Mu-
sa-Okumoto reliability model, also known as logarithmic was developed by Mu-
sa and Okumoto in 1984; which they confirmed to be more accurate than the 
exponential model. The Musa-Okumoto software reliability model is one of 
non-homogeneous Poisson process software models with the intensity function 
given by; 

( )
1

t
t

αβ
λ

β
=

+
                          (1) 

The model is based on the assumptions that failures are observed during ex-
ecution time caused by remaining faults in the software; whenever a failure is 
observed, an instantaneous effort is made to find what caused the failure and the 
faults are removed prior to future tests and whenever a repair is done it reduces 
the number of future faults not like other models. The model must remain stable 
during the entire testing period for any particular testing environment and a 
reasonably accurate prediction of reliability must be provided by the model. 
These are the two main aspects of a good reliability model [8]. The Musa-Okumoto 
(1984) model has been used in various testing environment and in many in-
stances, it provides good estimation and prediction of software reliability. Com-
pared to other models when used in testing industrial data set, Musa-Okumoto 
model is the best performer in terms of fitting and predictive capability to the 
data [5]. 
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There has been a lot of application of Musa-Okumoto software reliability 
growth model as it one of the best predictive models, it belongs to the selected 
models in the AIAA recommended practice standard on software reliability [9], 
[10]. Musa-Okumoto model have been also used in software cost estimation 
models with high accuracy [11] [12] [13]. A critical review and categorization of 
software reliability have been done by many researchers [14] [15]. Predictive 
analyses on this model is missing in literature and this paper presents predictive 
analyses on Musa-Okumoto software reliability model using Bayesian approach. 
This paper presents Bayesian single-sample predictive inference for Mu-
sa-Okumoto software reliability model using Bayesian approach. 

2. Bayesian Methodology  

Bayesian method owes its name to the fundamental role of Bayes’ theorem. In 
Bayesian reasoning, uncertainty is attributed not only to data but also to the pa-
rameters. Therefore, all parameters are modelled by distributions. Before any 
data are obtained, the knowledge about the parameters of a problem are ex-
pressed in the prior distribution of the parameters. Given actual data, the prior 
distribution and the data are combined into the posterior distribution of the pa-
rameters. The posterior distribution summarizes our knowledge about the pa-
rameters after observing the data. 

In this paper we assume that a reliability growth testing is performed on a 
computer software system and the number of failures in the time interval ( ]0, t , 
denoted by ( )N t  is observed. We also assume that ( ){ }, 0N t t >  follows the 
NHPP with intensity given in Equation (1). Let 1 20 t t< < <  be the successive 
failure times. When testing stops after a pre-determined n number of failures is 
observed, the failure data is said to be failure-truncated. We denote the n failures 
time by [ ] 1

nf
obs i i

Y t
=

=  where 1 20 nt t t< < < < , a time-truncated data is when 
testing is observed for fixed time t. We denote the corresponding observed data 
by { }1, , , ;t

obs nY n t t t=  , where 10 nt t t< < < ≤ . 

2.1. Issues in Prediction 

In this paper we present four issues 1) 2) 3) and 4) as listed below in sin-
gle-sample prediction which are associated closely with development testing 
program of a software. Here, we consider one software and assume that its cu-
mulative time between failure times obey Musa-Okumoto software reliability 
growth model with observed data as either f

obsY  or t
obsY . Based on f

obsY  or t
obsY , 

we are interested in the following problems: 
1) What is the probability that at most k software failure will occur in the fu-

ture time period ( ],T τ  with Tτ > ? 
2) Given that the pre-determined target value tvλ  for the failure rate of the 

software undergoing development testing is not achieved at time T, what is the 
probability that the target value tvλ  will be achieved at time , Tτ τ > ? 

3) Suppose that the target value tvλ  for the software failure rate is not 
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achieved at time T, how long will it take so that the software failure rate will be 
attained at tvλ ? 

4) What is the upper prediction limit (UPL) of ( )1τλ αβ βτ= +  with level 
γ . τ  being a pre-determined value greater than T? 

2.2. Prior, Posterior and Predictive Distributions 

Let obsY  represent f
obsY  or t

obsY . The joint density of obsY  is therefore : 

( ) ( ) ( ) ( )( )1 ln 1

1
, 1 e , 0, 0

n
n T

obs i
i

f Y t α βα β αβ β α β− − +

=

= + > >∏         (2) 

Case 1: β , the shape parameter is known, we adopt the following 
non-informative prior distribution for α : 

( ) 1 , 0π α α
α

∝ >                           (3) 

The posterior distribution of α  is thus given by; 

( ) ( ) ( )( ) ( )( )1 ln 11 ln 1 e
n Tn

obsh Y n T α βα α β
− − +−= Γ +               (4) 

Let y  be the random variable being predicted. The predictive density of y  
is; 

( ) ( ) ( )
0

dobs obs obsf y Y f y Y h Yα α
∞

= ∫                  (5) 

Hence, the Bayesian UPL of y  with level γ , denoted as ( )
Uy β , must satisfy 

( )
( )

d
Uy

obsf y Y y
β

γ
−∞

= ∫                         (6) 

Case 2: The shape parameter β  is unknown; we consider the following joint 
prior distribution of α  and β  where both parameters are assumed to be in-
dependent. 

( ) 1, , , 0π α β α β
αβ

∝ >                       (7) 

Thus the corresponding joint posterior distribution for α  and β  is given 
as; 

( ) ( ) ( ) ( )( )1 1 ln 11 1

1
, 1 e

n
Tn n

obs i
i

h Y k n t α βα β α β β
− − − +− −

=

= Γ +   ∏        (8) 

Equation (8) is similar to Equation (4), let y  be the random variable pre-
dicted. The predictive density of y  is; 

( ) ( ) ( )
0 0

, , , d dobs obs obsf y Y f y Y h Yα β α β α β
∞ ∞

= ∫ ∫           (9) 

and the Bayesian UPL denoted by Uy  of y  with level γ  similar to Equation 
(6) is; 

( )d
Uy

obsf y Y yγ
−∞

= ∫                          (10) 
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3. Main Results for Prediction Using Non-Informative Priors 

In this section we address the four issues stated in Section 2.1 using the Bayesian 
approach. The main results are presented as propositions and their proof given 
in the Appendix. Below, we use ( )2 ;nχ γ  to represent γ  the percentage point 
of the chi-square distribution with n degrees of freedom such that

( ) ( ){ }2 2Pr ;n nχ χ γ γ≤ =  , and define Poisson ( ) e !hh hθθ θ −=  and gamma 
( ) ( )1, en n nx n x nλλ λ − −= Γ . The prior is assumed to be Equation (3) and Equa-
tion (7) in all subsequent propositions.  

Preposition 1 (issue 1) 
The probability that at most k failures will occur in the time interval ( ],T τ  

with Tτ >  is 

( )
( )

( )
( ) ( )

( )

( )

11

1

0

1ln
ln 1 1

if is known
1 ln 11ln

1

1
1ln d if is unknown

! 1ln 1

j

n
n k

n j
j n

k

n
n j nin k

i
j

j n

T Tj n
n

T

tj
d j n n T

βτ
β β

β
βτβτ

γ β

β β
βτ

β β
ββτ

+

=

−−
−∞+

=

=

   +   +  +−      
  −  +    +    = +   


 +  Γ  +
   − Γ + +     

∑

∏
∑ ∫

(11) 

Preposition 2 (issue 2) 
The probability that the target value tvλ  will be achieved at time τ  ( Tτ > ) 

is 

( )
( )

( ) ( )

( )
( )

11 ln 1

0

11
11 ln 1

1

0 0

1 ln 1
1 e if is known

!

1 ln 1 1
11 e d if is unknown

! ln 1

tv

h

n T

h
hk

n
n

tv in T
i

n
h

T

h

T t

k h T

τ
βττ λ β
β

βτλ β
β

βτ λ β
β

β

γ
βτ λ β β ββ

β β
β

 +− − + 
 

=

−−
 +∞− − + 

=  

=

   + +  
   −
= 

  + + +      −
 +  

∑

∏
∑∫

 (12) 

Preposition 3 (issue 3) 
For a given level γ , the time τ ∗  required to attain tvλ  is 

( )
( )

2 2 ; 1 if is known
2 ln 1

if is unknown

tv

n
T

T

T

χ γ
β

λ β β
τ

τ β

∗

 
− − 

+  = 

 −

           (13) 

Remark 1: For the second part of Equation (13), τ  is the solution to the eq-
uation   

( )
( ) ( )

( )

11
11 ln 1

1

0 0

1 ln 1 1
11 e d

! ln 1

h
n

n
in T

i
n

h

T t

k h T

τ
βττ λ β
β

βτλ β β β
β

γ β
β

−−
+∞− − +

=

=

 +
+ + 

 = − ⋅
+  

∏
∑∫ . (14) 
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Preposition 4 (issue 4) 

The Bayesian UPL of 
1τ
αβ

λ
βτ

=
+

 with level γ  is 

( ) ( )
( )

( ) ( )

2 2 ;
if is known

2 1 ln 1
if is unknown

U

tv

n
Tβ

βχ γ
β

λ τ βτ β
λ β


= + +



            (15) 

Remark 2: For the second part of Equation (15), tvλ  is the solution to 

( )
( ) ( )

( )

11
11 ln 1

1

0 0

1 ln 1 1
11 e d

! ln 1

tv

h
n

n
tv in T

i
n

h

T t

k h T

βτλ β
β

βτλ β β β
β

γ β
β

−−
+∞− − +

=

=

 +
+ + 

 = − ⋅
+  

∏
∑∫  (16) 

4. Real Example 

We have used the time between failures data described in [16] to illustrate the 
developed methodologies for the single-sample Bayesian predictive analysis. We 
conducted the goodness of fit test presented in [17] and found that the data obey 
the Musa-Okumoto process. On the basis of this data set the maximum likelih-
ood estimates for the parameters α  and β  of the Musa-Okumoto growth 
model were obtained as ˆ 0.008282448β =  and ˆ 15.285550499α = , respective-
ly. 

1) Suppose we are interested in the probability kγ  that at most k failures will 
occur in a future time period ( ] ( ], 180,250T τ = . a) For the case β  known, we 
take its maximum likelihood estimate as its true value, i.e. 0.008282448β = . 
Using the first formula in Equation (11), we have 0 0.00204337γ = , 

1 0.01347748γ = , 2 0.04653484γ = , 3 0.11230530γ = , 4 0.21351423γ = , 

5 0.34188371γ = , 6 0.48155675γ = , 7 0.61554018γ = , 8 0.73112395γ = , 

9 0.82215131γ = , 10 0.88836847γ = , 11 0.93328146γ = , 12 0.96190403γ = ,

13 0.97915241γ = , 14 0.98903392γ = , 15 0.99444044γ = . b) When β  is un-
known, from the second formula of Equation (33), we obtain 0 0.002423218γ = , 

1 0.015348190γ = , 2 0.052195351γ = , 3 0.122789747γ = , 4 0.229662151γ = , 

5 0.362653362γ = , 5 0.362653362γ = , 7 0.639743372γ = , 8 0.750133795γ = , 

9 0.836483617γ = , 10 0.897655409γ = , 11 0.941055333γ = , 12 0.963420189γ = , 

13 0.981411270γ = , 13 0.981411270γ = , 15 0.991582449γ =  Figure 1 shows the 
graph of desired probabilities when β  is known and when it is unknown. 

From the graph it can be seen that there is high probability that at most 15 
failures will occur during that time interval when β  is unknown as compared 
to when it is known. 2) Suppose the target value is given by 0.03tvλ =  chosen 
arbitrarily. At the time 182.21T = , the MLE of the achieved failure rate for this 
software is ( ) ( )ˆ ˆ ˆˆ182.21 1 182.21 0.05045615λ αβ β= + = , which is greater than 

tvλ  thus it cannot be achieved at time 182.21T =  and development testing will 
continue. Suppose we want to find the probability that the target value tvλ  will 
be achieved at the time 277.83 hτ = .  a) When β  is known (say, 

0.008282448β = ), from the first formula in Equation (12), we obtain  

https://doi.org/10.4236/oalib.1104767


N. Cheruiyot et al. 
 

 

DOI: 10.4236/oalib.1104767 7 Open Access Library Journal 
 

 
Figure 1. The graph of the probabilities kγ  that at most k failures will occur in the time 
interval (180, 250] for the cases of β  known and unknown. 
 

1.687506e 06γ = − , which is very small and hence the target value will not be 
achieved. b) when β  is unknown, from the second formula in Equation (12) 
we have 0.193896γ =  computed by the Monte Carlo Method of integration 
based on a sample of size 1000L = . This shows that, when β  is unknown 
there is a possibility of achieving the target value at time 277.83 hτ = .

 3) Since the target value tvλ  was not achieved at 182.21T = , we want to 
know how long it will take for the target value to be achieved. a) when β  is 
known (say, 0.008282448β = ), let 0.90γ = , from the first formula in Equa-
tion (13) we obtain 538.7523 hτ ∗ = . This means that, it will take another 
538.7523 hours in order to achieve the desired failure rate. b) when β  is un-
known, from second formula in Equation (13) and Remark1, we obtain 

414 hτ ∗ = . Thus, it takes another 414 hours in order to achieve the desired fail-
ure rate when β  is unknown this shows a high reduction in time as compared 
to when β  is known. 4) Given 900 hτ = , from first formula in Equation (15)  

the Bayesian UPL of 
1τ
αβ

λ
βτ

=
+

 with level 0.90γ =  is given by  

( ) ( ) 0.02473799U
βλ τ = . 

5. Conclusions 

In software development, predictive analysis is very important as it helps the 
software developer to make a trade-off decision at the right time. In this paper, 
explicit solution to predictive issues that may arise during development process 
were derived using Bayesian approach. These solutions are helpful to software 
developers in many instances such as resource allocation, when to terminate the 
testing process, modification needed in the software before termination.  
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The study used Bayesian approach with non-informative priors to derived ex-
plicit solutions for predictive issues that may arise during software development 
process. In all the cases when the shape parameter was known, solutions to 
posterior and predictive distributions had closed forms while when it is un-
known, solutions had no closed forms and the study used Markov Chain Monte 
Carlo (MCMC). Bayesian approach was used as it is advantageous over classical 
approach. Bayesian approach is available for small sample sizes and allows the 
input of prior information about reliability growth process and provides full 
posterior and predictive distributions [6]. 

However, it will be interesting to look at two-sample prediction for Mu-
sa-Okumoto (1984) model considering procedures that [3] used. These proce-
dures presented in this paper can also be extended to other NHPP models such 
as Cox-Lewis process and the delayed S-shaped process. This is left open for fu-
ture research. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Nuria, T.R. (2011) Stochastic Comparisons and Bayesian Inference in Software Re-

liability. Ph.D. Thesis, Universidad Carlos III de Madrid, Madrid.  

[2] Sonia, D. and Renu, D. (2014) A Study of Various Reliability Growth Models. In-
ternational Journal of Advanced Research in Computer Science and Software Engi-
neering, 4, 1213-1219. 

[3] Daniel, R.J. and Hoang, P. (2001). On the Maximum Likelihood Estimates for the 
Goel-Okumoto Software Reliability Model. The American Statistician, 55, 219-222.  
https://doi.org/10.1198/000313001317098211 

[4] Muralidharan, K., Rupal, S. and Deepak, H.D. (2008) Future Reliability Estimation 
Based on Predictive Distribution in Power Law Process. Quality Technology & 
Quantitative Management, 5, 193-201.  
https://doi.org/10.1080/16843703.2008.11673396 

[5] Ullah, N., Morisio, M. and Vetro, A. (2013) A Comparative Analysis of Software 
Reliability Growth Models Using Defects Data of Closed and Open Source Software. 
In: 35th Annual IEEE Software Engineering Workshop, Heraclion, 12-13 October 
2012, 187-192. 

[6] Yu, J.-W., Tian, G.-L. and Tang, M.-L. (2007) Predictive Analyses for 
Non-Homogeneous Poisson Processes with Power Law Using Bayesian Approach. 
Computational Statistics & Data Analysis, 51, 4254-4268.  
https://doi.org/10.1016/j.csda.2006.05.010 

[7] Akuno, A.O., Orawo, L.A. and Islam, A.S. (2014) One-Sample Bayesian Predictive 
Analyses for an Exponential Non-Homogeneous Poisson Process in Software Relia-
bility. Open Journal of Statistics, 4, 402-411. https://doi.org/10.4236/ojs.2014.45039 

[8] Kapur, P.K., Pham, H., Gupta, A. and Jha, P.C. (2011) Software Reliability Assess-
ment with OR Applications. Springer Series in Reliability Engineering, Sprin-
ger-Verlag, London, 58. https://doi.org/10.1007/978-0-85729-204-9 

https://doi.org/10.4236/oalib.1104767
https://doi.org/10.1198/000313001317098211
https://doi.org/10.1080/16843703.2008.11673396
https://doi.org/10.1016/j.csda.2006.05.010
https://doi.org/10.4236/ojs.2014.45039
https://doi.org/10.1007/978-0-85729-204-9


N. Cheruiyot et al. 
 

 

DOI: 10.4236/oalib.1104767 9 Open Access Library Journal 
 

[9] Lyu, M. (1996) Handbook of Software Reliability Engineering. McGraw-Hill, New 
York. 

[10] Malaiya, Y.K. and Denton, J. (1997) What Do the Software Reliability Growth Mod-
el Parameters Represent? Technical Report CS-97-115, Department of Computer 
Science, Colorado State University, Fort Collins. 

[11] Xia, W., Capretz, L.F. and Ho, D. (2008) A Neuro-Fuzzy Model for Function Point 
Calibration. WSEAS Transactions on Information Science and Applications, 5, 
22-30. 

[12] Nassif, A.B., Capretz, L.F. and Ho, D. (2010) Software Estimation in the Early Stages 
of the Software Life Cycle. In: International Conference on Emerging Trends in 
Computer Science, Communication and Information Technology, Nanded, 9-11 
January, 5-13. 

[13] Nassif, A.B., Ho, D. and Capretz, L.F., (2013) Towards an Early Software Estimation 
Using Log-Linear Regression and a Multilayer Perceptron Model. Journal of Sys-
tems and Software, 86, 144-160. https://doi.org/10.1016/j.jss.2012.07.050 

[14] Yadav, A. and Khan, R.A. (2009) Critical Review on Software Reliability Models. 
International Journal of Recent Trends in Engineering, 2, 114-116.  

[15] Sheakh, T.H., Quadri, S.M.K. and Singh, V. (2012) Critical Review of Software Re-
liability Model. International Journal of Emerging Technology and Advance Engi-
neering, 2, 496-499. 

[16] Xie, M., Goh, T.N. and Ranjan, P. (2002) Some Effective Control Chart Procedures 
for Reliability Monitoring. Reliability Engineering & System Safety, 77, 143-150.  
https://doi.org/10.1016/S0951-8320(02)00041-8 

[17] Zhao, J. and Wang, J. (2005) A New Goodness-of-Fit Test Based on the Laplace Sta-
tistic for a Large Class of NHPP Models. Communications in Statistics—Simulation 
and Computation, 34, 725-736. https://doi.org/10.1081/SAC-200068389 

 
 

https://doi.org/10.4236/oalib.1104767
https://doi.org/10.1016/j.jss.2012.07.050
https://doi.org/10.1016/S0951-8320(02)00041-8
https://doi.org/10.1081/SAC-200068389


N. Cheruiyot et al. 
 

 

DOI: 10.4236/oalib.1104767 10 Open Access Library Journal 
 

Appendix: Proof of Preposition 1 - 4  

We first state the following identity without proof: That is 

( ) ( )
( )

( ) ( )1
; ,

d d !
m

m
D m a b

F t F t F a F b m= −  ∫             (A.1) 

where m is any positive integer, a and b are two real numbers such that a b< , 
( )F t  is an increasing and differentiable function and  

( ) ( ){ }1 1; , , , :m mD m a b t t a t t b< < < <   . 

Proof of Proposition 1 
The probability that at most k failures will occur in the interval ( ],T τ  is 

( ){ }Prk obsN n k Yγ τ= ≤ + . When β  is known, we have 

( ){ } ( )
0

Pr , dk obs obsN n k Y h Yγ τ α α α
∞

= ≤ + ⋅∫ .          (A.2) 

where ( )obsh Yα  is given by equation (4) and 
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=

≤ + = =   ∑    (A.3) 

From Equation (2), we have ( ) ( ) ( )1 ln 1

1
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Thus Equation (A.3) becomes 
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And hence Equation (A.2) becomes 
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(A.5) 

The integral part of Equation (A.5) integrates to 1 since it is a gamma distri-
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bution with parameters j and ( )ln 1 βτ+  and hence Equation (A.5) reduces to 
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∑ .           (A.6) 

This is the first formula of Equation (11). 
When β  is unknown, noting that ( ){ }Pr , ,obsN n k Yτ α β≤ +  and 
( ), obsh Yα β  are given by Equation (A.4) and Equation (8) respectively, we ob-

tain 
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(A.7) 

Since the summation of k is from n to n k+  and k’s are not the same, we 
substitute letter k with d in Equation (A.7) where d k=  as used in equation (8). 
Equation (A.7) implies the second formula in Equation (11).    

Proof of preposition 2 
Let ( )obsf Yτλ  denote the posterior of ( )1τλ αβ βτ= + . Hence, the proba-

bility that the target value tvλ  will be achieved at time τ  is given by 
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tv

tv obs obsY f Y
λ

τ τ τγ λ λ λ λ= ≤ = ∫              (A.8) 

when β  is known, making transformation ( )1τλ αβ βτ= + , we have
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= . Consequently, the posterior density of τλ  is 
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 (A.9) 

From Equation (A.9), it can easily be noted that τλ  has gamma distribution 

with parameters n and ( )1 ln 1 Tβτ
β

β
+

+ . Noting that gamma and Poisson dis-

tributions have a relationship defined as 
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By substituting Equation (A.9) and Equation (A.10) into Equation (A.8), we 
obtain the first formula of Equation (12). 

When β  is unknown, making transformation ( )1τλ αβ βτ= +  and 

β β= , we obtain 1
τ

βτ
α λ

β
+

=  and β β= . Note that the Jacobian is 
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, 1
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α β βτ
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∂ +
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. From Equation (8), the joint posterior density of ( ),τλ β  is 
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(A.11) 

By substituting Equation (A.10) and Equation (A.11) into Equation (A.8), we 
obtain the second formula of Equation (12).    

Proof of preposition 3 
For given level γ , the time required to attain the target value tvλ  is 

Tτ τ∗ = − , where τ  satisfies Equation (44). When β  is known, from Equa-
tion (46), it can easily be seen that  

( )12 ln 1 T τ
βτ

β λ
β

 +
+ 

 
 

follows a chi-square distribution with 2n degrees of freedom. Thus we have 

( ) ( )212 ln 1 2 ,tvT nβτ
β λ χ γ

β
 +

+ = 
 

.           (A.12) 

and Equation (13) follows immediately.   
The time required to attain the target tvλ  with level γ  when β  is un-

known is * Tτ τ= −  where τ  is the solution to 
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∑∫ . (A.13).    

Proof of preposition 4 
For a pre-determined ( )Tτ τ > , the Bayesian upper prediction limit for 

1τ
αβ

λ
βτ

=
+

 with level γ  is ( ) ( )U
βλ τ  satisfying ( ) ( ){ }Pr U obsYβ

τγ λ λ τ= ≤ . From 

Equation (A.8) and Equation (A.12), we have ( ) ( ) ( )
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λ τ

βτ β
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+ +
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thus follows Equation (15). The second part follows similarly.   
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